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Time-independent perturbation theory

Presume some unperturbed Hamiltonian
that has known normalized eigen solutions 

i.e.,

We can imagine that our perturbation 
could be progressively “turned on”

at least in a mathematical sense 
For example 

we could be progressively increasing applied field E
from zero to some specific value 
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Time-independent perturbation theory

We look successively 
for the changes in the solutions

for example, for the mth energy 
eigenvalue Em

proportional first to electric field E
“first-order corrections” 
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Time-independent perturbation theory

We look successively 
for the changes in the solutions

for example, for the mth energy 
eigenvalue Em

proportional first to electric field E
“first-order corrections” 

proportional to E2

“second-order corrections”
and so on 
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Time-independent perturbation theory

It is more convenient and general
if we imagine a specific fixed 

perturbation (e.g., a field E)
and we mathematically increase a

“house-keeping” parameter 
from 0 to 1

so our perturbation is  E
with E fixed

Now we express changes as orders of 
rather than of the field itself
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The “house-keeping” parameter 

So, instead of writing
we are writing

and instead of working out a and b
we are going to work out parameters

and       and so on
These have dimensions of energy

and reflect the “first order” and “second order” 
corrections to the energy 

as a result of the specific perturbation
e.g., a specific field E
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The “house-keeping” parameter 

In general, then, we imagine that our perturbed system has 
some additional term in the Hamiltonian

the “perturbing Hamiltonian” 
In our example case of an infinitely deep potential well 

with an applied field
that perturbing Hamiltonian would be

In the theory, we write the perturbing Hamiltonian as 
using  to keep track of the order of the corrections

through the powers of  in the expressions
We can set  = 1 at the end if we like
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The “house-keeping” parameter 

So, we could set up the theory using
in which case we would work out a and b

and some other parameters
But, to make it more general we use

and work out the parameters 
and       and some other parameters

If this is confusing at first
then just think of  as the strength of the electric field 
in our specific problem
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Construction of the orders of perturbation theory

With this way of thinking about the problem 
mathematically

we can write the perturbed Schrödinger equation as 

We now presume that we can express 
the resulting perturbed eigenfunction and eigenvalue 

as power series in this parameter, i.e., 
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Construction of the orders of perturbation theory

We now substitute these power series

into the perturbed Schrödinger equation

to get 
 ˆ ˆ

o pH H E   
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Construction of the orders of perturbation theory

Now, at any specific point in space, each function
and each function 

is just some number 
So, at any specific point in space, the left hand side of

is just a power series in  , e.g.,

and so is the right hand side, e.g.,  
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Construction of the orders of perturbation theory

Because a power series expansion is unique
the only way the equality of two power series can work

for every value of  within some convergence range 
e.g., 0 to 1

is if the terms are equal, one by one, i.e., 

and so on
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Construction of the orders of perturbation theory

Hence, in

we can equate each term with a specific power of 
and hence obtain

a progressive set of equations
which we can solve to evaluate corrections

to whatever order we wish
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Progressive set of perturbation theory equations

In

equating terms in  0, i.e., terms without 
gives the “zeroth” order equation 

i.e., the unperturbed Hamiltonian equation
with eigenfunctions        and eigenvalues En

So if we now presume we start in a specific eigenstate
we write        and Em

instead of          and  
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Progressive set of perturbation theory equations

So, with 

we get a progressive set of equations
each equating a different power of 

and so on
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Progressive set of perturbation theory equations

We can rewrite these equations as

and so on
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First order perturbation theory

Now we can calculate the various perturbation terms  
Starting with

and premultiplying by         gives

i.e.,

a formula for the first-order energy correction
in the presence of our perturbation  
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First order perturbation theory

For the first order correction to the wavefunction
we expand that correction in the basis set

Substituting this is in

and premultiplying by    gives

 1
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   1 1
n n
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First order perturbation theory

So we have
We presume the energy eigenvalue Em is not degenerate 

i.e., only one eigenfunction for this eigenvalue 
With no degeneracy, we still need to distinguish two cases

First, for         , from above

So 

Second, for 

which gives no constraints on   

   1 ˆ
i m i i p mE E a H   i m
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     1 10m m m mE E a a 
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First order perturbation theory

We are therefore free to choose
The choice that makes the algebra simplest 

is to set 
which is the same as saying 

we choose to make         orthogonal to 

The same happens for the higher order equations
Hence, quite generally 

we make the convenient choice

(1)
ma

 1 0ma 

 1 m

  0j
m  



First order perturbation theory

Hence with and  

the first order correction to the wavefunction is 

and we have the first order correction to the energy

 1
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Second order perturbation theory

We continue similarly to find the higher order terms 
Premultiplying

on both sides by   gives

so

Since we chose         orthogonal to  

          2 1 1 2ˆ ˆ
o m p mH E E H E     
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This image cannot currently be displayed.
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Second order perturbation theory

Using our result for the first-order wavefunction
correction

then from

we obtain

Equivalently 

   2 1ˆ
m pE H 

 1
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 
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Second order perturbation theory

For the second order wavefunction correction
we expand  

noting now that         is chosen orthogonal to

We premultiply
by       to obtain

 2
 2 m

   2 2
n n

n m

a 


 
          2 1 1 2ˆ ˆ
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      1 1 2ˆ
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i n i p n
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
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Second order perturbation theory

So, we have 

Note this summation excludes the term n = m
because we chose         to be orthogonal to   

i.e., we have chosen
Hence, for          we have

Note that the second order wavefunction depends only 
on the first order energy and wavefunction

         2 1 1 1 ˆ
i m i i n i p n

n m

E E a E a a H 


  
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     1 1 1

2
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E E E E
 



 
     




First and second order perturbation results

 1 ˆ
m p mE H 

 1
ˆ
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   2 1ˆ
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Example of a well with field

We write the Hamiltonian as the sum of 
the unperturbed Hamiltonian

which is, in the well, in our dimensionless units

and the perturbing Hamiltonian

where again we take        for an explicit 
calculation 

2

2 2

1ˆ
o

dH
d 

 

 ˆ 1/ 2pH  f
3f



First order energy correction

In first order, the energy shift with applied field is

The integrals here are zero for all m
because the sine squared function is even with 

respect to the center of the well
whereas               is odd 

Hence, for this particular problem there is no first order 
energy correction

 1 ˆ
m p mE H      

1

0

2 sin 1/ 2 2 sinm m d    f

   
1

2

0

2 1/ 2 sin m d   f 0

 1/ 2 



First order energy correction

There no first order energy correction
because of symmetry 



First order energy correction

There no first order energy correction
because of symmetry 

If the energy changed 
proportionately with applied field  

?



First order energy correction

There no first order energy correction
because of symmetry 

If the energy changed 
proportionately with applied field  
changing field direction (or sign)

would change the energy 
correction sign 

But, by symmetry here 
the energy change cannot depend 

field direction 

?



Matrix elements for perturbation calculations

The general matrix elements that we will need for 
further perturbation calculations are

In general we need u and v to have opposite parity 
i.e., if one is odd, the other must be even 

for these matrix elements to be non-zero 
since otherwise 

the overall integrand is odd about  

    
1

0

ˆ 2 sin 1/ 2 2 sinpuv u p vH H u v d       f

1/ 2 



First order correction to the wavefunction

We calculate the first order wavefunction correction 
for the first state, i.e., for m = 1

where             are the energies of the unperturbed 
states, and 

q is a finite number we must choose in practice 
Here, we chose q = 6

though a smaller number would likely be 
quite accurate 

   1 1

2

q

n n
n

a 


  1 1

1

ˆ
i p

i
o oi

H
a

 
 




2
on n 



First order correction to the wavefunction

Explicitly, for the expansion coefficients

for 3 units of field 
we have numerically

Here 
the value of 0.180 for

compares closely with the value of 0.174 obtained 
above in the finite basis subset method 

   1
1 1

ˆ /i i p o oia H    

 1
2 0.180a   1

3 0a   1
4 0.003a 

 1
2a



First order correction to the wavefunction

We sum the zero-order (unperturbed) wavefunction

 2 sin 

0 0.5 1
0.5

0.5

1

1.5





First order correction to the wavefunction

and the first order correction part from the second basis 
function

 0.180 2 sin 2

0 0.5 1
0.5

0.5

1

1.5





0 0.5 1
0.5

0.5

1

1.5



First order correction to the wavefunction

To get our approximate wavefunction solution

     2 sin 0.180 2 sin 2   
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First order correction to the wavefunction

Adding the next correction makes negligible difference

       2 sin 0.180 2 sin 2 0.003 2 sin 4     



Second order energy correction

Since the first order correction to the energy was zero 
to get a perturbation correction to the energy

we go to second order

Explicitly, we have

which numerically here gives
or a total energy of

which compares with the result of 
from the finite basis subset method
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Approximate analytic formulas

Note that       
is analytically proportional to the square of the field f2
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Approximate analytic formulas

Hence perturbation theory 
gives an approximate analytic result for the energy 

which we can now use for any field 
Explicitly, we can write for the energy of the first state

in dimensionless units

This typical kind of result from perturbation theory 
gives us an approximate analytic formula 

valid for small perturbations

2
1 1 0.0108   f



Approximate analytic formulas

Similarly, for the wavefunction
the correction is approximately proportional to field

for example with expansion coefficient

So, keeping only the dominant contribution from the 
second-state wavefunction in our example

we would have the approximate formula for small f

(This is not quite normalized, though that could be done)
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Approximate analytic results
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