Self-electrooptic-effect devices (SEEDs)

Self-electrooptic-effect devices are a class of optoelectronic devices combining quantum-well electroabsorption modulators and photodetection to give optically controlled optical devices for many possible functions. Such devices show that efficient optical to electronic to optical conversion is quite possible, especially in integrated devices.

David Miller created this concept and his work explored the possibilities for such functional integrated optoelectronic devices. Though the concept of “optical transistors” and optical logic would have many challenges in any competition with electronic logic, these devices, unlike most other such proposals, could meet the qualitative requirements for logic devices, and were successfully incorporated into experimental systems. Arguably, tightly integrated versions of these devices would still offer the lowest energy approaches to any such optical logic, while also satisfying the necessary qualitative criteria.

Following these explorations, the potential for optics in interconnect rather than logic became increasingly clear, and this work inspired David Miller to pioneer in the optical interconnect field and analyze and advocate for it and its many benefits.

Following his first work in this concept, which demonstrated optically bistable SEEDs and some other SEED functionalities [1][2][3], he progressed to the the diode-biased SEED [4] – a fully integrated device, with separate optical input and output beams and converting in and out of electrical internal states [4]. The symmetric SEED [5] extends this idea, and is arguably the only category of bistable optical device capable of satisfying the necessary criteria of a viable logic system. The field-effect transistor (FET) SEED directly integrates functional electronics inside the device structure [6], still with optical inputs and outputs. The self-biased SEED [7] extends this further to require no external electrical power supply, giving a fully “self-powered” device. This body of work progresses towards the concept of “smart pixels” [8] – highly functional blocks with optical inputs and outputs. All of these have efficient conversion between optical input and output states and internal electrical states. Some concepts for analog rather than digital devices are also possible [2][3][9][10][11].

[1] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, “Novel Hybrid Optically Bistable Switch: The Quantum Well Self Electro‑Optic Effect Device,” Appl. Phys. Lett. 45, 13‑15 (1984).

[2] D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard and W. Wiegmann, “Optical-level Shifter and Self-Linearized Optical Modulator Using a Quantum-Well Self-Electro-Optic Effect Device,” Optics Lett. 9, 567‑569 (1984).

[3] D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self Linearized Modulation,” IEEE J. Quantum Electron. QE‑21, 1462‑1476 (1985)

[4] D. A. B. Miller, J. E. Henry, A. C. Gossard and J. H. English, “Integrated Quantum Well Self-Electro-Optic Effect Device: 2×2 Array of Optically Bistable Switches,” Appl. Phys. Lett. 49, 821‑823 (1986)

[5] A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett. 52, 1419‑1421 (1988)

[6] D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, and D. S. Chemla, “Field-effect transistor self-electrooptic effect device: integrated photodiode, quantum well modulator and transistor,” IEEE Photonics Tech. Lett. 1, 61‑64 (1989)

[7] J. S. Weiner, A. C. Gossard, J. H. English, D. A. B. Miller, D. S. Chemla and C. A. Burrus, “Low Voltage Modulator and Self-Biased Self-Electro-Optic Effect Device,” Electronics Lett. 23, 75‑77 (1987)

[8] A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. of Quantum Electronics 29, 655‑669 (1993)

[9] G. Livescu, D. A. B. Miller, J. E. Henry, A. C. Gossard, and J. H. English, “Spatial light modulator and optical dynamic memory using a 6 x 6 array of self-electro-optic-effect devices,” Optics Lett. 13, 297‑299 (1988).

[10] E. A. DeSouza, L. Carraresi, G. D. Boyd, and D. A. B. Miller, “Analog differential self-linearized quantum-well self-electro-optic-effect modulator,” Optics Lett. 18, 974‑976 (1993)

[11] E. A. DeSouza, L. Carraresi, and D. A. B. Miller, “Linear image differentiation by use of analog differential self-electro- optic effect devices,” Optics Lett., 19, 1882‑1884 (1994)

See also the following papers.

D. A. B. Miller, “Quantum Wells for Optical Information Processing,” Opt. Eng. 26, 368‑372 (1987)

I. Bar-Joseph, G. Sucha, D. A. B. Miller D. S. Chemla, B. I. Miller and U. Koren, “Self-electrooptic effect device and modulation converter with InGaAs/InP multiple quantum wells,” Appl. Phys. Lett. 52, 51‑53 (1988).

C. R. Giles, T. Li, T. H. Wood, C. A. Burrus, and D. A. B. Miller, “All-optical regenerator,” Electronics Lett. 4, 848‑850 (1988)

D. A. B. Miller “Optical bistability in self-electro-optic effect devices with asymmetric quantum wells,” Appl. Phys. Lett. 54, 202‑204 (1988)

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, and D. A. B. Miller, “Energy scaling and subnanosecond switching of symmetric self-electrooptic effect devices,” IEEE Photonics Tech. Lett. 1, 129-131 (1989)

I. Bar-Joseph, K. W. Goossen, J. M. Kuo, R. F. Kopf, D. A. B. Miller, and D. S. Chemla, “Room-temperature electroabsorption and switching in a GaAs/AlGaAs superlattice,” Appl. Phys. Lett. 55, 340‑342 (1989)

A. L. Lentine, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Multistate Self-Electrooptic Effect Devices,” IEEE J. Quantum Electron. 25 1921‑1927 (1989).

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric Self-Electrooptic Effect Device: Optical Set-Reset Latch, Differential Logic Gate, and Differential Modulator/Detector,” IEEE J. Quantum Electron. 25, 1928‑1936 (1989)

K. W. Goossen, E. A. Caridi. T. Y. Chang, J. B. Stark, D. A. B. Miller, and R. A. Morgan, “Observation of Room-Temperature Blue Shift and Bistability in a Strained InGaAs‑GaAs (111) Self-Electro-Optic Effect Device,” Appl. Phys. Lett. 56, 715‑717 (1990)

D. A. B. Miller, “Quantum Well Optoelectronic Switching Devices,” International J. of High Speed Electronics 1, 19‑46, (1990)

A. L. Lentine, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, and L. A. D’Asaro, “Optical logic using electrically connected quantum well PIN diode modulators and detectors,” Appl. Opt. 29, 2153‑2163 (1990).

D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Optical and Quantum Electronics 22, S61‑S98, (1990)

G. D. Boyd, A. M. Fox, and D. A. B. Miller, “33 ps optical switching of symmetric self-electro-optic effect devices,” Appl. Phys. Lett. 57, 1843‑1845, (1990)

D. A. B. Miller, “Comment on ‘Optical bistability in self-electro-optic effect devices with asymmetric quantum wells’ and on ‘Novel configuration of self-electro-optic effect device based on asymmetric quantum wells’,” Appl. Phys. Lett. 57, 1363‑1365, (1990)

A. L. Lentine, S. J. Hinterlong, T. J. Cloonan, F. B. McCormick, D. A. B. Miller, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, and J. M. Kuo, “Quantum well optical tri-state devices,” Appl. Opt. 29, 1157‑1160, (1990)

A. L. Lentine, D. A. B. Miller, L. M. F. Chirovsky, and L. A. D’Asaro, “Optimization of Absorption in Symmetric Self-Electrooptic Effect Devices: A Systems Perspective,” IEEE J. Quantum Electron. 27, 2431‑2439, (1991)

A. L. Lentine, F. A. P. Tooley, S. L. Walker, F. B. McCormick, R. L. Morrison, L. M. F. Chirovsky, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, G. J. Przybyled, L. E. Smith, L. A. D’Asaro, and D. A. B. Miller, “Logic self-electrooptic effect devices: quantum-well optoelectronic multiplexers, and shift registers,” IEEE J. Quantum Electron. 28, 1539‑1553 (1992)

D. A. B. Miller, “Novel analog self‑electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678‑698 (1993)

A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. of Quantum Electronics 29, 655‑669 (1993)

G. D. Boyd, J. A. Cavailles, L. M. F. Chirovsky, and D. A. B. Miller, “Wavelength dependence of saturation and thermal effects in multiple quantum well modulators,” Appl. Phys. Lett. 63, 1715‑1717 (1993)