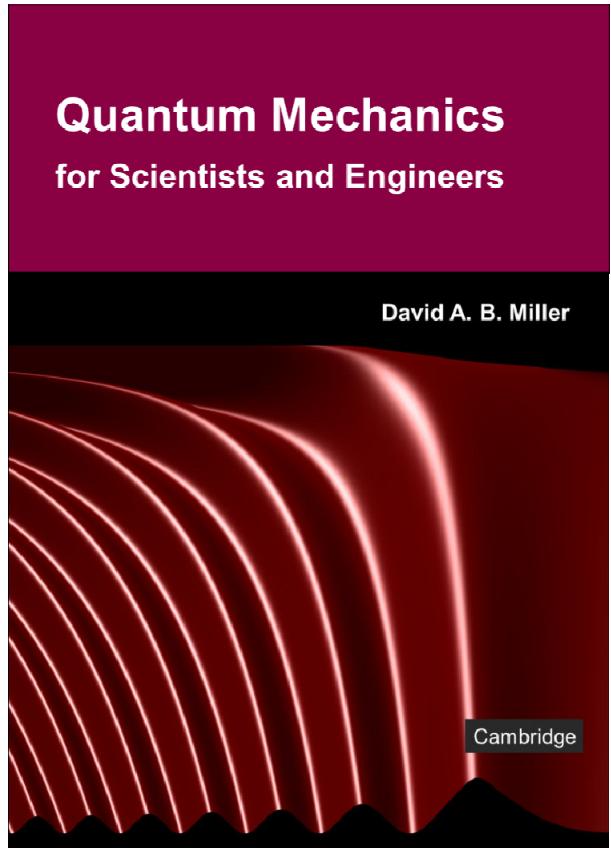


2 Classical mechanics, oscillations and waves

Slides: Lecture 2a Useful ideas from classical physics

Text reference: Quantum Mechanics for Scientists and Engineers

Section Appendix B



Classical mechanics, oscillations and waves

Useful ideas from classical physics

Quantum mechanics for scientists and engineers

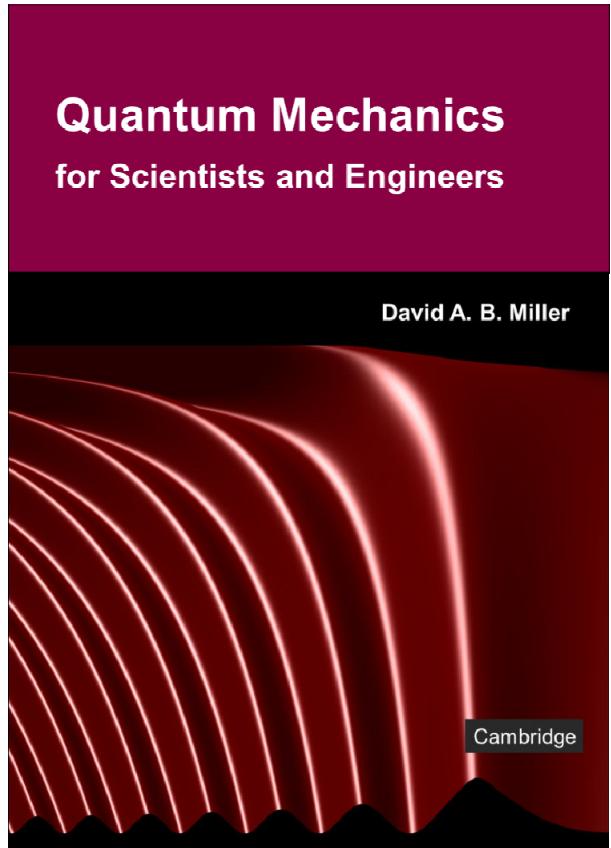
David Miller

2 Classical mechanics, oscillations and waves

Slides: Lecture 2b Elementary
classical mechanics

Text reference: Quantum Mechanics
for Scientists and Engineers

Section B.1



Classical mechanics, oscillations and waves

Elementary classical mechanics

Quantum mechanics for scientists and engineers

David Miller

Momentum and kinetic energy

For a particle of mass m
the classical momentum
which is a vector

because it has direction
is $\mathbf{p} = m\mathbf{v}$

where \mathbf{v} is the (vector) velocity

The kinetic energy
the energy associated with motion

is

$$K.E. = \frac{p^2}{2m}$$

Momentum and kinetic energy

In the kinetic energy expression

$$K.E. = \frac{p^2}{2m}$$

we mean

$$p^2 \equiv \mathbf{p} \cdot \mathbf{p}$$

i.e.,

the vector dot product of \mathbf{p} with itself

Potential energy

Potential energy is defined as

energy due to position

It is usually denoted by V in quantum mechanics

even though this potential energy

in units of Joules

might be confused with the idea of voltage

in units of Joules/Coulomb

and even though we will use voltage
often in quantum mechanics

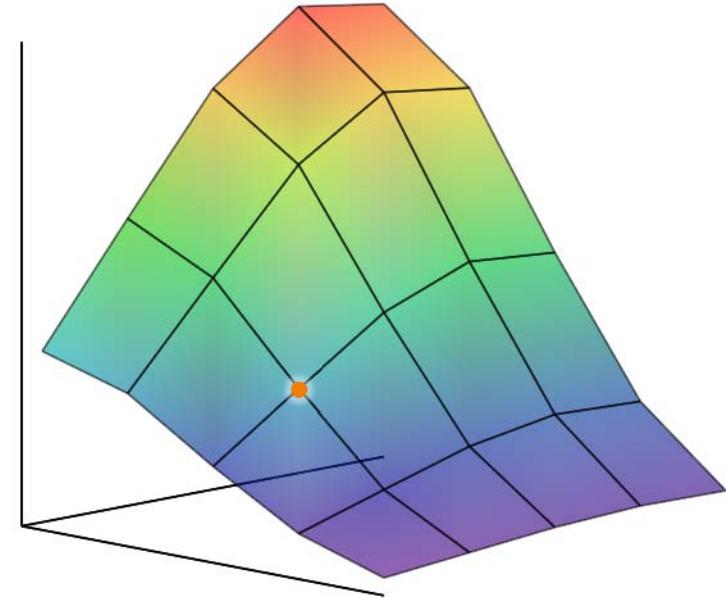
Potential energy

Since it is energy due to position
it can be written as $V(\mathbf{r})$

We can talk about potential
energy

if that energy only
depends on where we
are

not how we got there



Potential energy

Classical “fields” with this property are called

“conservative” or “irrotational”

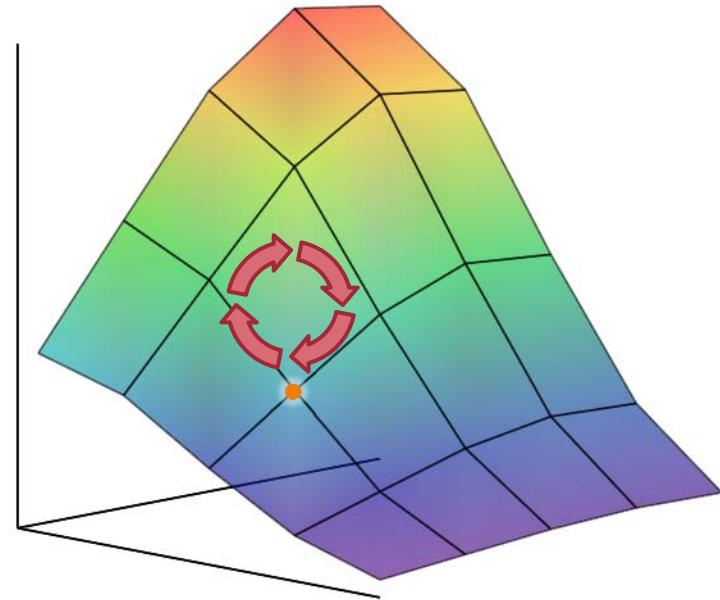
the change in potential energy round any closed path is zero

Not all fields are conservative

e.g., going round a vortex

but many are conservative

gravitational, electrostatic



The Hamiltonian

The total energy can be

the sum of the potential and kinetic energies

When this total energy is written as a function of position and momentum

it can be called the (classical) “Hamiltonian”

For a classical particle of mass m in a conservative potential $V(\mathbf{r})$

$$H = \frac{p^2}{2m} + V(\mathbf{r})$$

Force

In classical mechanics

we often use the concept of force

Newton's second law relates force and acceleration

$$\mathbf{F} = m\mathbf{a}$$

where m is the mass and \mathbf{a} is the acceleration

Equivalently

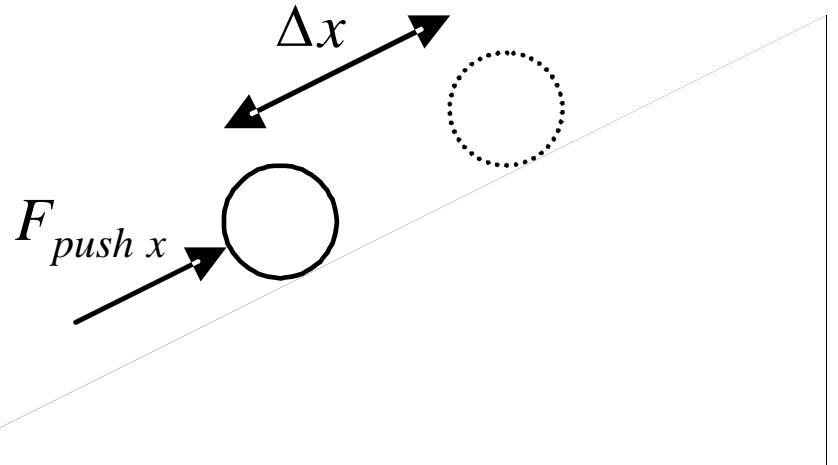
$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$

where \mathbf{p} is the momentum

Force and potential energy

We get a change ΔV in potential energy V

$$\Delta V = F_{pushx} \Delta x$$



by exerting a force F_{pushx} in the x direction up the slope through a distance Δx

Force and potential energy

Equivalently

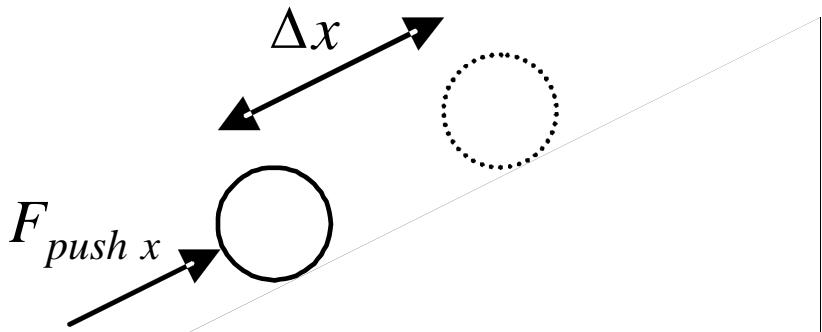
$$F_{pushx} = \frac{\Delta V}{\Delta x}$$

or in the limit $F_{pushx} = \frac{dV}{dx}$

The force exerted by the potential gradient on the ball is downhill

so the relation between force and potential is

$$F_x = -\frac{dV}{dx}$$



Force as a vector

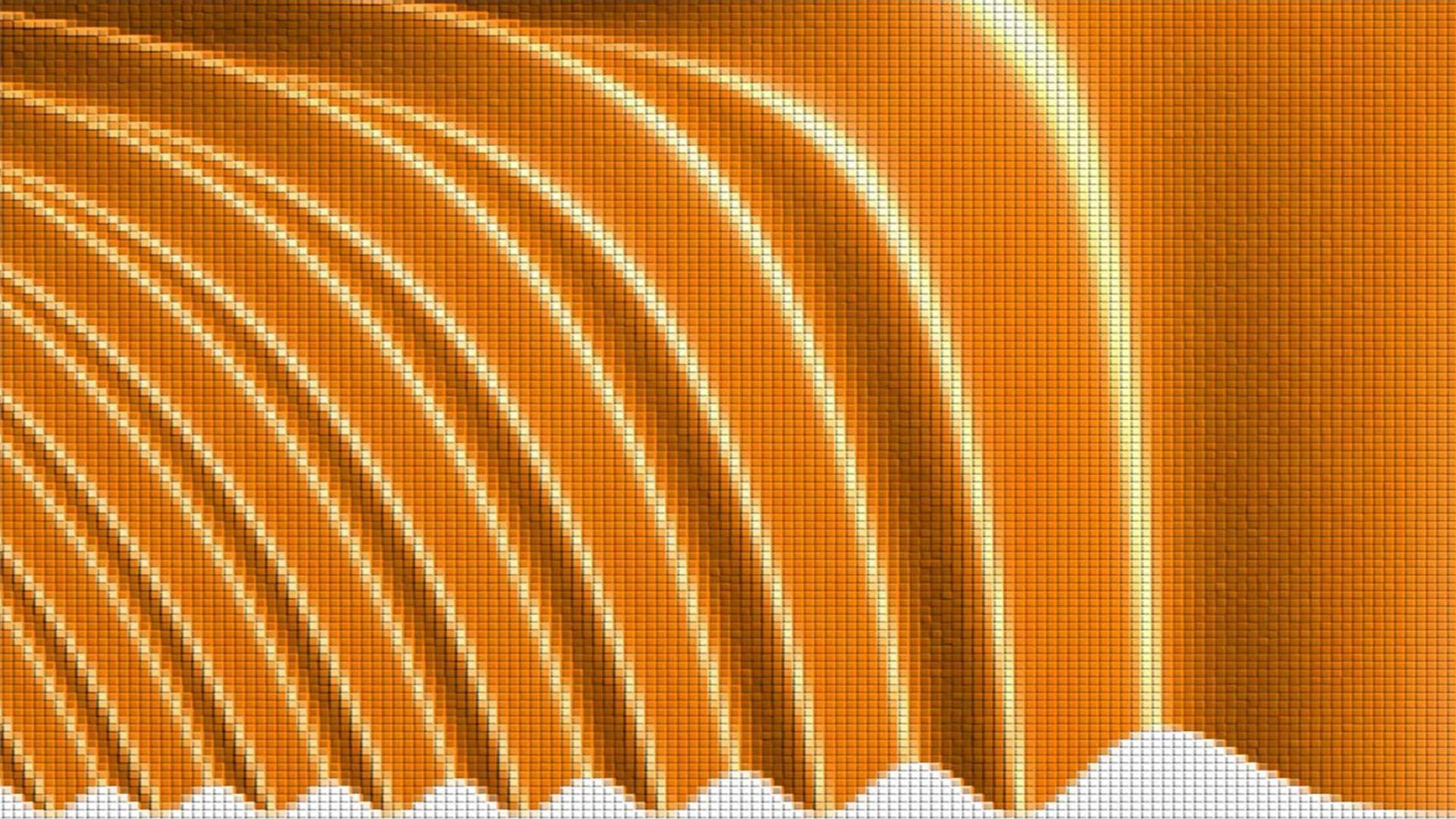
We can generalize the relation between potential and force

to three dimensions

with force as a vector

by using the gradient operator

$$\mathbf{F} = -\nabla V \equiv -\left[\frac{\partial V}{\partial x} \mathbf{i} + \frac{\partial V}{\partial y} \mathbf{j} + \frac{\partial V}{\partial z} \mathbf{k} \right]$$

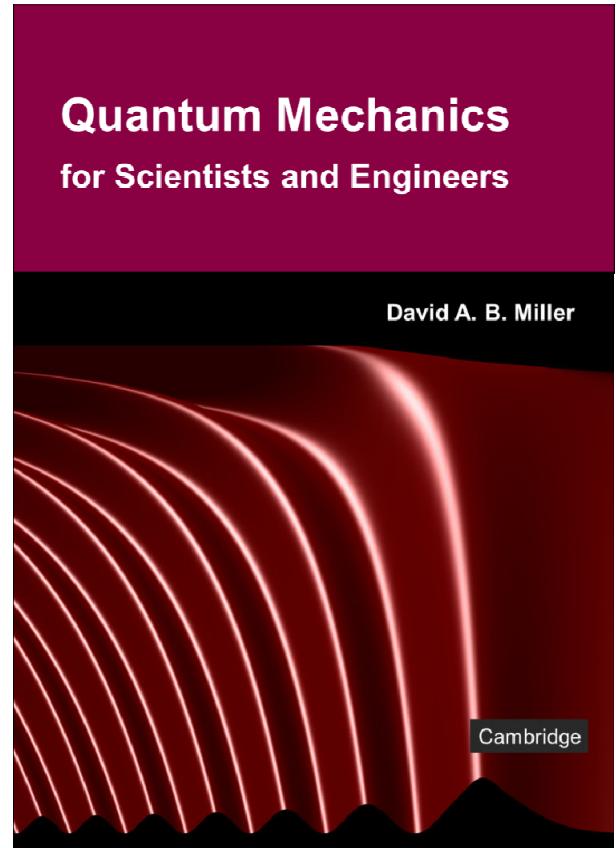


2 Classical mechanics, oscillations and waves

Slides: Lecture 2c Oscillations

Text reference: Quantum Mechanics
for Scientists and Engineers

Section B.3



Classical mechanics, oscillations and waves

Oscillations

Quantum mechanics for scientists and engineers

David Miller

Mass on a spring

A simple spring will have a restoring force F acting on the mass M

proportional to the amount y by which it is stretched

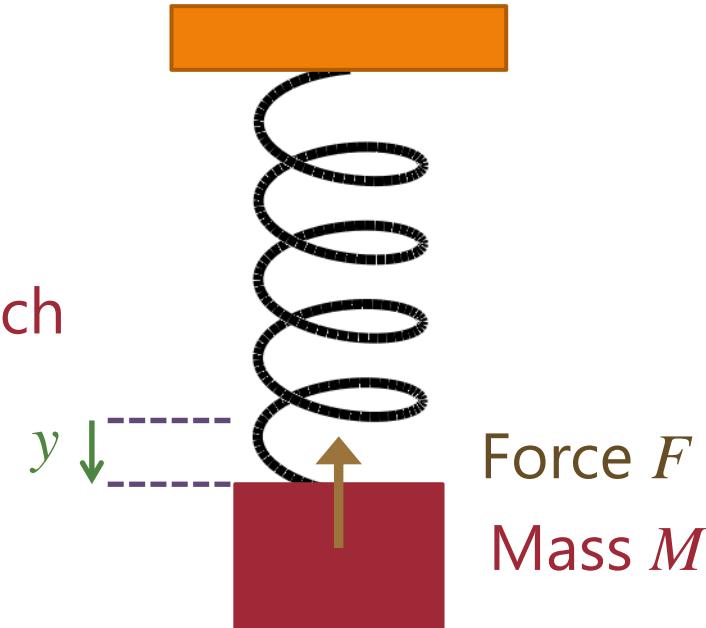
For some “spring constant” K

$$F = -Ky$$

The minus sign is because this is “restoring”

it is trying to pull y back towards zero

This gives a “simple harmonic oscillator”



Mass on a spring

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

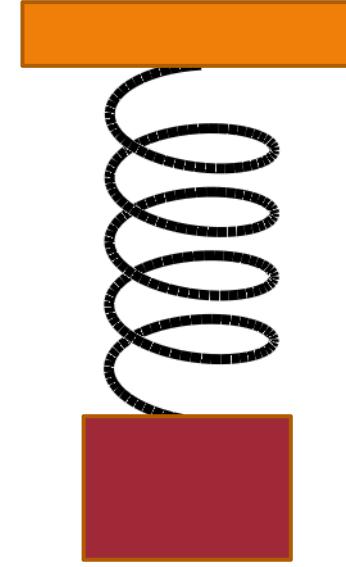
where we define $\omega^2 = K / M$

we have oscillatory solutions of

angular frequency $\omega = \sqrt{K / M}$

e.g.,

$$y \propto \sin \omega t$$



angular frequency ω , in
"radians/second" = $2\pi f$
where f is frequency in
Hz

Mass on a spring

From Newton's second law

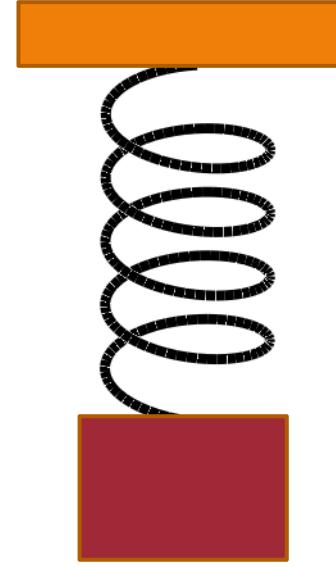
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

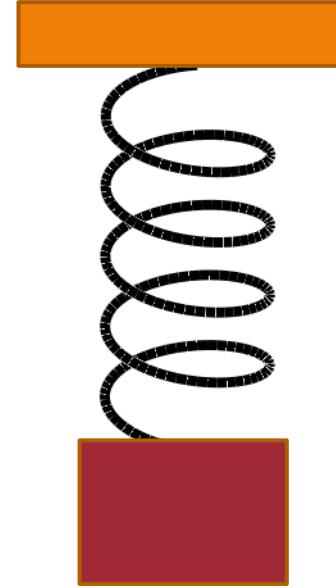
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

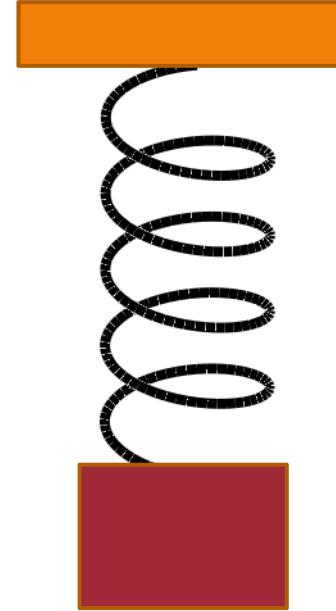
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

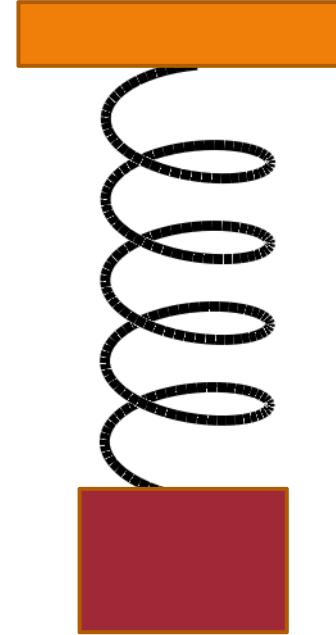
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

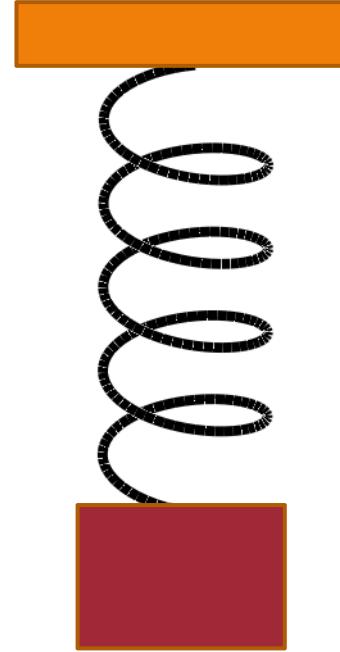
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

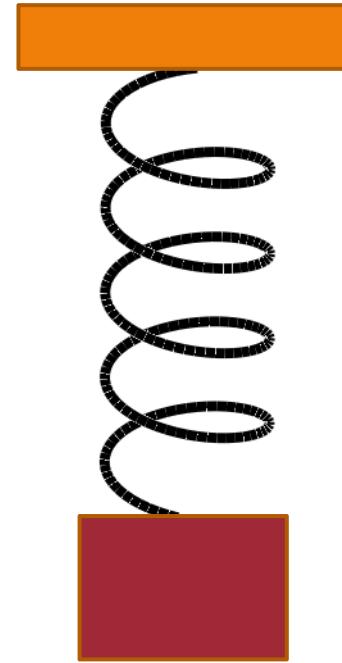
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

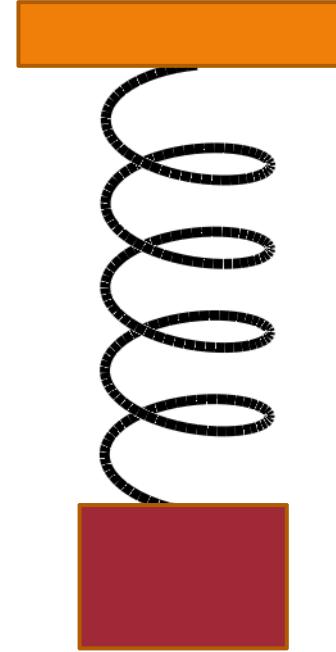
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

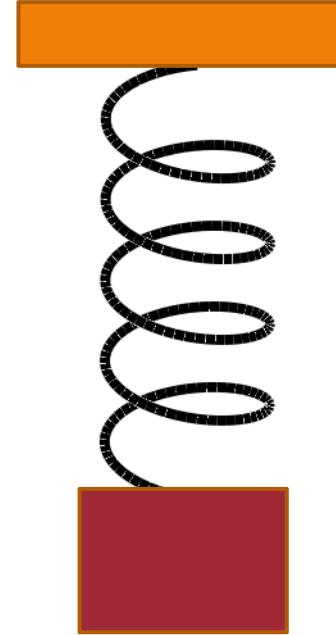
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

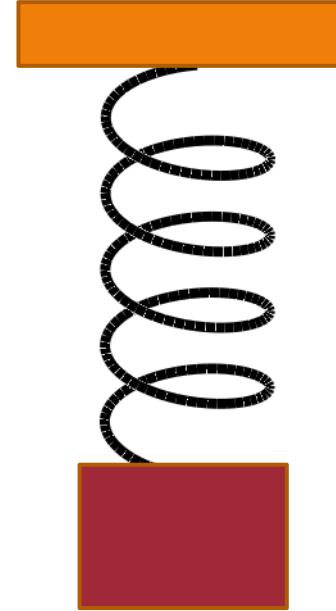
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

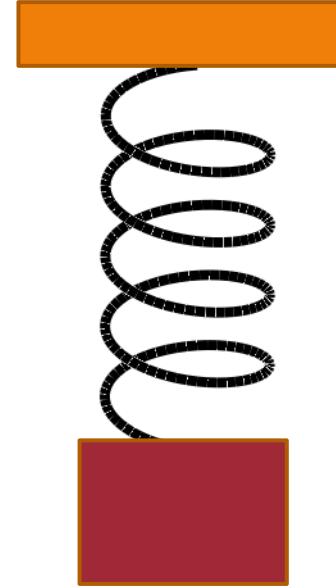
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

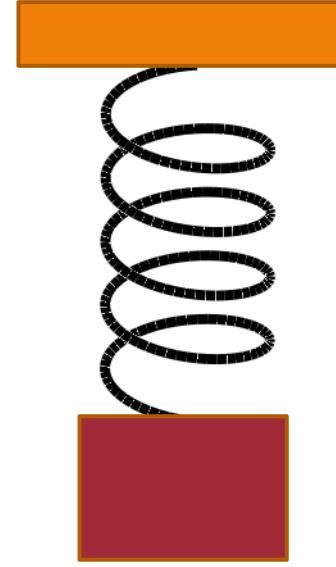
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

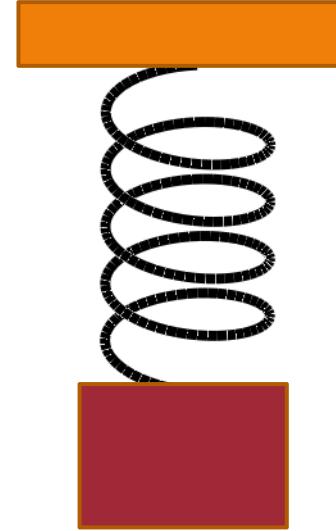
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

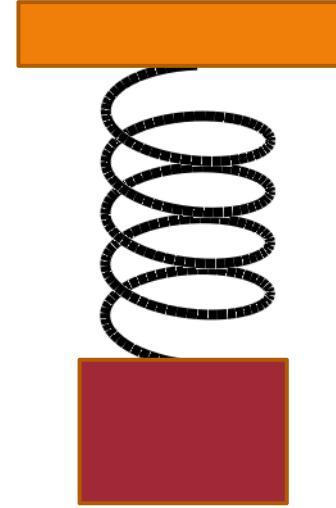
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

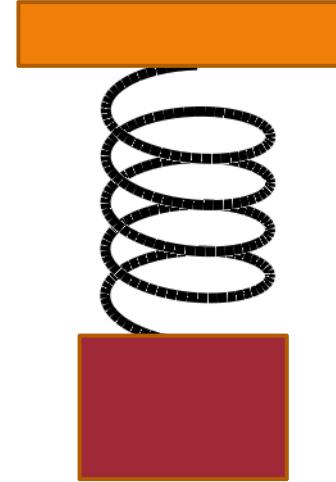
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

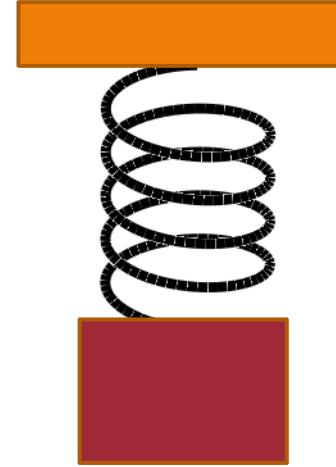
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

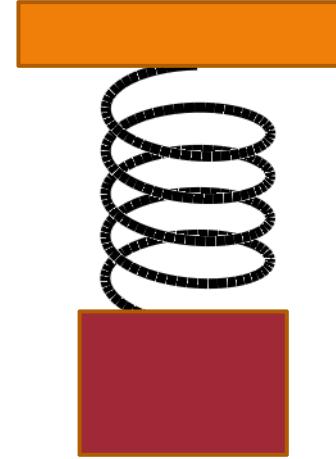
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

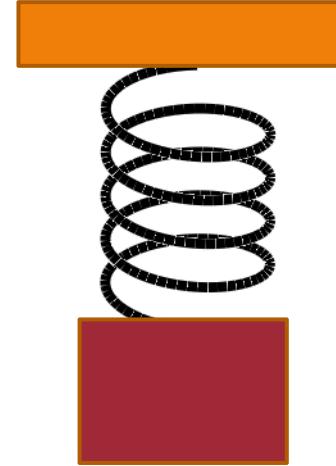
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

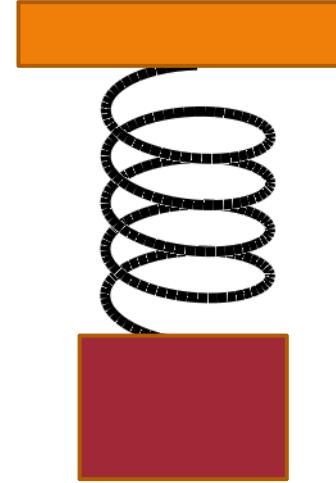
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

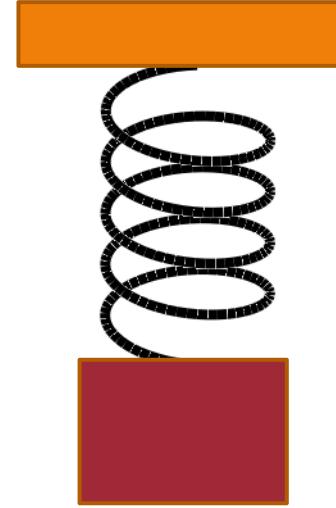
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

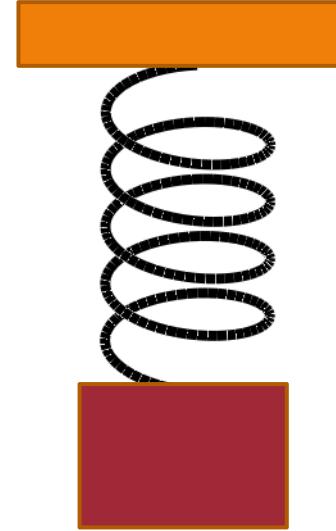
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

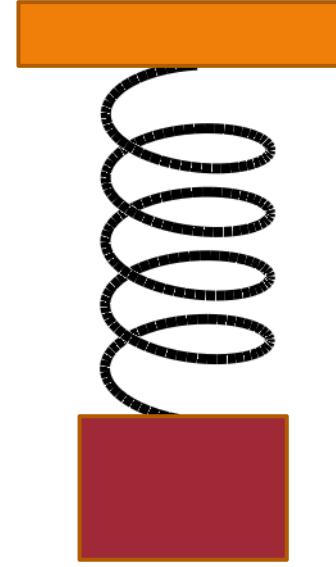
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

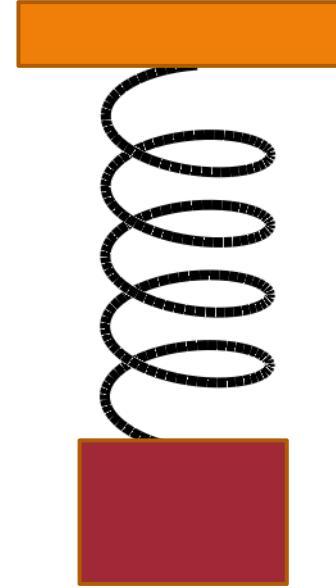
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Mass on a spring

From Newton's second law

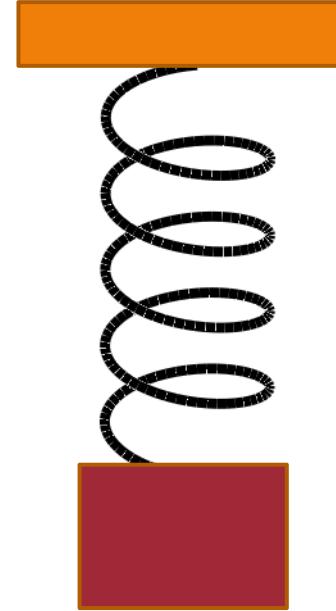
$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

where we define $\omega^2 = K / M$

we have oscillatory solutions of
angular frequency $\omega = \sqrt{K / M}$

e.g., $y \propto \sin \omega t$



Simple harmonic oscillator

A physical system described by an equation

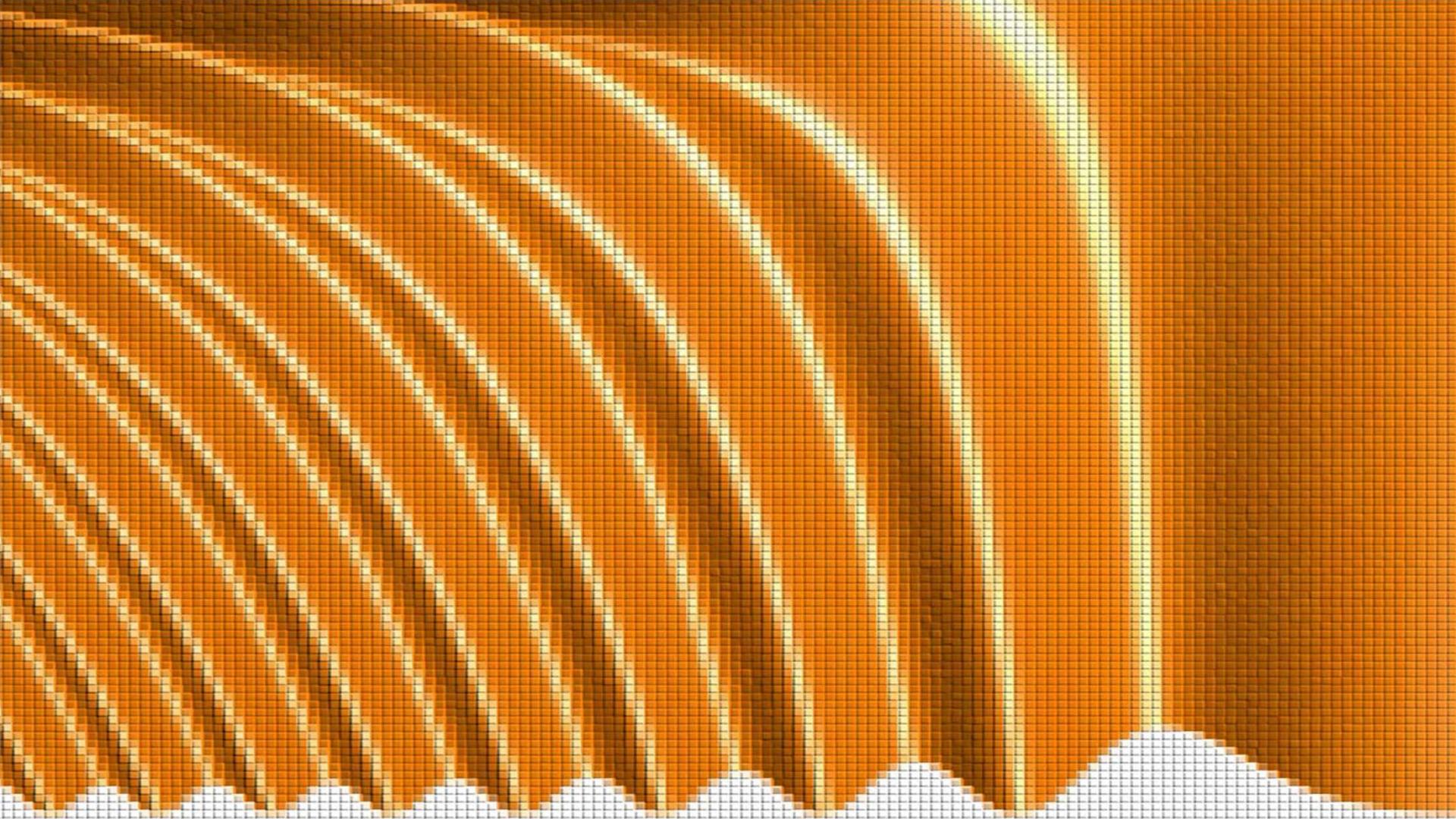
like

$$\frac{d^2y}{dt^2} = -\omega^2 y$$

is called a simple harmonic oscillator

Many examples exist

- mass on a spring
 - in many different forms
- electrical resonant circuits
- “Helmholtz” resonators in acoustics
- linear oscillators generally

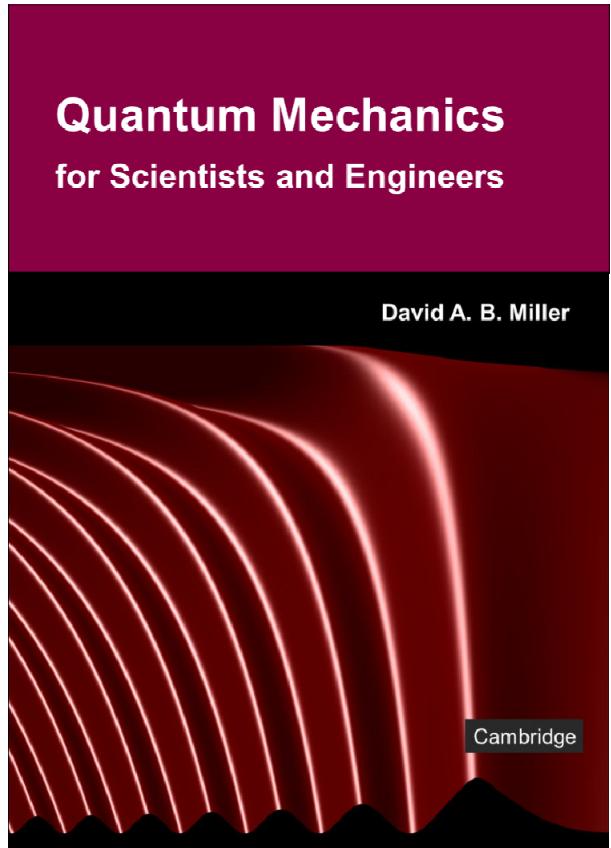


2 Classical mechanics, oscillations and waves

Slides: Lecture 2d The classical wave
equation

Text reference: Quantum Mechanics
for Scientists and Engineers

Section B.4



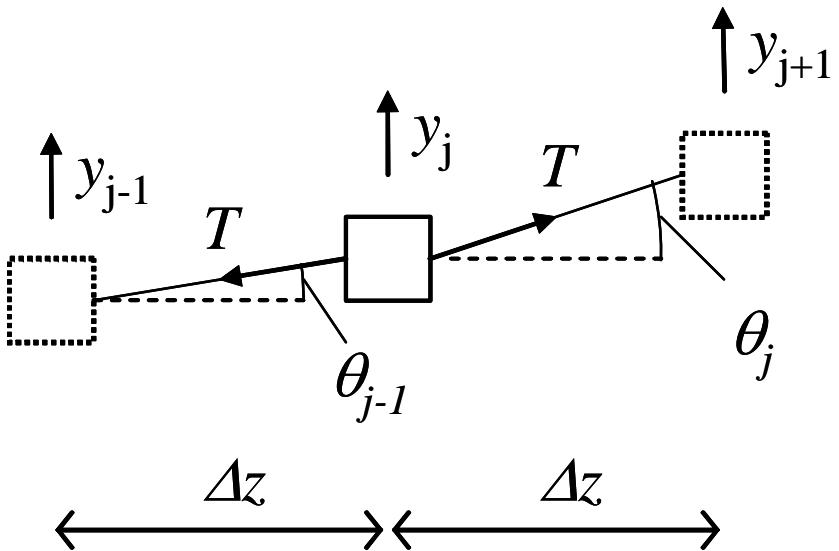
Classical mechanics, oscillations and waves

The classical wave equation

Quantum mechanics for scientists and engineers

David Miller

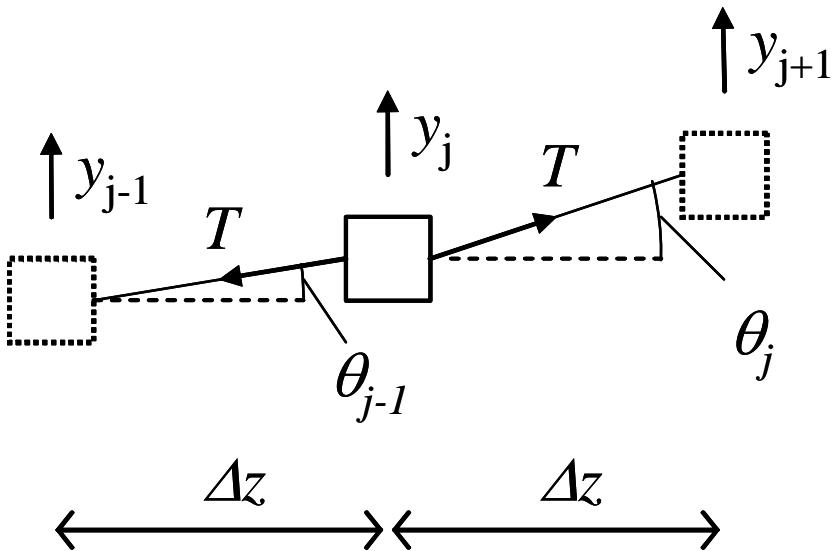
Classical wave equation



Imagine a set of identical masses connected by a string that is under a tension T

the masses have vertical displacements y_j

Classical wave equation



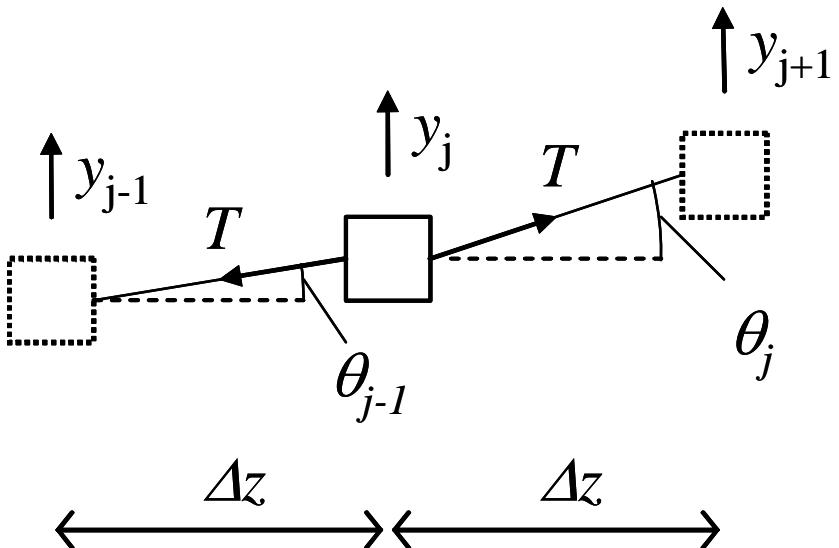
A force $T\sin\theta_j$ pulls mass j upwards

A force $T\sin\theta_{j-1}$ pulls mass j downwards

So the net upwards force on mass j is

$$F_j = T(\sin\theta_j - \sin\theta_{j-1})$$

Classical wave equation



For small angles

$$\sin \theta_j \simeq \frac{y_{j+1} - y_j}{\Delta z}, \sin \theta_{j-1} \simeq \frac{y_j - y_{j-1}}{\Delta z}$$

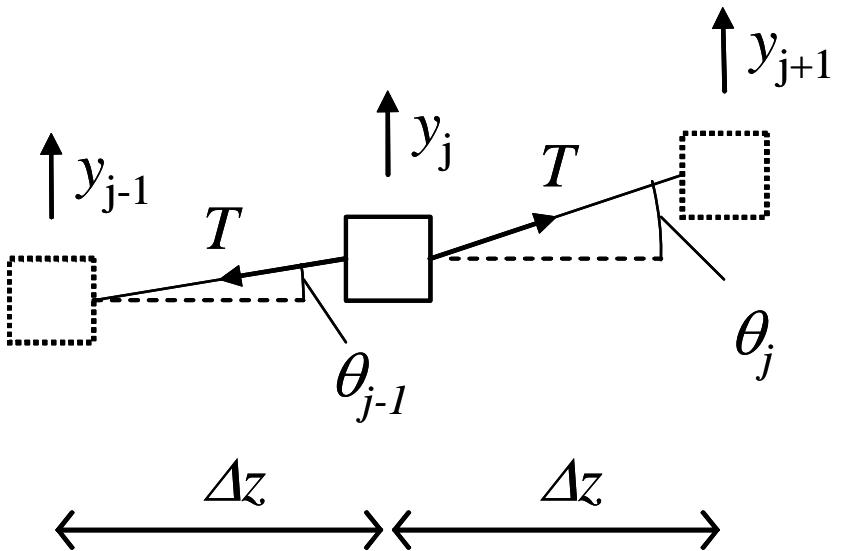
So $F_j = T(\sin \theta_j - \sin \theta_{j-1})$

becomes

$$F_j \simeq T \left[\frac{y_{j+1} - y_j}{\Delta z} - \left(\frac{y_j - y_{j-1}}{\Delta z} \right) \right]$$

$$= T \left[\frac{y_{j+1} - 2y_j + y_{j-1}}{\Delta z} \right]$$

Classical wave equation



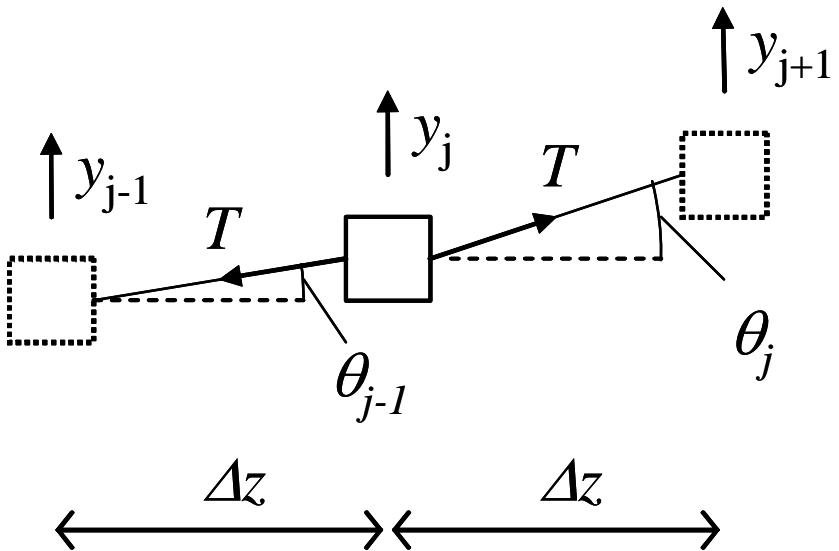
In the limit of small Δz
the force on the mass j is

$$F = T \left[\frac{y_{j+1} - 2y_j + y_{j-1}}{\Delta z} \right]$$

$$= T \Delta z \left[\frac{y_{j+1} - 2y_j + y_{j-1}}{(\Delta z)^2} \right]$$

$$= T \Delta z \frac{\partial^2 y}{\partial z^2}$$

Classical wave equation



Note that, with

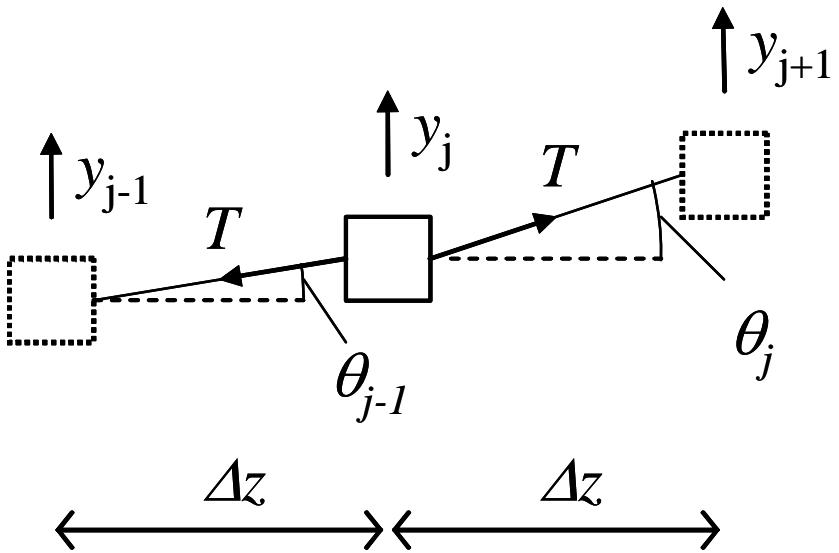
$$F = T \Delta z \frac{\partial^2 y}{\partial z^2}$$

we are saying that

the force F is proportional
to the curvature of the
"string" of masses

There is no net vertical
force if the masses are
in a straight line

Classical wave equation

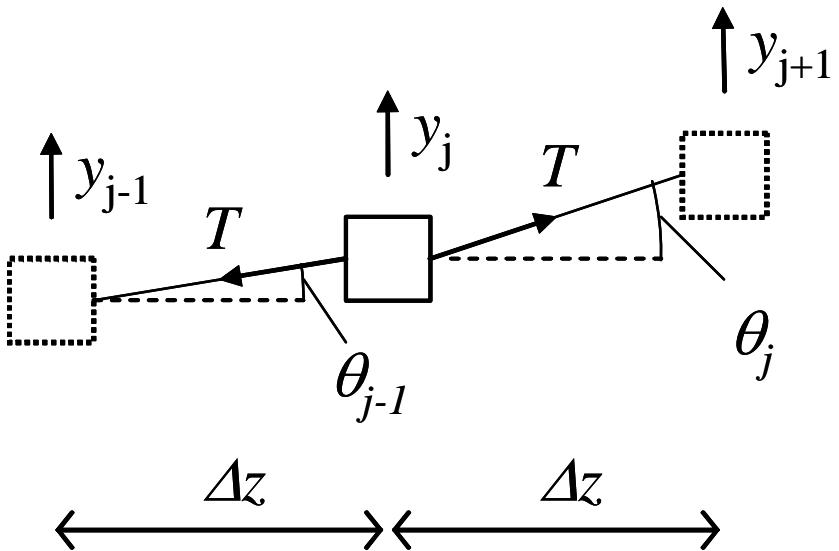


Think of the masses as the amount of mass per unit length in the z direction, that is the linear mass density ρ times Δz , i.e., $m = \rho\Delta z$

Then Newton's second law gives

$$F = m \frac{\partial^2 y}{\partial t^2} = \rho\Delta z \frac{\partial^2 y}{\partial t^2}$$

Classical wave equation



Putting together

$$F = T\Delta z \frac{\partial^2 y}{\partial z^2} \text{ and } F = \rho\Delta z \frac{\partial^2 y}{\partial t^2}$$

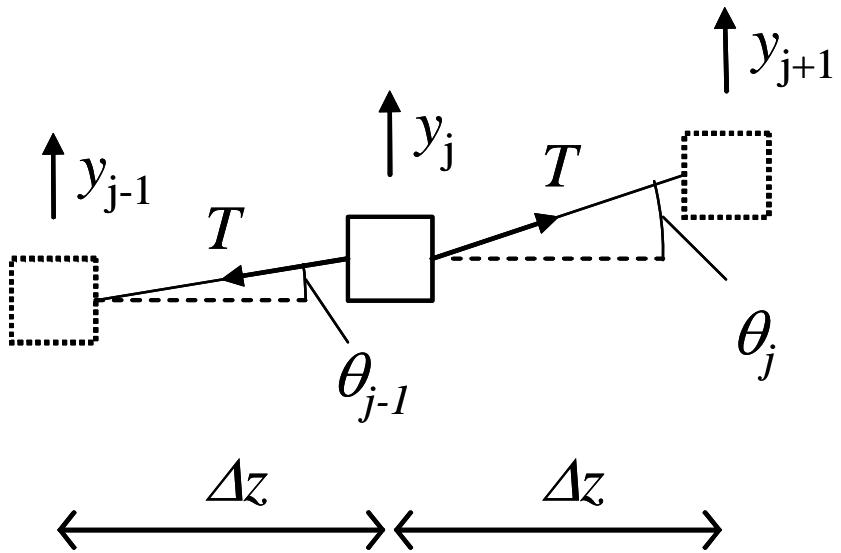
gives

$$T\Delta z \frac{\partial^2 y}{\partial z^2} = \rho\Delta z \frac{\partial^2 y}{\partial t^2}$$

i.e.,

$$\frac{\partial^2 y}{\partial z^2} = \frac{\rho}{T} \frac{\partial^2 y}{\partial t^2}$$

Classical wave equation



Rewriting

$$\frac{\partial^2 y}{\partial z^2} = \frac{\rho}{T} \frac{\partial^2 y}{\partial t^2}$$

with

$$v^2 = T / \rho$$

gives

$$\frac{\partial^2 y}{\partial z^2} - \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} = 0$$

which is a wave equation for a wave with velocity $v = \sqrt{T / \rho}$

Wave equation solutions – forward waves

We remember that any function of the form $f(z - ct)$
is a solution of the wave equation

and is a wave moving to the right with velocity c

Wave equation solutions – backward waves

We remember that any function of the form $g(z + ct)$
is a solution of the wave equation

and is a wave moving to the left with velocity c

Monochromatic waves

Often we are interested in waves oscillating at one specific (angular) frequency ω
i.e., temporal behavior of the form

$$T(t) = \exp(i\omega t), \exp(-i\omega t), \cos(\omega t), \sin(\omega t)$$

or any combination of these

Then writing $\phi(z, t) \equiv Z(z)T(t)$, we have $\frac{\partial^2 \phi}{\partial t^2} = -\omega^2 \phi$
leaving a wave equation for the spatial part

$$\frac{d^2 Z(z)}{dz^2} + k^2 Z(z) = 0 \quad \text{where } k^2 = \frac{\omega^2}{c^2}$$

the Helmholtz wave equation

Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

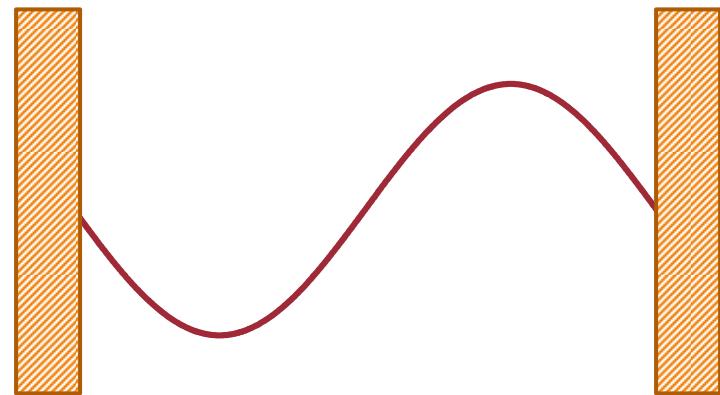
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

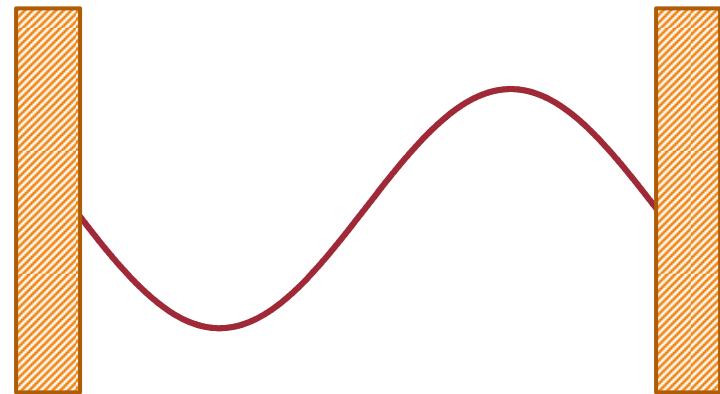
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

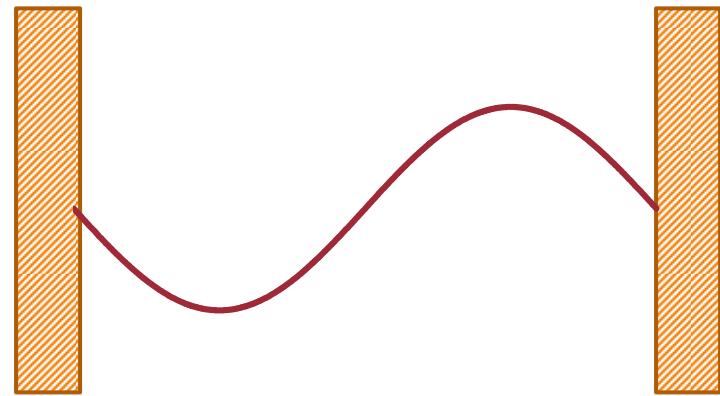
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

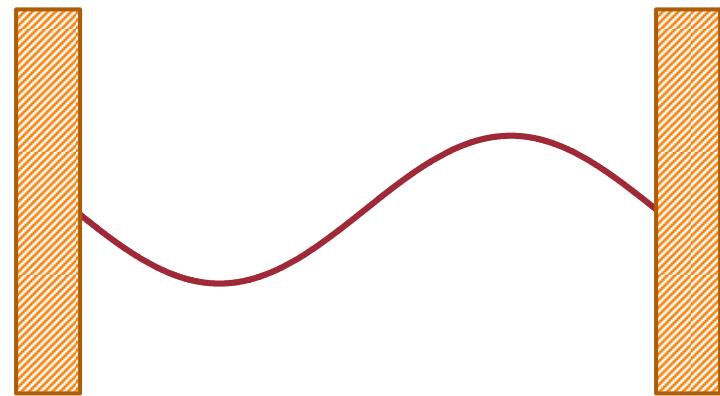
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

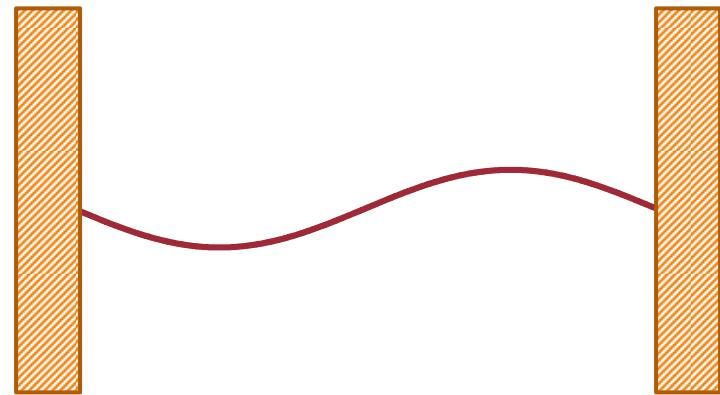
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$

Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

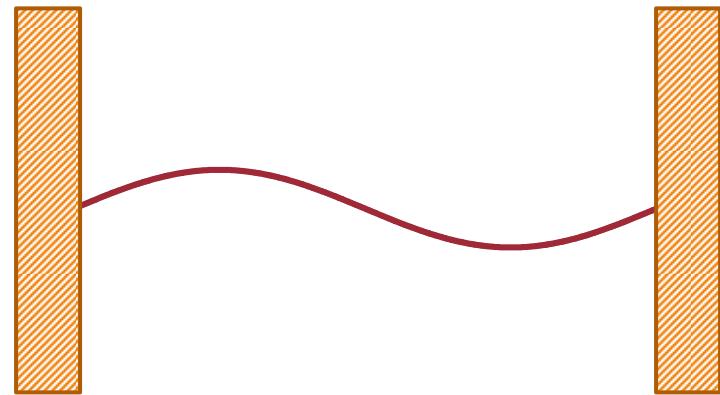
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

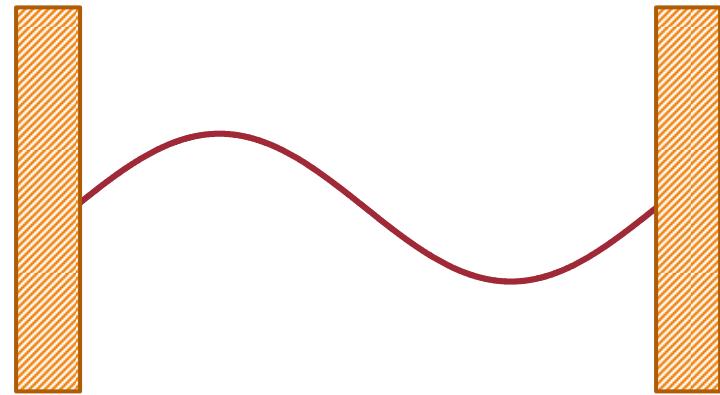
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

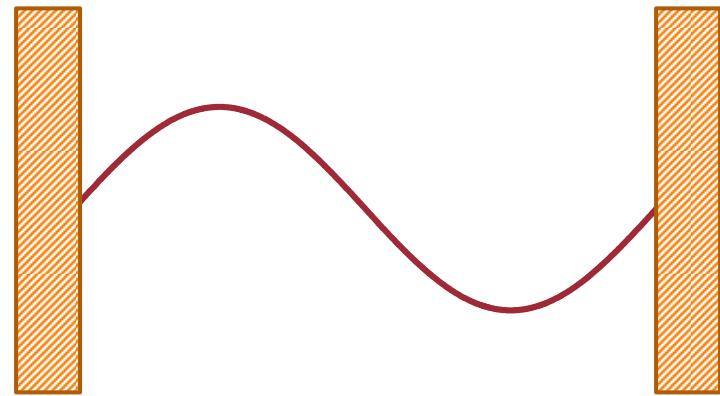
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

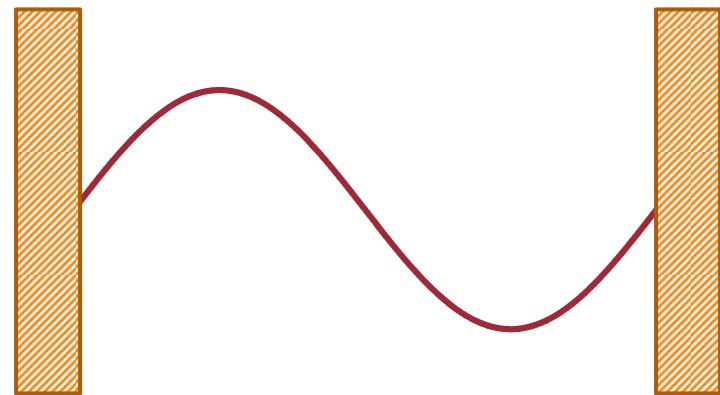
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

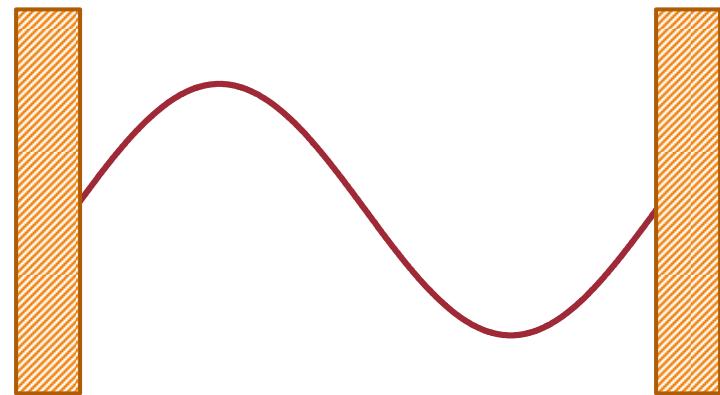
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

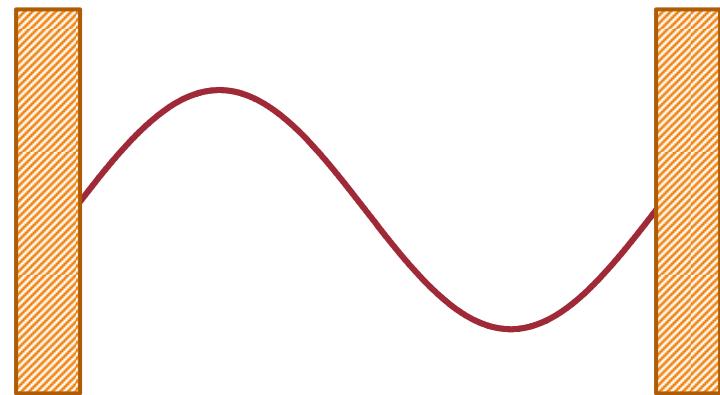
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

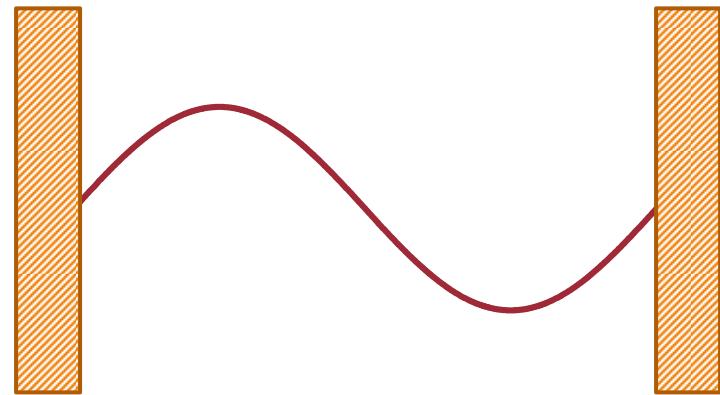
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

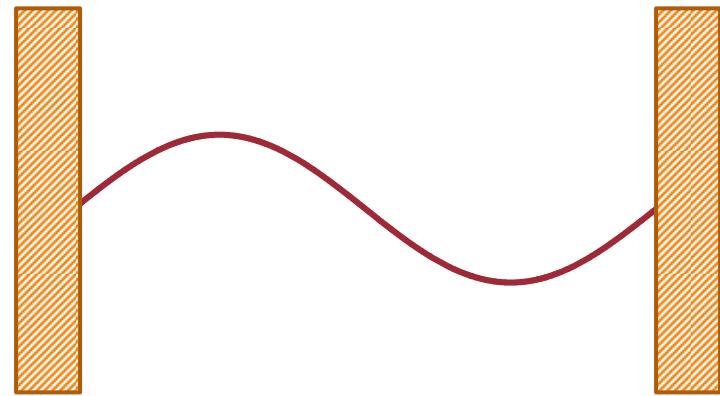
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

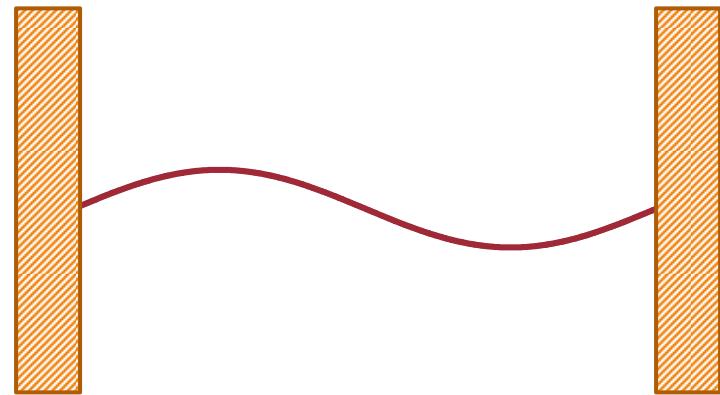
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$

Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

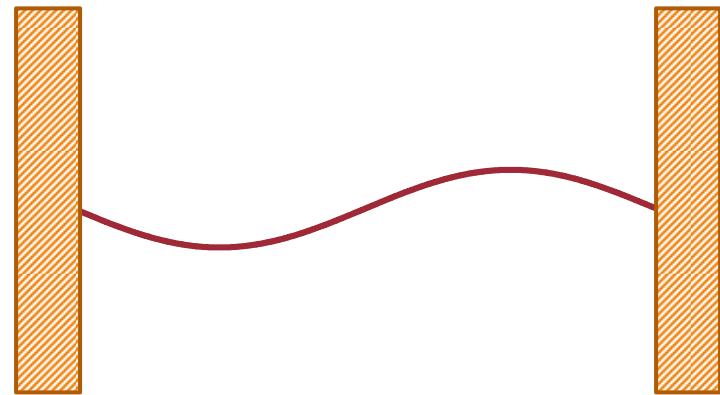
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

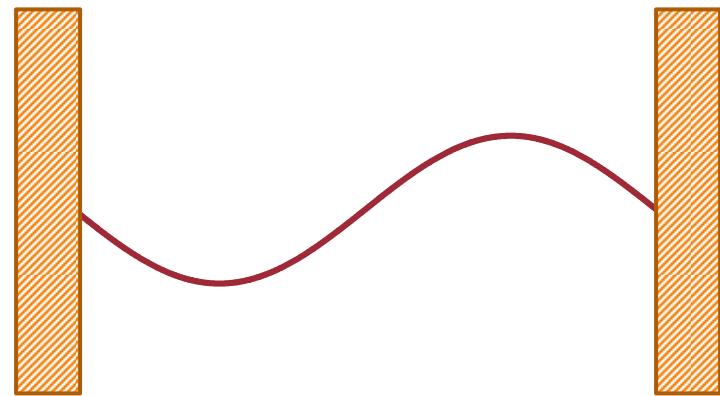
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

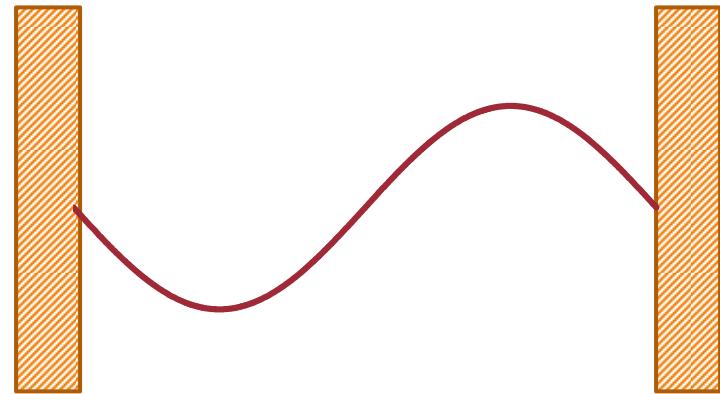
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

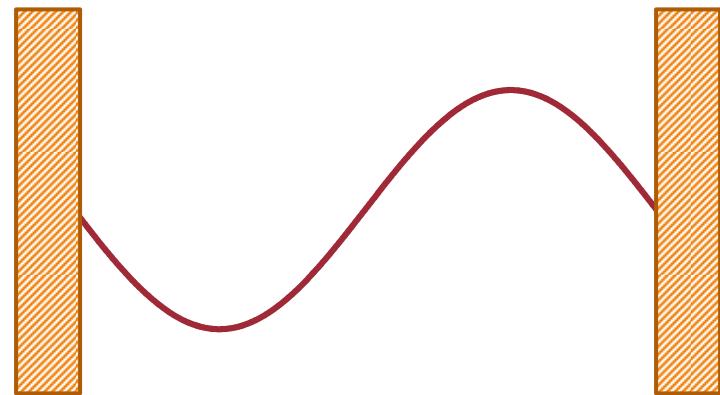
$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$



Standing waves

An equal combination of forward and backward waves, e.g.,

$$\phi(z, t) = \sin(kz - \omega t) + \sin(kz + \omega t)$$

$$\equiv 2 \cos(\omega t) \sin(kz)$$

where $k = \omega / c$

gives "standing waves"

E.g., for a rope tied to two walls a distance L apart

with $k = 2\pi / L$ and $\omega = 2\pi c / L$

