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Vector space
N

We need a “space” in which our vectors exist
For a vector with three components |

a2
as

we imagine a three dimensional Cartesian space
The vector can be visualized as a line
starting from the origin

with projected lengths a,, a,, and a; along the x, y,
and z axes respectively

with each of these axes being at right angles




Vector space
N

For a function expressed as its value at a set of points
instead of 3 axes labeled x, y, and z
we may have an infinite number of orthogonal axes
labeled with their associated basis function
€g. ¥,
Just as we label axes in conventional space with unit vectors
one notation is X, Y, and z for the unit vectors
so also here we label the axes with the kets |y, )
Either notation is acceptable



Mathematical properties — existence of inner product
N

Geometrical space has a vector dot product

that defines both ’ghe(g)rthogonality of the axes
X =
and the comp)clanents of a vector along those axes
f=fXx+fy+fzwithf =f.%
and similarly for the other components
Our vector space has an inner product that defines both
the orthogonality of the basis functions
(W |¥1) = o
as well as the components ¢, =(y,, | f)



Mathematical properties — addition of vectors
N

With respect to addition of vectors
both geometrical space and our vector space are
commutative

a+b=b+a

[£)+]g)=]a)+|f)
and associative

a+(b+c)

[£)+(19)+[M)

(a+b)+c

(11)+[g))+[h)



Mathematical properties - linearity
B

Both the geometrical space and our
vector space are

linear in multiplying by constants c(a+b)=ca+cb
our constants may be complex c(|f)+|g))=c|f)+c|g)

And the inner product is linear
both in multiplying by constants

a.
(fleg)=c(f|g)
and in superposition of vectors a-(b+c)=a-b+a-c
(FI(g)+[) =(f[g)+(f[h)



Mathematical properties — norm of a vector
E—

There is a well-defined “length” to a vector
formally a “norm”

o) =va-a
fl=yCEle)




Mathematical properties — completeness
N 1

In both cases
any vector in the space

can be represented to an arbitrary degree of
accuracy

as a linear combination of the basis vectors

This is the completeness requirement on the
basis set

In vector spaces

this property of the vector space itself is sometimes
described as “compactness”



Mathematical properties — commutation and inner product
5

In geometrical space, the lengths a,, a, and a, of a vector’s
components are real
so the inner product (vector dot product) is commutative
a-b=Db-a
But with complex coefficients rather than real lengths
we choose a non-commutative inner product of the form

(fl9)=((al))

This ensures that (f|f) is real
even if we work with complex numbers
as required for it to form a useful norm
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Operators
1

A function turns one number
the argument
iInto another
the result
An operator turns one function into another

In the vector space representation of a
function

an operator turns one vector into
another



Operators
N

Suppose that we are constructing the new function g(y)
from the function f (x)
by acting on f(x)
with the operator A
The variables x and y might be the same kind of variable

as in the case where the operator corresponds to
differentiation of the function

0()=( 5]

X



Operators
N

The variables x and y might be quite different
as in the case of a Fourier transform operation where
X might represent time and
y might represent frequency

9(y)= rf

A standard notation for writing any such operation on a

function is R
g(y)=Af(x)
This should be read as A operating on f (x)

x)exp(—iyx)dx



Operators
N

For A to be the most general operation possible
it should be possible for the value of g(y)
for example, at some particular value of y =y,
to depend on the values of f (x)
for all values of the argument x
This is the case, for example, in the Fourier transform
operation
1 =

g(y) :E‘[ f (x)exp(—iyx)dx



Linear operators
N

We are interested here solely in linear operators

They are the only ones we will use in quantum
mechanics

because of the fundamental linearity of
gquantum mechanics

A linear operator has the following characteristics
Al T (x)+h(x)]= Af (x)+ Ah(x)

A[cf (x)]= cAf ()

for any complex number c



Consequences of linearity for operators
1

Let us consider the most general way we
could have the function g(y)

at some specific value y, of its argument
that is, 9(,)
be related to the values of f (x)
for possibly all values of x

and still retain the linearity
properties for this relation



Consequences of linearity for operators
N 1

Think of the function f (x)
as being represented by a list of values

f(x), fF(%)f(x) .

just as we did when considering f (x) as a vector

We can take the values of x to be as closely spaced as
we want

We believe that this representation can give us as
accurate a representation of f (x)

for any calculation we need to perform



Consequences of linearity for operators
N

Then we propose that
for a linear operation
the value of g(y, )
might be related to the values of f (x)
by a relation of the form

g(Yr)=ay F(x)+a,f(x)+af(x)+...

where the a; are complex constants



Consequences of linearity for operators
N 1

This form g(y,)=a,f(x)+a,f(Xx,)+a,f(x)+...
shows the linearity behavior we want

If we replaced f (x) by f (x)+h(x)
then we would have
g(y,)=ay| f(x)+h(x)]+a,| f(%)+h(x)]+as] f(x)+h(x)]+...
=a, f(x)+a,f(x)+a,f(x)+...
+a,h (%) +a,h(x,)+azh(x)+...
as required for a linear operator relation from
Al f(x)+h(x)]= Af (x)+Ah(x)



Consequences of linearity for operators
N 1

And, in this form g(y;)=a, f (X )+a,f(x,)+a,f (x)+...
if we replaced f (x) by cf (x)
then we would have
g(y,)=a,cf (x)+a,cf (X,)+a,cf (x;)+...
=cla,f(x)+a,f(x)+asf(x)+...|
as required for a linear operator relation from
Al cf (x) | = cAf (x)



Consequences of linearity for operators
N 1

Now consider whether this form
g(Y:)=a,f(x)+a,f(x)+ra,f(x)+..
IS as general as it could be and still be a linear relation

We can see this by trying to add other powers and “cross
terms” of f (x)

Any more complicated relation of 9(¥;)to f (X)
could presumably be written as a power series in f (x)
possibly involving f ()
for different values of x
that is, “cross terms”



Consequences of linearity for operators
N 1

If we were to add higher powers of f (x)
such as| f (x)]2
or cross terms such as f (x,) f (x,)
into the series g(y;)=a, f (X )+a,f(X,)+a,f(x)+...
it would no longer have the required linear behavior of
Al f(x)+h(x)]= Af (x)+ Ah(x)
We also cannot add a constant term to this series
That would violate the second linearity condition
Al cf (x) | = cAf (x)
The additive constant would not be multiplied by ¢



Generality of the proposed linear operation
N

Hence we conclude
g(yl):allf (X1)+a12f (X2)+a13f (Xs)"'---
Is the most general form possible
for the relation between g(y,)
and f (x)

iIf this relation is to correspond to a linear
operator



Construction of the entire operator

e
To construct the entire function g(y)

we should construct series like
g(yl):allf ()(1)4'6‘12]c (X2)+a13f (X3)+---
for each value of y
If we write f (x) and g(Yy) as vectors
then we can write all these series at once

g(yl) Ay &y &y f(x1)
g(yz) Ay Ay Gy o f (Xz)
g(y3) dy dyp Gy o f(X3)




Construction of the entire operator
1

We see that o(y)]| [an a, a, [ f(x)
g (y2) a'21 a22 a-23 f (X
g(y3) dy; 83 Gy f(Xg)

can be written as_g (y)= Af (x)
where the operator A can be written as a matrix

Ay, Qp dj
a21 a22 a23

dy Ay Ay

A




Bra-ket notation and operators
1

Presuming functions can be represented as

vectors
then linear operators can be represented
by matrices
In bra-ket notation, we can write g(y)= Af (x)
as

j9)=A[f)
If we regard the ket as a vector

we now regard the (linear) operator A
as a matrix
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Consequences of linear operator algebra
-

Because of the mathematical equivalence of
matrices and linear operators

the algebra for such operators
is identical to that of matrices

In particular

operators do not in general commute

AB| f) is not in general equal to BA| f)

for any arbitrary | f)

Whether or not operators commute

IS very Important in quantum mechanics



Generalization to expansion coefficients
N

We discussed operators
for the case of functions of position (e.g., X)

but we can also use expansion
coefficients on basis sets

We expanded f ( ch% X) and g (X Zdn%

We could have foIIowed a similar argument
requiring each expansion coefficient d.

depends linearly on all the expansion
coefficients c,



Generalization to expansion coefficients
N
By similar arguments
we would deduce the most general linear relation
between the vectors of expansion coefficients
could be represented as a matrix

_dl_ A11 A12 A13 Cl_
dz A21 Azz A23 L G
B R

The bra- ket statement of the reIatlon between f, g,
and Aremains unchanged as |g) = A| )



Evaluating the matrix elements of an operator
N

Now we will find out how we can write some
operator

as a matrix

That is, we will deduce how to calculate
all the elements of the matrix

if we know the operator
Suppose we choose our function f (x)

to be the jth basis functiony, (x)
so f(X)=w,(X) or equivalently \f>=‘wj>



Evaluating the matrix elements of an operator
N

Then, in the expansion f ( cht//n
we are choosing ¢; —1
with all the other c's being 0
Now we operate on this | f) with A
1|g)= A1)
to get|g)
Suppose specifically
we want to know the resulting coefficient d
in the expansion g (X Zdnl/ln



Evaluating the matrix elements of an operator
N

From the matrix form of |g) = A\ f)

dl A11 A12 A13 G
dz A21 Azz A23 < G
N

with our choice C, =1 and all other ¢'s 0 then
we would have

di:ATj



Evaluating the matrix elements of an operator
N

For example, for j=2
that is, ¢, =1 and all other c¢'s 0 then

d1 A12 A11 A12 A13 1| 0
dz Azz A21 Azz Azs 11
I

so in this example

d3=A32



Evaluating the matrix elements of an operator
N

But, from the expansions for \ ) and|9)
for the specific case of | f ) ‘l//1>

9)=2duJy,)=A[f)=A
we multiply by <Wi ‘on both sides to obtain

To extract d; from this expression

d; = <l//i A >
But we already concluded for this case that d, = A,
S0 A = <‘//i A >




Evaluating the matrix elements of an operator
N

But our choices of i and j here were arbitrary
So quite generally
when writing an operator A as a matrix
when using a basis set |, )
the matrix elements of that operator are

L'Aﬁ = (w| A >]

We can now turn any linear operator into a matrix
For example, for a simple one-dimensional spatial case

j v, Al// j dX




Visualization of a matrix element

Operator A
acting on the unit vector ‘W,—>

Wj>
with generally a new length and
direction

The matrix element (i, | A

generates the vector A

v,)
v)

Is the projection of A
onto the |y,) axis ;) axis




Evaluating the matrix elements
N

We can write the matrix for the operator A

N N

<‘//1‘Al//1> <W1‘AW2> <§”1 A‘W3>

N N

(o |Alw) (v, |Alw,) (v, Aly,) -

N N

<W3".A‘W1> <W3".&W2> <t//3 ,.0\‘1//3>

T
Il

We have now deduced how to set up
a function as a vector and
a linear operator as a matrix
which can operate on the vectors
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