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Internal states of the hydrogen atom

We start with the equation for 
the relative motion of electron and proton

We use the spherical symmetry of this 
equation 

and change to spherical polar coordinates 
From now on, we drop the subscript r in the     

operator 
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Internal states of the hydrogen atom

In spherical polar coordinates, we have

where the term in square brackets 
is the operator                       we introduced 

in discussing angular momentum 
Knowing the solutions to the angular momentum problem

we propose the separation
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Internal states of the hydrogen atom

The mathematics is simpler using the form

where, obviously

This choice gives a convenient simplification of the 
radial derivatives

     1 ,U r Y
r
  r

   r rR r 

   2
2

2 2

1 1r r
r

r r r r r r
  


  



Internal states of the hydrogen atom

Hence the Schrödinger equation becomes

Dividing by
and rearranging, we have
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Internal states of the hydrogen atom

In

in the usual manner for a separation argument 
the left hand side depends only on r
and the right hand side depends only on  and 

so both sides must be equal to a constant
We already know what that constant is explicitly 

i.e., we already know that  
so that the constant is
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Internal states of the hydrogen atom

Hence, in addition to the     eigenequation
which we had already solved

from our separation above, we also have

or, rearranging 

which we can write as an ordinary differential equation
All the functions and derivatives are in one variable, r

2L̂
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Internal states of the hydrogen atom

Hence we have mathematical equation

for this radial part of the wavefunction
which looks like a Schrödinger wave equation

with an additional effective potential energy 
term of the form
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Central potentials

Note incidentally that
though here we have a specific form for

in our assumed Coulomb potential

the above separation works for any potential 
that is only a function of r

sometimes known as a central potential
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Central potentials

The precise form of the equation

will be different for different central potentials
but the separation remains 

We can still separate out the     angular 
momentum eigenequation

with the spherical harmonic solutions
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Central potentials

Since a reasonable first approximation for more 
complicated atoms 

is to say that the potential is still approximately 
“central” 

approximately independent of angle
we can continue to use the spherical harmonics 

as the first approximation to the angular form of 
the orbitals

and use the “hydrogen atom” labels for them
e.g., s, p, d, f, etc.
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Radial equation solutions

Using a separation of the hydrogen atom wavefunction
solutions into radial and angular parts

and rewriting the radial part using

we obtained the radial equation

where we know l is 0 or any positive integer

     ,U R r Y  r

   r rR r 

       
22 2 2

2 2

1
2 4 2 H

o

d r l le r E r
dr r r


 
  

 
    

 

 



Radial equation solutions

We now choose to write our energies in the form

where n for now is just an arbitrary real number 
We define a new distance unit

where the parameter  is
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Radial equation solutions

We therefore obtain an equation

Then we write

so we get

 2

2 2

1 1 0
4

l ld n
ds s s
 

 
    
 

     1 exp / 2ls s L s s  

   
2

2 2 1 1 0d L dLs s l n l L
ds ds

            



Radial equation solutions

The technique to solve this equation 

is to propose a power series in s
The power series will go on forever

and hence the function will grow arbitrarily
unless it “terminates” at some finite power

which requires that
n is an integer, and 
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Radial equation solutions

The normalizable solutions of 

then become the finite power series
known as the associated Laguerre polynomials

or equivalently
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Radial equation solutions

Now we can work back to construct the whole solution
In our definition

we now insert the associated Laguerre polynomials

where 
Since our radial solution was

we now have 
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Radial equation solutions - normalization

We formally introduce a normalization coefficient A so

The full normalization integral of the wavefunction

would be

but we have already normalized the spherical harmonics
so we are left with the radial normalization

     2 1
1

1/ 2 exp / 2l l
o n lR r na s s L s s

A

   

     ,U R r Y  r

   
2

2 2

0 0 0

1 , sin
r

R r Y r d d dr
 

 

    


  

   



Radial equation solutions - normalization

Radial normalization would be

We could show

so the normalized radial wavefunction becomes  
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Hydrogen atom radial wavefunctions

We write the wavefunctions 
using the Bohr radius ao as the unit of radial distance 

so we have a dimensionless radial distance  

and we introduce the subscripts
n - the principal quantum number, and
l - the angular momentum quantum number

to index the various functions Rn,l

/ or a 



Radial wavefunctions - n = 1
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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Behavior of the complete hydrogen solutions

(i) The overall “size” of the wavefunctions becomes 
larger with larger n

(ii) The number of zeros in the wavefunction is  n – 1
The radial wavefunctions have n – l – 1 zeros 

and the spherical harmonics have l nodal “circles” 
The radial wavefunctions appear to have an additional 

zero at r = 0 for all , but this is already counted
because the spherical harmonics have at least one 
nodal “circle” for all  

which already gives a zero as           in these cases
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Behavior of the complete hydrogen solutions

In summary of the quantum numbers 
for the so-called principal quantum number  

and 
We already deduced that l is a positive or zero integer
We also now know the eigenenergies

Given the possible values for n

Note the energy does not depend on l (or m)
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