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2 Classical mechanics, oscillations
and waves

Slides: Lecture 2b Elementary
classical mechanics

Section B.1 \\\\
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Momentum and kinetic energy
N

For a particle of mass m
the classical momentum
which is a vector
because it has direction
s p=mv
where v is the (vector) velocity
The kinetic energy

the energy associated with motion
: 2

> KE =P
2m



Momentum and kinetic energy
N

In the kinetic energy expression
2

KE =P
2m

we mean
p*=p-p
.e.,
the vector dot product of p with itself



Potential energy
N

Potential energy is defined as
energy due to position
It is usually denoted by V in quantum mechanics
even though this potential energy
in units of Joules
might be confused with the idea of voltage
in units of Joules/Coulomb

and even though we will use voltage
often in quantum mechanics



Potential energy
N
Since it is energy due to position
it can be written as V (r)

We can talk about potential
energy
if that energy only
depends on where we
are

not how we got there




Potential energy
I

Classical “fields” with this
property are called
“conservative” or “irrotational”

the change in potential
energy round any closed
path is zero

Not all fields are conservative
e.g., going round a vortex

but many are conservative
gravitational, electrostatic




The Hamiltonian
N
The total energy can be
the sum of the potential and kinetic energies
When this total energy is written as a function of
position and momentum
it can be called the (classical) “Hamiltonian”

For a classical particle of mass min a

conservative potential V (r)
2

H =2p—m+v(r)



Force
N

In classical mechanics
we often use the concept of force
Newton’s second law relates force and
acceleration
F=ma
where m is the mass and a is the
acceleration

Equivalentl
g y I::d_p
dt

where p is the momentum



.......

Force and potential energy
I

We get a change AV in
potential energy V

AV =F_ . AX

pushx

by exerting a force F pushx
in the x direction up the
slope
through a distance Ax



.......

. .
ooooo

Force and potential energy
I

Equivalently F - AV
pushx AX

. . dVv

or in the limit F,, M

The force exerted by the
potential gradient on the ball
Is downhill

so the relation between
force and potential is
o dVv

T dx



Force as a vector
N

We can generalize the relation between
potential and force

to three dimensions
with force as a vector
by using the gradient operator

F=-VV =- N +avj+avk
ox oy 0z
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2 Classical mechanics, oscillations
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Mass on a spring
)

A simple spring will have a restoring
force F acting on the mass M
proportional to the amount y by which
It is stretched

For some “spring constant” K Yy . . Force F
F =—Ky Mass M
The minus sign is because this is
“restoring”

it is trying to pull y back towards zero
This gives a “simple harmonic oscillator”



Mass on a spring

From Newton’s second law

d2
F=Ma=M dtZy:—Ky
o d? K

where we define > =K /M

we have oscillatory solutions of |

angular frequency o =vK /M

e.g., :
J Yy oc SIN wt

angular frequency o, in
‘radians/second” = 2rf
where f is frequency in

\ Hz y




Mass on a spring
)

From Newton’s second law

d2
F=Ma=M dtZy:—Ky
o d? K

where we define @* =K /M
we have oscillatory solutions of
angular frequency @ =vK /M

e.g., :
J Yy oc SIN wt



Mass on a spring
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Mass on a spring
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F=Ma=M dtZy:—Ky
o d? K

where we define @* =K /M
we have oscillatory solutions of
angular frequency @ =vK /M

e.g., :
J Yy oc SIN wt



Mass on a spring
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From Newton’s second law

d2
F=Ma=M dtZy:—Ky
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Mass on a spring
)

From Newton’s second law

d2
F=Ma=M dtZy:—Ky
o d? K

where we define @* =K /M
we have oscillatory solutions of
angular frequency @ =vK /M

e.g.,

y oc Sin wt



Mass on a spring
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From Newton’s second law
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Mass on a spring
B
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)

From Newton’s second law

d2
F=Ma=M dtZy:—Ky
o d? K

where we define @* =K /M
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Mass on a spring
)

From Newton’s second law

d2
F=Ma=M dtZy:—Ky
o d? K

where we define @* =K /M
we have oscillatory solutions of
angular frequency @ =vK /M

e.g., :
J Yy oc SIN wt



Simple harmonic oscillator
I

A physical system described by an equation
like dzy _ —a)zy
dt’
Is called a simple harmonic oscillator
Many examples exist
» Mass on a spring
in many different forms
« electrical resonant circuits
- "Helmholtz" resonators in acoustics
» linear oscillators generally




L e e L L L S L L L L U L L L L L L Ll L
q_111ﬁﬂWﬂﬂﬂﬁﬂ.11ﬁ#ﬂﬂﬂﬂﬁﬂﬂ1ﬂﬂﬂﬁﬂ1ﬂ11ﬂ1ﬂ1w11ﬂﬂﬂ411:1111ﬂ11ﬂ1111quunnwﬂ=ﬂuﬂﬂﬁ-ﬂu,

r datdaa g iy n._‘.ﬂ_u_uzu_..ﬂ11-...-11#133_!_-1_-3-
I EREREREREERRARERE . _J.ﬂ_.._u_lﬂ_-ﬂ-._.._-a.-_-_|1

, , . ._,_“ ,,. . ‘.
44 . L
: EEE

. EEEEE
EERREENE

4444444444444 4444 ddddaddddddgddagaaiad g dagua 4 4dd a4 1‘wxﬂ111wz-L RBRNRBREEE
B EERBERRERE xwﬂﬂwﬂwﬂaau-uu‘- LLLLLLLL;L.Lk 144 INERERENEEN

5 )
LOLHEEEE R
xﬂawuunnﬂﬂaa- NN RN RN RN
SR L
«wnaa- g

-L ]
REEEEE RN o ]
RN i
el ot ot o o o o e
42. “.nn-t-._.ti.....L L BEEEET
R odo] LR
EEEEEEE .

.:7;mw“n- Lidd ; .
CEEEEE| '
. TR .‘lﬂﬂagk .l
LL.¢¢ 1. LI prt I 1ﬂ_LL;......L;
CTENEEEEEREE L ﬁ1-LLL;;;;;L
LLL..... - -LLu....;L
R : dod od 4t
344 1.Ls‘....
I EEEEEE|
CIrrENEEEE
.nwﬂtL....mh.

IR
44, wxﬂﬂMLLL -




2 Classical mechanics, oscillations
and waves

Slides: Lecture 2d The classical wave
equation

Section B4

I —
-
 Ouuantum Mechanice |
—Quaniumaviecnanics |
|

David A. B. Miller




FFEHRERRERERERE S sl A4l
FPERERRENERERRTREEERE J 14 pEEERE
dddaagdaadd g ? EEERERERE EOREEE
dadaagaagaadddad. 7 4.0 | rrireER

17ﬂ11ﬂ11111ﬂ1111ﬂ1—ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ111ﬁ11ﬂﬂﬂ 1ﬂﬂ1ﬂ1ﬂn1ﬁ1ﬂﬂ11ﬂﬂ511!=Hﬂa_.1ﬂﬂu gt s
g adadad i g dd g g g g e (dadaaaadadaaduatdadadad g
,ﬂﬂﬁ11ﬂ11ﬁﬂﬁﬁ7_ﬂﬂﬂWﬂﬂfﬁﬂWﬂﬂﬂﬂﬂﬁ# gt g A g g g 11ﬂﬂ1|1ﬁﬂ1ﬁﬂﬁ1w1ﬂ11111ﬁ111ﬂﬂ7ﬂﬂ1ﬁ1111ﬁ#
daddddddudaada s 1111[ﬁ1ﬂﬂﬂﬂﬂ 1ﬂﬂﬂ11ﬂﬂﬂ_ addddagdagadaday |
1111111ﬂ11ﬂ1ﬂ111ﬂﬁ g r Aﬂ117ﬂ11‘ﬂ1ﬂq
ﬂﬂﬂﬂﬂﬂﬂﬂwﬂﬂ_.ﬂ —W ﬁﬂﬁ I jdady

EEERERET
EERRERET T B
REEREEERERERERERET
TERREEREEEERERERE
idddddddddaadda gl
PREREREERRERERERNY
EEERERREEREREEEREN
PEEREFREEEREERERER
EEEREPEEEERERTREEY
ITRRREETRERR RN RSN
R R RS
LR EE RN
FIEERERERES
s
dddl
daddod

11ﬂ1ﬂ1ﬂ|
FRERERERE|

IoN

David MiIIer

| L4y ﬂ.
| RRREWEE
|
|

FERE
EREREN
| ! ERREREN
FERERREERE 44
ERREERRENRRRRERE
dddadddddddadddd wnqqnﬁh;
g4 FEENERRES

4h

i!aanw11nﬂ=ww
FRRNERRER

lons and waves

[P —

L rIIEEEEES

b

i nnu-auu.
IRERERERERER

Ilat

dddadaaadd .
FrRETREREDR
IERERE 111ﬂﬂﬂ!I.LLt
TN EERE R R R
TPrPrEEEETERE R

BRI

|
REEERE
gl
EREEE|

ical wave equat

, OSC

e
EE _ FEEE
_ LEEEEEREE

i ,_g1.;.,
dadagaaaads
IREREREEREES
IENREREEERRERRE
.1w1111Wﬂ1ﬁﬂaIL
FEREFRERRN
FEREEE

The class

HIREERERARES
ERERREERERRND
ERERFEERERERN . IERRRREERER
4l IREERERE

IREE

-

%)
=
C
O
C
O
c |
©
=

AEEEENT LH
ERRERERERRERE
IERREERET FEEREES
ImEREEEEEREN
[EEuEnSS e

-

4

Class

=1
1

EREEREE

REREERTRN
iddddad




Classical wave equation
N
Tyj+1 Imagine a set of identical
Tyj masses connected by a string
o that is under a tension T
the masses have vertical
displacements y;




Classical wave equation
I

1Yi A force Tsin@ pulls mass
Tyj upwards
ot Aforce Tsing, pulls mass |
downwards

So the net upwards force
on mass | Is

Fo=T (sin 0, —sin Gj_l)



Classical wave equation
I

Tyj+1 For small angles

Yi — v v
T | Sing. = Yin ™Y, ,SIng, ;= Yi = Yia
F J Az AZ
0 F =T (sing, -sin6, ,
becomes

y'+ _y' y'_y'_
szT{ JlA J_( j Jlﬂ
Z AZ

:T{yjﬂ_zyi T yjl}

AZ



Classical wave equation
I

Tyj+1 In the limit of small Az
Tyj the force on the massj is

E_T yj+1_2yj TYia
Az

i Yia—2Y;+ Y4
(Az)°

o’y
0z°

=TAZ

=TAZ



Classical wave equation
I
Y1 Note that, with
: . aZy
oz°
we are saying that

the force F is proportional
to the curvature of the
“string” of masses

There is no net vertical
force if the masses are
in a straight line

F=TAz




Classical wave equation
I

[Yi1  Think of the masses as
Tyj the amount of mass per
o unit length in the z
direction, that is

the linear mass density p
times Az, i.e., M= pAz
Then Newton's second

law gives
0%y 0%y
F=m—=pAz—=
oz e



Classical wave equation
I

Tyj+1 Putting together

Tyj £ 2 2
P oy oy
- F=TAz—= and F = pAz—=-

oz° P ot*

gives
2
TAz % = PAZ—-

l.e., 62y _ p azy
oz¢ T ot°




Classical wave equation
I

0’y po’y
oz° T ot
with ,
vi=T/p
gives
o’y 120% 0
oz°  v° ot

which is a wave equation for a
wave with velocity v= T/ p



Wave equation solutions — forward waves
N

We remember that any function of the form f(z—ct)
Is a solution of the wave equation

and is a wave moving to the right with velocity ¢



Wave equation solutions — backward waves
N

We remember that any function of the form g(z +ct)
Is a solution of the wave equation

and is a wave moving to the left with velocity ¢



Monochromatic waves
N
Often we are interested in waves oscillating at
one specific (angular) frequency w
l.e., temporal behavior of the form
T (t)=exp(iot), exp(-iwt), cos(at), sin(«wt)
or any combination of these 5% 2

Then writing ¢(z,t)=Z(z)T(t), we have W:—a) ¢

leaving a wave equation for the spatial part

2 2
d Zgz)+k22(z)=0 where k% =2
dz C

the Helmholtz wave equation



Standing waves
B

An equal combination of forward and
backward waves, e.qg.,
¢(z,t)=sin(kz—wt)+sin(kz + ot)
= 2cos(wt)sin(kz)
where k=w/c
gives “standing waves”

E.g., for a rope tied to two walls a
distance L apart

with k=27/Land w=2xzc/L
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