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Vector space

We need a “space” in which our vectors exist 
For a vector with three components 

we imagine a three dimensional Cartesian space 
The vector can be visualized as a line 

starting from the origin
with projected lengths a1, a2, and a3 along the x, y, 

and z axes respectively 
with each of these axes being at right angles 
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Vector space

For a function expressed as its value at a set of points 
instead of 3 axes labeled  x, y, and z

we may have an infinite number of orthogonal axes
labeled with their associated basis function

e.g., 
Just as we label axes in conventional space with unit vectors

one notation is    ,   , and  for the unit vectors
so also here we label the axes with the kets

Either notation is acceptable 

n

x̂ ŷ ẑ
n



Mathematical properties – existence of inner product

Geometrical space has a vector dot product 
that defines both the orthogonality of the axes

and the components of a vector along those axes
with 

and similarly for the other components 
Our vector space has an inner product that defines both

the orthogonality of the basis functions

as well as the components 

ˆ ˆ 0 x y

ˆ ˆ ˆx y zf f f  f x y z ˆxf  f x

m n nm  

m mc f



Mathematical properties – addition of vectors

With respect to addition of vectors 
both geometrical space and our vector space are 

commutative

and associative

  a b b a
f g g f  

       a b c a b c

   f g h f g h    



Mathematical properties - linearity

Both the geometrical space and our 
vector space are 
linear in multiplying by constants

our constants may be complex
And the inner product is linear

both in multiplying by constants

and in superposition of vectors

 c c c  a b a b
 c f g c f c g  

   c c  a b a b
f cg c f g

      a b c a b a c

 f g h f g f h  



Mathematical properties – norm of a vector

There is a well-defined “length” to a vector
formally a “norm”

 a a a

f f f



Mathematical properties – completeness

In both cases 
any vector in the space 

can be represented to an arbitrary degree of 
accuracy 

as a linear combination of the basis vectors 
This is the completeness requirement on the 
basis set 

In vector spaces
this property of the vector space itself is sometimes 
described as “compactness”



Mathematical properties – commutation and inner product

In geometrical space, the lengths ax, ay, and az of a vector’s 
components are real

so the inner product (vector dot product) is commutative

But with complex coefficients rather than real lengths 
we choose a non-commutative inner product of the form

This ensures that   is real
even if we work with complex numbers

as required for it to form a useful norm 

  a b b a

 f g g f




f f
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Operators

A function turns one number 
the argument

into another 
the result 

An operator turns one function into another 
In the vector space representation of a 
function

an operator turns one vector into 
another 



Operators

Suppose that we are constructing the new function  
from the function   

by acting on   
with the operator

The variables x and y might be the same kind of variable
as in the case where the operator corresponds to 
differentiation of the function

 g y
 f x

 f x
Â

   dg x f x
dx

   
 



Operators

The variables x and y might be quite different
as in the case of a Fourier transform operation where 

x might represent time and 
y might represent frequency

A standard notation for writing any such operation on a 
function is 

This should be read as   operating on 

     1 exp
2

g y f x iyx dx






 

   ˆg y Af x

Â  f x



Operators

For     to be the most general operation possible 
it should be possible for the value of

for example, at some particular value of y = y1
to depend on the values of  

for all values of the argument x
This is the case, for example, in the Fourier transform 

operation

Â
 g y

 f x

     1 exp
2

g y f x iyx dx






 



Linear operators

We are interested here solely in linear operators 
They are the only ones we will use in quantum 
mechanics

because of the fundamental linearity of 
quantum mechanics 

A linear operator has the following characteristics

for any complex number c

       ˆ ˆ ˆA f x h x Af x Ah x    

   ˆ ˆA cf x cAf x   



Consequences of linearity for operators

Let us consider the most general way we 
could have the function   

at some specific value y1 of its argument 
that is,   

be related to the values of   
for possibly all values of x

and still retain the linearity 
properties for this relation

 g y

 1g y
 f x



Consequences of linearity for operators

Think of the function         
as being represented by a list of values 

,          ,         , …  , 

just as we did when considering   as a vector 
We can take the values of x to be as closely spaced as 

we want
We believe that this representation can give us as 
accurate a representation of   

for any calculation we need to perform

 f x

 1f x  2f x  3f x

 f x

 f x



Consequences of linearity for operators

Then we propose that
for a linear operation

the value of   
might be related to the values of   

by a relation of the form

where the aij are complex constants 

 1g y
 f x

       1 11 1 12 2 13 3g y a f x a f x a f x   



Consequences of linearity for operators

This form 
shows the linearity behavior we want

If we replaced         by
then we would have 

as required for a linear operator relation from 

       1 11 1 12 2 13 3g y a f x a f x a f x   

 f x    f x h x

             
     
     

1 11 1 1 12 2 2 13 3 3

11 1 12 2 13 3

11 1 12 2 13 3

g y a f x h x a f x h x a f x h x

a f x a f x a f x

a h x a h x a h x

               
   

   







       ˆ ˆ ˆA f x h x Af x Ah x    



Consequences of linearity for operators

And, in this form  
if we replaced         by

then we would have 

as required for a linear operator relation from 

       1 11 1 12 2 13 3g y a f x a f x a f x   
 f x  cf x

       
     

1 11 1 12 2 13 3

11 1 12 2 13 3

g y a cf x a cf x a cf x

c a f x a f x a f x

   

     





   ˆ ˆA cf x cAf x   



Consequences of linearity for operators

Now consider whether this form   

is as general as it could be and still be a linear relation
We can see this by trying to add other powers and “cross 

terms” of  
Any more complicated relation of          to   

could presumably be written as a power series in  
possibly involving   

for different values of x
that is, “cross terms” 

       1 11 1 12 2 13 3g y a f x a f x a f x   

 f x
 1g y  f x

 f x
 f x



Consequences of linearity for operators

If we were to add higher powers of  
such as

or cross terms such as  
into the series

it would no longer have the required linear behavior of

We also cannot add a constant term to this series
That would violate the second linearity condition

The additive constant would not be multiplied by c

       1 11 1 12 2 13 3g y a f x a f x a f x   

 f x
  2

f x  
   1 2f x f x

       ˆ ˆ ˆA f x h x Af x Ah x    

   ˆ ˆA cf x cAf x   



Generality of the proposed linear operation

Hence we conclude 

is the most general form possible 

for the relation between   

and   

if this relation is to correspond to a linear 
operator

       1 11 1 12 2 13 3g y a f x a f x a f x   

 1g y

 f x



Construction of the entire operator

To construct the entire function
we should construct series like

for each value of y
If we write          and          as vectors

then we can write all these series at once    

 g y

       1 11 1 12 2 13 3g y a f x a f x a f x   

 
 
 

 
 
 

11 12 131 1

21 22 232 2

31 32 333 3

a a ag y f x
a a ag y f x
a a ag y f x

    
    
    
    
    

    





    

 f x  g y



Construction of the entire operator

We see that

can be written as
where the operator     can be written as a matrix 

 
 
 

 
 
 

11 12 131 1

21 22 232 2

31 32 333 3

a a ag y f x
a a ag y f x
a a ag y f x

    
    
    
    
    

    





    
   ˆg y Af x

11 12 13

21 22 23

31 32 33

ˆ

a a a
a a a

A
a a a

 
 
 
 
 
 





   

Â



Bra-ket notation and operators

Presuming functions can be represented as 
vectors

then linear operators can be represented 
by matrices  

In bra-ket notation, we can write 
as

If we regard the ket as a vector 
we now regard the (linear) operator  

as a matrix

   ˆg y Af x

ˆg A f

Â
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Consequences of linear operator algebra

Because of the mathematical equivalence of 
matrices and linear operators 

the algebra for such operators 
is identical to that of matrices 

In particular
operators do not in general commute

is not in general equal to  
for any arbitrary

Whether or not operators commute 
is very important in quantum mechanics

ˆ ˆAB f ˆB̂A f
f



Generalization to expansion coefficients

We discussed operators
for the case of functions of position (e.g., x)

but we can also use expansion 
coefficients on basis sets

We expanded                             and 

We could have followed a similar argument
requiring each expansion coefficient di

depends linearly on all the expansion 
coefficients cn

   n n
n

f x c x    n n
n

g x d x



Generalization to expansion coefficients

By similar arguments
we would deduce the most general linear relation 

between the vectors of expansion coefficients
could be represented as a matrix

The bra-ket statement of the relation between f, g, 
and    remains unchanged as  

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

d A A A c
d A A A c
d A A A c

     
     
     
     
     
     





     

Â ˆg A f



Evaluating the matrix elements of an operator

Now we will find out how we can write some 
operator 

as a matrix
That is, we will deduce how to calculate 

all the elements of the matrix 
if we know the operator

Suppose we choose our function

to be the jth basis function

so                       or equivalently   

 f x

 j x

   jf x x jf 



Evaluating the matrix elements of an operator

Then, in the expansion
we are choosing

with all the other c’s being 0
Now we operate on this       with     

in
to get   

Suppose specifically
we want to know the resulting coefficient di

in the expansion 

   n n
n

f x c x
1jc 

f Â
ˆg A f

g

   n n
n

g x d x



Evaluating the matrix elements of an operator

From the matrix form of

with our choice           and all other c’s 0 then 
we would have

1jc 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

d A A A c
d A A A c
d A A A c

     
     
     
     
     
     





     

ˆg A f

i ijd A



Evaluating the matrix elements of an operator

For example, for
that is,           and all other c’s 0 then

so in this example

2j 
2 1c 

1 12 11 12 13

2 22 21 22 23

3 32 31 32 33

0
1
0

d A A A A
d A A A A
d A A A A

       
       
        
       
       
       





      

3 32d A



Evaluating the matrix elements of an operator

But, from the expansions for       and
for the specific case of

To extract di from this expression
we multiply by       on both sides to obtain

But we already concluded for this case that

So

f g

jf 

ˆ ˆ
n n j

n

g d A f A   

i
ˆ

i i jd A 

i ijd A

ˆ
ij i jA A 



Evaluating the matrix elements of an operator

But our choices of i and j here were arbitrary
So quite generally

when writing an operator      as a matrix
when using a basis set

the matrix elements of that operator are

We can now turn any linear operator into a matrix 
For example, for a simple one-dimensional spatial case

ˆ
ij i jA A 

n
Â

   ˆ
ij i jA x A x dx  



Visualization of a matrix element 

Operator  
acting on the unit vector 

generates the vector 

with generally a new length and 
direction

The matrix element   

is the projection of

onto the        axis

j

axisj

axisi

axisk

ˆ
i jA 

ˆ
jA

Â

ˆ
jA

j

ˆ
i jA 

ˆ
jA

i



Evaluating the matrix elements

We can write the matrix for the operator     

We have now deduced how to set up
a function as a vector and
a linear operator as a matrix

which can operate on the vectors

Â

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ˆ ˆ ˆ

ˆ ˆ ˆˆ
ˆ ˆ ˆ

A A A

A A AA
A A A

     

     

     

 
 
   
 
  






   






