7 Finite well and harmonic oscillator

Slides: Lecture 7a Particles in potential wells – introduction

Text reference: Quantum Mechanics for Scientists and Engineers

Section 2.9

Particles in potential wells

Quantum mechanics for scientists and engineers

David Miller

7 Finite well and harmonic oscillator

Slides: Lecture 7b The finite potential well

Text reference: Quantum Mechanics for Scientists and Engineers

Section 2.9

Quantum Mechanics for Scientists and Engineers

Particles in potential wells

The finite potential well

Quantum mechanics for scientists and engineers

David Miller

Finite potential well

Insert video here (split screen)

Lesson 7 Particles in potential wells

Insert number 2

0

We will choose the height of the potential barriers as V_{o} with 0 potential energy at the bottom of the well The thickness of the well is L_{τ} Now we will choose the position origin in the center of the well

 V_{o}

If there is an eigenenergy E for which there is a solution then we already know what form the solution has to take sinusoidal in the middle exponentially decaying on either side

For some eigenenergy
$$E$$
 V_o
with $k = \sqrt{2mE / \hbar^2}$
and $\kappa = \sqrt{2m(V_o - E) / \hbar^2}$
for $z < -L_z / 2$
 $\psi(z) = G \exp(\kappa z)$
for $-L_z / 2 < z < L_z / 2$
 $\psi(z) = A \sin kz + B \cos kz$
for $z > L_z / 2$
 $\psi(z) = F \exp(-\kappa z)$
with constants A , B , F , and G

 \mathcal{Z}

/ 2

 $0 L_{z}$ /

Ζ.

From continuity of the
wavefunction at
$$z = L_z / 2$$

 $\psi(L_z / 2) = F \exp(-\kappa L_z / 2)$
 $= A \sin(kL_z / 2) + B \cos(kL_z / 2)$
Writing $X_L = \exp(-\kappa L_z / 2)$
 $S_L = \sin(kL_z / 2)$
 $C_L = \cos(kL_z / 2)$
gives
 $FX_L = AS_L + BC_L$
 $O = -L_z / 2 = 0$

Z

12

 $L_{_{7}}$ /

Similarly at
$$z = -L_z/2$$
 V_o^-
 $GX_L = -AS_L + BC_L$
Continuity of the derivative
gives
at $z = -L_z/2$
 $\frac{\kappa}{k}GX_L = AC_L + BS_L$
at $z = L_z/2$
 $-\frac{\kappa}{k}FX_L = AC_L - BS_L$

Now we need to find what solutions are compatible with these

0

Adding
$$GX_{L} = -AS_{L} + BC_{L}$$

 $FX_{L} = AS_{L} + BC_{L}$
gives $2BC_{L} = (F+G)X_{L}$
Subtracting $-\frac{\kappa}{k}FX_{L} = AC_{L} - BS_{L}$
from $\frac{\kappa}{k}GX_{L} = AC_{L} + BS_{L}$
gives $2BS_{L} = \frac{\kappa}{k}(F+G)X_{L}$

As long as
$$F \neq -G$$
 V_a
we can divide
 $2BS_L = \frac{\kappa}{k} (F+G) X_L$
by
 $2BC_L = (F+G) X_L$
to obtain
 $\tan(kL_z/2) = \kappa/k$

This relation is effectively a condition for eigenvalues

Subtracting
$$GX_{L} = -AS_{L} + BC_{L}$$
 V_{o}
from $FX_{L} = AS_{L} + BC_{L}$
gives $2AS_{L} = (F - G)X_{L}$
Adding $-\frac{\kappa}{k}FX_{L} = AC_{L} - BS_{L}$
and $\frac{\kappa}{k}GX_{L} = AC_{L} + BS_{L}$
gives $2AC_{L} = -\frac{\kappa}{k}(F - G)X_{L}$ 0
 $-L_{z}/2$ 0

Т

Z

/ 2

 $L_{_{7}}$ /

Similarly, as long as
$$F \neq G$$
 V_o
we can divide
 $2AC_L = -\frac{\kappa}{k}(F-G)X_L$
by
 $2AS_L = (F-G)X_L$
to obtain
 $-\cot(kL_z/2) = \kappa/k$
This relation is also effectively a
condition for eigenvalues
 $-L_z/2$ 0 $L_z/2$

Т

Z.

 V_{o} For any case other than F = Gwhich leaves $tan(kL_z/2) = \kappa/k$ but not $-\cot(kL_z/2) = \kappa/k$ or F = -Gwhich leaves $-\cot(kL_z/2) = \kappa/k$ but not $\tan(kL_z/2) = \kappa/k$ then the solutions $tan(kL_z/2) = \kappa/k$ and $-\cot(kL_z/2) = \kappa/k$

are contradictory

So the only possibilities are

1 - F = Gand $\tan(kL_z / 2) = \kappa / k$

2 - F = -Gand $-\cot(kL_z/2) = \kappa/k$

$$1 - F = -G$$

and $-\cot(kL_z/2) = \kappa/k$
Note from $2BC_L = (F+G)X_L$
and $2BS_L = \frac{\kappa}{k}(F+G)X_L$
 S_L and C_L cannot both be 0
so $B = 0$
Hence in the well we have
 $\psi(z) \propto \sin kz$
which is an odd function

Though we have found the nature of the solutions we have not yet formally solved for the eigenenergies *E*

and hence for k and κ We do this by solving $\tan(kL_z/2) = \kappa/k$

and

$$-\cot(kL_z/2) = \kappa/k$$

Solving for the eigenenergies

Change to "dimensionless" units Use the energy of the first level in the "infinite" potential well width L_{z} leading to a dimensionless eigenenergy and a dimensionless barrier height Also

1

$$E_1^{\infty} = \frac{\hbar^2}{2m} \left(\frac{\pi}{L_z}\right)^2$$

$$\mathcal{E} \equiv E / E_1^{\infty}$$

$$v_o \equiv V_o / E_1^\infty$$

$$k = \sqrt{2mE / \hbar^2} = (\pi / L_z)\sqrt{E / E_1^{\infty}} = (\pi / L_z)\sqrt{\varepsilon}$$

$$\kappa = \sqrt{2m(V_o - E) / \hbar^2} = (\pi / L_z)\sqrt{(V_o - E) / E_1^{\infty}} = (\pi / L_z)\sqrt{v_o - \varepsilon}$$

Solving for the eigenenergies

Consequently
$$\frac{\kappa}{k} = \sqrt{\frac{V_o - E}{E}} = \sqrt{\frac{v_o - \varepsilon}{\varepsilon}}$$

 $\frac{kL_z}{2} = \frac{\pi}{2}\sqrt{\frac{E}{E_1^{\infty}}} = \frac{\pi}{2}\sqrt{\varepsilon}$ and $\frac{\kappa L_z}{2} = \frac{\pi}{2}\sqrt{\frac{V_o - E}{E_1^{\infty}}} = \frac{\pi}{2}\sqrt{v_o - \varepsilon}$
So $\tan(kL_z/2) = \kappa/k$ becomes $\tan[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)/\varepsilon}$
or $\sqrt{\varepsilon} \tan[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)}$
and $-\cot(kL_z/2) = \kappa/k$ becomes $-\cot[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)/\varepsilon}$
or $-\sqrt{\varepsilon} \cot[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)}$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Now add the curves

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Now add the curves

$$\sqrt{\varepsilon} \tan\left(\frac{\pi}{2}\sqrt{\varepsilon}\right)$$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Now add the curves

$$\sqrt{\varepsilon} \tan\left(\frac{\pi}{2}\sqrt{\varepsilon}\right) - \sqrt{\varepsilon} \cot\left(\frac{\pi}{2}\sqrt{\varepsilon}\right) - \frac{1}{2} \left(\frac{\pi}{2}\sqrt{\varepsilon}\right) - \frac{1}{2} \left(\frac{\pi}{2}\sqrt{\varepsilon$$

For a specific v_o the solutions are the values of ε at the intersections of

$$\sqrt{(v_o - \varepsilon)}$$

and $\sqrt{\varepsilon} \tan\left(\frac{\pi}{2}\sqrt{\varepsilon}\right)$ or $-\sqrt{\varepsilon} \cot\left(\frac{\pi}{2}\sqrt{\varepsilon}\right)$ —

Solutions

These are the solutions for a well depth V_o of $8E_1^{\infty}$ Note that they are all lower energies than the corresponding solutions for the infinitely deep well of the same width

n = 3

7 Finite well and harmonic oscillator

Slides: Lecture 7c The harmonic oscillator

Text reference: Quantum Mechanics for Scientists and Engineers

Section 2.10

Quantum Mechanics for Scientists and Engineers

Particles in potential wells

The harmonic oscillator

Quantum mechanics for scientists and engineers

David Miller

Mass on a spring

A simple spring will have a restoring force *F* acting on the mass *M*

A simple spring will have a restoring force *F* acting on the mass *M* proportional to the amount *y* by which it is stretched

For some "spring constant" K

$$F = -Ky$$

The minus sign is because this is "restoring"

it is trying to pull *y* back towards zero This gives a "simple harmonic oscillator"

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e.,
$$\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

where we define $\omega^2 = K / M$ we have oscillatory solutions of angular frequency $\omega = \sqrt{K / M}$ e.g.,

Potential energy

With this potential energy $V(z) = \frac{1}{2}m\omega^2 z^2$ the Schrödinger equation is

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + \frac{1}{2}m\omega^2 z^2\psi = E\psi$$

For convenience, we define a dimensionless

distance unit
$$\xi = \sqrt{\frac{m\omega}{\hbar}}z$$

so the Schrödinger equation becomes

$$\frac{1}{2}\frac{d^2\psi}{d\xi^2} - \frac{\xi^2}{2}\psi = -\frac{E}{\hbar\omega}\psi$$

One specific solution to this equation

$$\frac{1}{2}\frac{d^2\psi}{d\xi^2} - \frac{\xi^2}{2}\psi = -\frac{E}{\hbar\omega}\psi$$
$$\psi \propto \exp(-\xi^2/2)$$

is

with a corresponding energy $E = \hbar \omega / 2$ This suggests we look for solutions of the form $\psi_n(\xi) = A_n \exp(-\xi^2 / 2) H_n(\xi)$ where $H_n(\xi)$ is some set of functions still to be determined

Substituting $\psi_n(\xi) = A_n \exp(-\xi^2/2) H_n(\xi)$ into the Schrödinger equation gives $\frac{1}{2}\frac{d^2\psi}{d\xi^2} - \frac{\xi^2}{2}\psi = -\frac{E}{\hbar\omega}\psi$ $\frac{d^2 H_n(\xi)}{d\xi^2} - 2\xi \frac{d H_n(\xi)}{d\xi} + \left(\frac{2E}{\hbar\omega} - 1\right) H_n(\xi) = 0$ This is the defining differential equation for the Hermite polynomials

The allowed energy levels are equally spaced separated by an amount $\hbar \omega$ where ω is the classical oscillation frequency Like the potential well there is a "zero point energy" here $\hbar \omega / 2$

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$

n = 0, 1, 2, ...

Hermite polynomials

The first Hermite polynomials are Note they are either odd or even i.e., they have a definite parity They satisfy a "recurrence relation" $H_{n}(\xi) = 2\xi H_{n-1}(\xi) - 2(n-1)H_{n-2}(\xi)$ successive Hermite polynomials can be calculated from the previous two

$$H_{0} = 1$$

$$H_{1}(\xi) = 2\xi$$

$$H_{2}(\xi) = 4\xi^{2} - 2$$

$$H_{3}(\xi) = 8\xi^{3} - 12\xi$$

$$H_{4}(\xi) = 16\xi^{4} - 48\xi^{2} + 12$$

Harmonic oscillator solutions

Normalizing ψ gives A

$$\psi_n(\xi) = A_n \exp\left(-\xi^2/2\right) H_n(\xi)$$
$$A_n = \sqrt{\frac{1}{\sqrt{\pi} 2^n n!}} \qquad \xi = \sqrt{\frac{m\omega}{\hbar}} z$$
$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega \qquad n = 0, 1, 2, \dots$$

Harmonic oscillator solutions

Harmonic oscillator eigensolutions

$$A_{4} \exp(-\xi^{2}/2)(16\xi^{4} - 48\xi^{2} + 12)$$
Energy
$$\xi^{2}/2$$

$$A_{3} \exp(-\xi^{2}/2)(8\xi^{3} - 12\xi)$$

$$A_{2} \exp(-\xi^{2}/2)(4\xi^{2} - 2)$$

$$A_{1} \exp(-\xi^{2}/2)(2\xi)$$

$$A_{0} \exp(-\xi^{2}/2)$$

$$A_{0} \exp(-\xi^{2$$

Classical turning points

The intersections of the parabola and the dashed lines give the "classical turning points" where a classical mass of that energy turns round and goes back downhill

