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Particle in a finite potential well

We will choose the height of 
the potential barriers as Vo
with 0 potential energy at the 

bottom of the well
The thickness of the well is Lz

Now we will choose the 
position origin in the center 
of the well
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Particle in a finite potential well

If there is an eigenenergy E for 
which there is a solution
then we already know what 

form the solution has to 
take
sinusoidal in the middle
exponentially decaying on 
either side
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Particle in a finite potential well

For some eigenenergy E
with                      
and   

for 

for

for             

with constants A, B, F, and G

oV

0
0/ 2zL / 2zL z

/ 2zz L 
   expz G z 

/ 2 / 2z zL z L  
  sin cosz A kz B kz  

/ 2zz L
   expz F z  

22 /k mE 
  22 /om V E   



Particle in a finite potential well

Now we need to apply the 
boundary conditions to solve 
for the unknown coefficients
constants A, B, F, and G

or at least three of them
the fourth could be found 
by normalization
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Particle in a finite potential well

From continuity of the 
wavefunction at

Writing

gives
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Particle in a finite potential well

Similarly at

Continuity of the derivative 
gives
at

at  
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Particle in a finite potential well

So we have four relations

Now we need to find what 
solutions are compatible with 
these
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Particle in a finite potential well

Adding

gives

Subtracting

from

gives
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Particle in a finite potential well

As long as
we can divide

by 

to obtain

This relation is effectively a 
condition for eigenvalues
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Particle in a finite potential well

Subtracting
from 
gives

Adding

and

gives
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Particle in a finite potential well

Similarly, as long as
we can divide

by 

to obtain

This relation is also effectively a 
condition for eigenvalues
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Particle in a finite potential well

For any case other than
which leaves                    

but not
or

which leaves
but not

then the solutions                        
and 
are contradictory
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Particle in a finite potential well

So the only possibilities are

1 -
and

2 –
and   
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Particle in a finite potential well

1 -
and

Note from

and

SL and CL cannot both be 0
so

Hence in the well we have 

which is an even function
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Particle in a finite potential well

1 -
and

Note from

and

SL and CL cannot both be 0
so

Hence in the well we have 

which is an odd function
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Particle in a finite potential well

Though we have found the 
nature of the solutions
we have not yet formally 

solved for the eigenenergies
E
and hence for k and 

We do this by solving

and
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Solving for the eigenenergies

Change to “dimensionless” units
Use the energy of the first level in the 

“infinite” potential well width Lz
leading to a dimensionless 

eigenenergy
and a dimensionless barrier height

Also 
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Consequently

and 

So                              becomes

or

and                               becomes
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Graphical solution

Choose a specific well 
depth 
and plot the curve
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Graphical solution

Choose a specific well 
depth 
and plot the curve
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Graphical solution

Choose a specific well 
depth 
and plot the curve
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Graphical solution

Choose a specific well 
depth 
and plot the curve

Now add the curves
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Graphical solution

Choose a specific well 
depth 
and plot the curve

Now add the curves
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Graphical solution

Choose a specific well 
depth 
and plot the curve

Now add the curves
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Graphical solution

For a specific 
the solutions are the values 

of  at the intersections of

and

or
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Solutions 

These are the solutions for a 
well depth Vo of
Note that 

they are all 
lower energies 

than the corresponding 
solutions for the infinitely 
deep well of the same 
width 
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Particles in potential wells

The harmonic oscillator

Quantum mechanics for scientists and engineers David Miller



Mass on a spring

A simple spring will have a restoring 
force F acting on the mass M

S

Mass M



S

Mass on a spring

A simple spring will have a restoring 
force F acting on the mass M
proportional to the amount y by which 

it is stretched
For some “spring constant” K

The minus sign is because this is 
“restoring”
it is trying to pull y back towards zero

This gives a “simple harmonic oscillator”

F Ky 

y

Mass M
Force F



Mass on a spring

From Newton’s second law

i.e.,

where we define
we have oscillatory solutions of 
angular frequency
e.g.,  S
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Mass on a spring

From Newton’s second law

i.e.,

where we define
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Potential energy

The potential from the restoring force F is 
S

z

Mass m
Force F
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Harmonic oscillator Schrödinger equation

With this potential energy
the Schrödinger equation is

For convenience, we define a dimensionless 
distance unit

so the Schrödinger equation becomes
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Harmonic oscillator Schrödinger equation

One specific solution to this equation

is

with a corresponding energy 
This suggests we look for solutions of the form

where            is some set of functions still to 
be determined
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Harmonic oscillator Schrödinger equation

Substituting
into the Schrödinger equation 

gives

This is the defining differential equation 
for the Hermite polynomials
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Harmonic oscillator Schrödinger equation

Solutions to 

exist provided

that is, 
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Harmonic oscillator Schrödinger equation

The allowed energy levels are equally spaced 
separated by an amount

where  is the classical oscillation frequency 
Like the potential well

there is a “zero point energy” 
here



/ 2

1
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Hermite polynomials

The first Hermite polynomials are
Note they are either 

odd or even
i.e., they have a definite parity

They satisfy a “recurrence relation”

successive Hermite polynomials
can be calculated from the 
previous two
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Harmonic oscillator solutions

Normalizing 

gives
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Harmonic oscillator solutions

Normalizing 

gives

or
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Harmonic oscillator eigensolutions
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Classical turning points

The intersections of 
the parabola 

and 
the dashed lines

give the “classical 
turning points”

where a classical 
mass of that energy 
turns round and 
goes back downhill
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