7 Finite well and harmonic oscillator

Slides: Lecture 7a Particles in potential wells – introduction

Text reference: Quantum Mechanics for Scientists and Engineers

Section 2.9

Particles in potential wells

Quantum mechanics for scientists and engineers **David Miller**

7 Finite well and harmonic oscillator

Slides: Lecture 7b The finite potential well

Text reference: Quantum Mechanics for Scientists and Engineers

Section 2.9

Particles in potential wells

The finite potential well

Quantum mechanics for scientists and engineers **David Miller**

Finite potential well

Insert video here (split screen)

Lesson 7Particles in potential wells

Insert number 2

Vo

We will choose the height of the potential barriers as V_o with 0 potential energy at the bottom of the well The thickness of the well is $L_{\rm z}$ Now we will choose the position origin in the center of the well

 V_{o}

If there is an eigenenergy *E* for which there is a solutionthen we already know what form the solution has to takesinusoidal in the middleexponentially decaying on either side

For some eigeneracy
$$
E
$$

\nwith $k = \sqrt{2mE/\hbar^2}$
\nand $\kappa = \sqrt{2m(V_o - E)/\hbar^2}$
\nfor $z < -L_z/2$
\n $\psi(z) = G \exp(\kappa z)$
\nfor $-L_z/2 < z < L_z/2$
\n $\psi(z) = A \sin kz + B \cos kz$
\nfor $z > L_z/2$
\n $\psi(z) = F \exp(-\kappa z)$
\nwith constants A, B, F , and G

 ζ

z

From continuity of the
\nwavefunction at
$$
z = L_z/2
$$

\n
$$
\psi(L_z/2) = F \exp(-\kappa L_z/2)
$$
\n
$$
= A \sin(kL_z/2) + B \cos(kL_z/2)
$$
\nWriting $X_L = \exp(-\kappa L_z/2)$
\n
$$
S_L = \sin(kL_z/2)
$$
\n
$$
C_L = \cos(kL_z/2)
$$
\ngives
\n
$$
FX_L = AS_L + BC_L
$$
\n
$$
-L_z/2
$$

 \mathcal{Z}

 $\sqrt{2}$

 $0 L_{7}$

Similarly at
$$
z = -L_z/2
$$

\n
$$
GX_{L} = -AS_{L} + BC_{L}
$$
\nContinuity of the derivative
\ngives
\nat $z = -L_z/2$
\n
$$
\frac{\kappa}{k}GX_{L} = AC_{L} + BS_{L}
$$
\nat $z = L_z/2$
\n
$$
-\frac{\kappa}{k}FX_{L} = AC_{L} - BS_{L}
$$

 $V_{_o}$

Now we need to find what solutions are compatible with these

Vo

Adding
$$
GX_L = -AS_L + BC_L
$$

\n $FX_L = AS_L + BC_L$
\ngives $2BC_L = (F + G)X_L$
\nSubtracting
\n $-\frac{\kappa}{k}FX_L = AC_L - BS_L$
\nfrom $\frac{\kappa}{k}GX_L = AC_L + BS_L$
\ngives $2BS_L = \frac{\kappa}{k}(F + G)X_L$

As long as
$$
F \neq -G
$$

\nwe can divide
\n
$$
2BS_L = \frac{\kappa}{k} (F + G)X_L
$$
\nby
\n
$$
2BC_L = (F + G)X_L
$$
\nto obtain
\ntan $(kL_z/2) = \kappa/k$

This relation is effectively a condition for eigenvalues

Subtracting
$$
GX_L = -AS_L + BC_L
$$

\nfrom $FX_L = AS_L + BC_L$
\ngives $2AS_L = (F - G)X_L$
\nAdding $-\frac{\kappa}{k}FX_L = AC_L - BS_L$
\nand $\frac{\kappa}{k}GX_L = AC_L + BS_L$
\ngives $2AC_L = -\frac{\kappa}{k}(F - G)X_L$

z

Т

Similarly, as long as
$$
F \neq G
$$

\nwe can divide
\n
$$
2AC_L = -\frac{\kappa}{k}(F - G)X_L
$$
\nby
\n
$$
2AS_L = (F - G)X_L
$$
\nto obtain
\n
$$
-cot(kL_z/2) = \kappa/k
$$
\nThis relation is also effectively a
\ncondition for eigenvalues
\n
$$
-L_z/2 = \frac{1}{k} \left(2 \frac{1}{k} \right)^{1/2}
$$

z

п

For any case other than F = G which leaves $\tan \left(kL_z /2 \right)$ = κ / k but not $-\cot \bigl(kL_z \, / \, 2 \bigr)$ = κ / k or F $=-G$ which leaves $-\cot \bigl(kL_{_Z^{\vphantom{I}}}/\,2 \bigr)$ $=\kappa$ / k but not $\tan \left(kL_z /2 \right)$ = κ / k then the solutions $\tan \bigl(kL_z \, / \, 2 \bigr)$ = κ / k and $-\cot\bigl(kL_z\,/\,2\bigr)$ $=\kappa\,/\,k$ $V_{_o}$ $\pmb{\mathcal{K}}$ $\pmb{\mathcal{K}}$ $=$ $\cal K$

are contradictory

So the only possibilities are

 $1 - F = G$ and $\tan(kL_z/2) = \kappa/k$

 $2 - F = -G$ and $-\cot(kL_z/2) = \kappa/k$

1 - $F = -G$ and $-\cot(kL_z/2) = \kappa/k$ Note from $2BC_L = (F+G)X_L$ $2BS_L = \frac{\kappa}{k} (F+G) X_L$ and $S₁$ and $C₁$ cannot both be 0 so $B=0$ Hence in the well we have $\psi(z) \propto \sin kz$ which is an odd function

Though we have found the nature of the solutionswe have not yet formally solved for the eigenenergies *E*

and hence for k and κ We do this by solving $\tan \left(kL_z / 2 \right) = \kappa / k$ $\boldsymbol{\mathcal{K}}$

and

$$
-\cot(kL_z/2) = \kappa/k
$$

Solving for the eigenenergies

Change to "dimensionless" units Use the energy of the first level in the "infinite" potential well width $L_{\rm z}$ leading to a dimensionless eigenenergy and a dimensionless barrier height Also

$$
E_1^{\infty} = \frac{\hbar^2}{2m} \left(\frac{\pi}{L_z} \right)^2
$$

$$
\varepsilon \equiv E / E_1^\infty
$$

$$
v_o \equiv V_o / E_1^{\infty}
$$

$$
k = \sqrt{2mE/\hbar^2} = (\pi/L_z)\sqrt{E/E_1^{\infty}} = (\pi/L_z)\sqrt{\varepsilon}
$$

$$
\kappa = \sqrt{2m(V_o - E)/\hbar^2} = (\pi/L_z)\sqrt{(V_o - E)/E_1^{\infty}} = (\pi/L_z)\sqrt{V_o - \varepsilon}
$$

Solving for the eigenenergies

Consequently
$$
\frac{\kappa}{k} = \sqrt{\frac{V_o - E}{E}} = \sqrt{\frac{v_o - \varepsilon}{\varepsilon}}
$$

\n $\frac{kL_z}{2} = \frac{\pi}{2} \sqrt{\frac{E}{E_i^{\infty}}} = \frac{\pi}{2} \sqrt{\varepsilon}$ and $\frac{\kappa L_z}{2} = \frac{\pi}{2} \sqrt{\frac{V_o - E}{E_i^{\infty}}} = \frac{\pi}{2} \sqrt{v_o - \varepsilon}$
\nSo $\tan(kL_z/2) = \kappa/k$ becomes $\tan[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)/\varepsilon}$
\nor $\sqrt{\varepsilon} \tan[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)}$
\nand $-\cot(kL_z/2) = \kappa/k$ becomes $-\cot[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)/\varepsilon}$
\nor $-\sqrt{\varepsilon} \cot[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)}$

Choose a specific well depth $\nu_{_O}$ and plot the curve $\left(v_{o}-\varepsilon\right)$ $v_{\circ}-\varepsilon$

Choose a specific well depth $\nu_{_O}$ and plot the curve $\left(v_{o}-\varepsilon\right)$ $v_{\circ}-\varepsilon$

Choose a specific well depth $\nu_{_O}$ and plot the curve $\left(v_{o}-\varepsilon\right)$ $v_{\circ}-\varepsilon$

Now add the curves

Choose a specific well depth $\nu_{_O}$ and plot the curve $\left(v_{o}-\varepsilon\right)$ $v_{\circ}-\varepsilon$

Now add the curves

$$
\sqrt{\varepsilon} \tan\left(\frac{\pi}{2}\sqrt{\varepsilon}\right) -
$$

Choose a specific well depth $\nu_{_O}$ and plot the curve $\left(v_{o}-\varepsilon\right)$ $v_{\circ}-\varepsilon$

Now add the curves

$$
\sqrt{\varepsilon} \tan\left(\frac{\pi}{2}\sqrt{\varepsilon}\right) - \sqrt{\varepsilon} \cot\left(\frac{\pi}{2}\sqrt{\varepsilon}\right) - \sqrt{\varepsilon} \cot\left(\frac{\pi}{2}\sqrt{\varepsilon}\right)
$$

For a specific v_{o} the solutions are the values of ε at the intersections of

$$
\sqrt{\left(v_{o}-\varepsilon\right)}
$$

and $\sqrt{\varepsilon} \tan \left(\frac{\pi}{2} \sqrt{\varepsilon} \right)$
 $-\sqrt{\varepsilon} \cot \left(\frac{\pi}{2} \sqrt{\varepsilon} \right)$ or

Solutions

These are the solutions for a well depth V_o of $8E_1^{\infty}$ Note that they are all lower energies than the corresponding solutions for the infinitely deep well of the same width

 $n = 3$

7 Finite well and harmonic oscillator

Slides: Lecture 7c The harmonic oscillator

Text reference: Quantum Mechanics for Scientists and Engineers

Section 2.10

Quantum Mechanics for Scientists and Engineers

Particles in potential wells

The harmonic oscillator

Quantum mechanics for scientists and engineers **David Miller**

A simple spring will have a restoring force *F* acting on the mass *M*

A simple spring will have a restoring force *F* acting on the mass *M* proportional to the amount *^y* by which it is stretched

For some "spring constant" *K*

$$
F = -Ky
$$

The minus sign is because this is "restoring"

it is trying to pull *^y* back towards zero This gives a "simple harmonic oscillator"

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

From Newton's second law

$$
F = Ma = M \frac{d^2 y}{dt^2} = -Ky
$$

i.e.,
$$
\frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y
$$

Potential energy

2

2

With this potential energy the Schrödinger equation is $\bigl(z \bigr)$ 1 $1 \cdot 2$ 2 2 $V(z) = -m\omega^2 z$

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + \frac{1}{2}m\omega^2 z^2 \psi = E\psi
$$

For convenience, we define a dimensionless distance unit *m z* $\xi = \sqrt{\frac{m\omega}{\hbar}}$

so the Schrödinger equation becomes

$$
\frac{1}{2}\frac{d^2\psi}{d\xi^2} - \frac{\xi^2}{2}\psi = -\frac{E}{\hbar\omega}\psi
$$

One specific solution to this equation

$$
\frac{1}{2}\frac{d^2\psi}{d\xi^2} - \frac{\xi^2}{2}\psi = -\frac{E}{\hbar\omega}\psi
$$

$$
\psi \propto \exp(-\xi^2/2)
$$

is

with a corresponding energy E = $\hbar\omega$ / 2 This suggests we look for solutions of the form where $H_{_n}(\xi)$ is some set of functions still to be determined $\psi_n(\xi) = A_n \exp \left(-\xi^2/2\right) H_n(\xi)$

Substituting $\psi_n(\xi) = A_n \exp(-\xi^2/2) H_n(\xi)$ into the Schrödinger equation gives $\frac{1}{2}\frac{d^2\psi}{d\xi^2} - \frac{\xi^2}{2}\psi = -\frac{E}{\hbar\omega}\psi$ $\frac{d^2H_n(\xi)}{d\xi^2}-2\xi\frac{dH_n(\xi)}{d\xi}+\left(\frac{2E}{\hbar\omega}-1\right)H_n(\xi)=0$ This is the defining differential equation for the Hermite polynomials

The allowed energy levels are equally spaced separated by an amount $\hbar\omega$ where ω is the classical oscillation frequency Like the potential well there is a "zero point energy" here $\hbar \omega$ / 2

$$
E_n = \left(n + \frac{1}{2}\right) \hbar \omega
$$

$$
n = 0, 1, 2, ...
$$

Hermite polynomials

The first Hermite polynomials are Note they are either odd or eveni.e., they have a definite parity They satisfy a "recurrence relation" successive Hermite polynomials can be calculated from the previous two $H_n(\xi) = 2\xi H_{n-1}(\xi) - 2(n-1)H_{n-2}(\xi)$ $H_4(\xi) = 16\xi^4 - 48\xi^2 + 1$

$$
H_0 = 1
$$

\n
$$
H_1(\xi) = 2\xi
$$

\n
$$
H_2(\xi) = 4\xi^2 - 2
$$

\n
$$
H_3(\xi) = 8\xi^3 - 12\xi
$$

\n
$$
H_4(\xi) = 16\xi^4 - 48\xi^2 + 12
$$

Harmonic oscillator solutions

 $\psi_n(\xi) = A_n \exp\left(-\xi^2/2\right) H_n(\xi)$ Normalizing $A_n = \sqrt{\frac{1}{\sqrt{\pi} 2^n n!}}$ $\xi = \sqrt{\frac{m\omega}{\hbar} z}$ gives $E_n = \left(n + \frac{1}{2}\right) \hbar \omega$ $n = 0, 1, 2, ...$

Harmonic oscillator solutions

Harmonic oscillator eigensolutions

$$
A_{4} \exp\left(-\xi^{2}/2\right) \left(16\xi^{4} - 48\xi^{2} + 12\right)
$$

\n
$$
A_{3} \exp\left(-\xi^{2}/2\right) \left(8\xi^{3} - 12\xi\right)
$$

\n
$$
A_{2} \exp\left(-\xi^{2}/2\right) \left(4\xi^{2} - 2\right)
$$

\n
$$
A_{1} \exp\left(-\xi^{2}/2\right) \left(2\xi\right)
$$

\n
$$
A_{0} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{1} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{2} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{3} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{4} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{5} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{6} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{7} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{8} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{9} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{1} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{2} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{3} \exp\left(-\xi^{2}/2\right)
$$

\n
$$
A_{4} \exp\left(-\xi^{2}/2\right)
$$

\n<

Classical turning points

The intersections of the parabola and the dashed linesgive the "classical turning points" where a classical mass of that energy turns round and goes back downhill

