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One electron approximation

In this approximation, we presume that we can write 
an effective periodic potential

periodic with the crystal lattice periodicity
and therefore

an effective, approximate Schrödinger equation 
for the one electron in which we are interested

giving our one-electron approximation
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Periodicity of ||2

In one dimension
the crystal is periodic with “repeat length” a

having the same potential at x + sa
as it has at x

Here 
s is an integer 

Similarly, any observable quantity must also have the 
same periodicity 

because the crystal must look the same in every unit 
cell 



Consequences of periodicity of ||2

For example charge density   
must be periodic in the same way

Hence
which means

where C is a unit amplitude complex number
Note that there is no requirement that the wavefunction

itself is periodic with the crystal periodicity 
since it is not apparently an observable or 
measurable quantity
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Periodic boundary conditions

In one dimension, we could 
argue as follows 
Suppose we have a long 

chain of N equally spaced 
atoms 
and that we join the two 
ends of the chain together 

a
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Periodic boundary conditions

With x as the distance along 
this loop
then on this loop, the 

potential can be written 

where m is any integer 
even possibly an integer 

much larger than N

a
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Periodic boundary conditions

This expression 
is just like the one for the infinite 

crystal
If this chain is very long 

its internal properties will not be 
substantially different from an 
infinitely long chain
so this is a good model

that gives us a finite system
while keeping it periodic
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Periodic boundary conditions

This loop gives a boundary condition
We do want the wavefunction to be 

single-valued
otherwise how could we 
differentiate it, evaluate its 
squared modulus, etc. 

So, going round the loop, we must 
get back to where we started

a “periodic boundary condition” 

a
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Bloch theorem derivation

If we take this “single value” requirement
and combine it with the required periodicity of a 
measureable quantity like probability density

which we deduced implied that
where C is a unit complex number

then
so

Hence, C is one of the N “Nth roots of unity”, e.g.,  
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Bloch theorem derivation

Substituting C from 

in

gives 

where
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Bloch theorem derivation

Though the form 
for C is mathematically common, it is not unique

We can choose any consecutive set of N values of 
the integer s

and end up with the same set of possible values 
for C, just in a different order 

Remember, for any integer m

so the values for C just keep cycling round 
as we keep increasing s

 exp 2 / ; 0,1, 2, 1C is N s N  
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Bloch theorem derivation

We can therefore end up with correspondingly different 
sets of values for k

all of which are physically equivalent

Instead of

we more conventionally use a symmetrical version

which strictly has one too many values
We should omit one of the “end values” here

2 ; 0,1, 2, 1sk s N
Na


  

2 ... 0, 1, 2,... / 2nk n N
Na


    



Bloch theorem derivation

Note also that it makes no difference in our expression

if we add              (where m is any integer) to k
The set of allowed values of

remains the same
So we can use

or

This point will have a specific significance later in 
“extended zone” schemes 
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Bloch theorem – one statement

The wavefunction in a (one-dimensional) crystal with N
unit cells of length a can be written in the form 

subject to the condition 

Note the allowed k values are evenly spaced by  
where             is the length of the crystal (loop)

regardless of the detailed form of the periodic 
potential
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Bloch theorem – alternative (equivalent) statement

Multiply 
by   

to obtain
Hence if we define a function 

we have
Hence          is periodic with the lattice periodicity

Equivalently,         is a function that is the same 
in every unit cell 

Rearranging gives 
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Bloch theorem – equivalent statement

The wavefunction in a (one-dimensional) crystal with N
unit cells of length a can be written in the form 

where         is the same in every unit cell 
subject to the condition 
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Bloch theorem –equivalence of statements

Note that the two forms 
and 

are entirely equivalent 
We derived the “left” from the “right” one

and we can derive the “right” one from the “left” one
From the “left” form, we have

which is the “right” form
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Bloch theorem visualization

We can think of the               as an “envelope” 
function multiplying the unit cell function 

envelope

unit cell function

Bloch function

 exp ikx
 u x

Visualization of 
the real part of 

the wavefunction
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Bloch theorem in three dimensions

To construct the Bloch theorem in three dimensions
we propose a straightforward extension from 1-D

We have

where a is any crystal lattice vector 
or equivalently

and         is the same in every unit cell, i.e.,  
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Bloch theorem in three dimensions

With the three crystal basis vector directions 1, 2, and 3
with lattice constants (repeat distances)  a1,  a2, and  a3

and numbers of atoms  N1, N2, and N3

and similarly for the other two components of k in 
the other two crystal basis vector directions

Note that the number of possible values of k is the same as 
the number of unit cells in the crystal

(formally dropping the k values at one end or the other)
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Reciprocal lattice

We see that the allowed values of  k1, k2, and k3 are each 
equally spaced, with separations 

,                           , and  

respectively along the three axes 
where the lengths of the crystal along the three 

axes are respectively 
,                ,  
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Reciprocal lattice

We could draw a three-
dimensional diagram
with axes k1, k2, and k3

and mark the allowed 
values of k

This set of dots themselves 
constitutes a mathematical 
lattice
This kind of lattice is one 

kind of “reciprocal lattice” 
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Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 
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1

Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 

For our cubic lattices, we can 
define
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1

Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 

For our cubic lattices, we can 
define
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Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 

For our cubic lattices, we can 
define
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Density of states in k-space

For our cuboidal lattices
these volumes in k-space will 

be of size

i.e., 

Since the crystal is
the k-space “volume” round 

each point is 
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Density of states in k-space

With this specific k-space 
“volume”                         

round each point in k-space 
we could define 

a “density of states in k-
space”
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Density of states in k-space

This density of states in k-space 

is  crystal volume V
So, more commonly, we define

a “density of states in k-space 
per unit (real space) volume”

for quantum mechanical 
calculations in crystals 
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