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Momentum and kinetic energy

For a particle of mass m
the classical momentum

which is a vector 
because it has direction

is
where v is the (vector) velocity

The kinetic energy
the energy associated with motion

is 

mp v
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Momentum and kinetic energy

In the kinetic energy expression

we mean

i.e., 
the vector dot product of p with itself 

2p  p p
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Potential energy

Potential energy is defined as
energy due to position

It is usually denoted by V in quantum mechanics
even though this potential energy

in units of Joules
might be confused with the idea of voltage

in units of Joules/Coulomb
and even though we will use voltage 

often in quantum mechanics



Potential energy

 V r

M

Since it is energy due to position
it can be written as

We can talk about potential 
energy 

if that energy only 
depends on where we 
are

not how we got there



Potential energy

M

Classical “fields” with this 
property are called

“conservative” or “irrotational”
the change in potential 

energy round any closed 
path is zero

Not all fields are conservative
e.g., going round a vortex

but many are conservative
gravitational, electrostatic 



The Hamiltonian

The total energy can be 
the sum of the potential and kinetic energies

When this total energy is written as a function of 
position and momentum

it can be called the (classical) “Hamiltonian”
For a classical particle of mass m in a 

conservative potential  

 
2

2
pH V
m

  r

 V r



Force

In classical mechanics
we often use the concept of force

Newton’s second law relates force and 
acceleration

where m is the mass and a is the 
acceleration

Equivalently

where p is the momentum 

mF a

d
dt


pF



Force and potential energy

We get a change V in 
potential energy V

by exerting a force Fpushx
in the x direction up the 

slope
through a distance x

Fpush x

x
pushxV F x  



Force and potential energy

Equivalently

or in the limit

The force exerted by the 
potential gradient on the ball  
is downhill

so the relation between 
force and potential is

Fpush x

x

pushx
VF
x





pushx
dVF
dx



x
dVF
dx

 



Force as a vector

We can generalize the relation between 
potential and force

to three dimensions
with force as a vector

by using the gradient operator

V V VV
x y z

   
         

F i j k
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S

Mass on a spring

A simple spring will have a restoring 
force F acting on the mass M

proportional to the amount y by which 
it is stretched

For some “spring constant” K

The minus sign is because this is 
“restoring”

it is trying to pull y back towards zero
This gives a “simple harmonic oscillator”

F Ky 

y

Mass M
Force F



Mass on a spring

From Newton’s second law

i.e.,

where we define
we have oscillatory solutions of 

angular frequency
e.g.,  S
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angular frequency , in 
“radians/second” = 2 f
where f is frequency in 

Hz
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Simple harmonic oscillator

A physical system described by an equation 
like

is called a simple harmonic oscillator
Many examples exist
 mass on a spring

in many different forms
 electrical resonant circuits
 “Helmholtz” resonators in acoustics
 linear oscillators generally

2
2

2

d y y
dt
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Classical wave equation

Imagine a set of identical 
masses connected by a string 
that is under a tension T

the masses have vertical 
displacements yj

yj

z

T
T

yj-1

yj+1

j-1
j

z

yj

z

T
T

yj-1

yj+1

j-1
j

z



Classical wave equation

A force Tsinj pulls mass  j
upwards

A force Tsinj-1 pulls mass  j
downwards 

So the net upwards force 
on mass j is

yj

z

T
T

yj-1

yj+1

j-1
j

z

yj

z

T
T

yj-1

yj+1

j-1
j

z

 1sin sinj j jF T    



Classical wave equation

For small angles 

,

So

becomes 

yj

z

T
T

yj-1

yj+1

j-1
j

z

yj

z

T
T

yj-1

yj+1

j-1
j

z

 1sin sinj j jF T    

1sin j j
j

y y
z

  


 1

1sin j j
j

y y
z

 







1 1j j j j
j

y y y y
F T

z z
    

     


1 12j j jy y y
T

z
   

   



Classical wave equation

In the limit of small z
the force on the mass j isyj

z

T
T

yj-1

yj+1

j-1
j

z

yj

z

T
T

yj-1

yj+1

j-1
j

z

1 12j j jy y y
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z
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Classical wave equation

Note that, with

we are saying that 
the force F is proportional 
to the curvature of the 
“string” of masses 

There is no net vertical 
force if the masses are 
in a straight line  

yj

z

T
T

yj-1

yj+1

j-1
j

z

yj

z

T
T

yj-1

yj+1

j-1
j

z

2
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yF T z
z
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Classical wave equation

Think of the masses as 
the amount of mass per 
unit length in the z
direction, that is

the linear mass density 
times z, i.e.,

Then Newton’s second 
law gives

yj

z

T
T

yj-1

yj+1

j-1
j

z

yj

z

T
T
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j-1
j

z

2 2

2 2

y yF m z
t t
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Classical wave equation

Putting together

and

gives

i.e., 

yj
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Classical wave equation

Rewriting

with

gives

which is a wave equation for a 
wave with velocity

yj

z

T
T
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Wave equation solutions – forward waves

We remember that any function of the form 
is a solution of the wave equation

and is a wave moving to the right with velocity c

 f z ct



Wave equation solutions – backward waves

We remember that any function of the form 
is a solution of the wave equation

and is a wave moving to the left with velocity c

 g z ct



Monochromatic waves

Often we are interested in waves oscillating at 
one specific (angular) frequency 

i.e., temporal behavior of the form 
,                ,            ,

or any combination of these
Then writing                             , we have

leaving a wave equation for the spatial part 

where 

the Helmholtz wave equation  

  exp( )T t i t exp( )i t cos( )t sin( )t
2

2
2t
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 


     ,z t Z z T t 

   
2

2
2 0

d Z z
k Z z

dz
 

2
2

2k
c

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Standing waves

An equal combination of forward and 
backward waves, e.g.,

where 
gives “standing waves”

E.g., for a rope tied to two walls a 
distance L apart
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