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Abstract: We show that self-configuring optical networks can analyze partially incoherent 
light. We consider the case of N spatial input channels and present a power-optimization 
method to measure their coherency matrix. 

In optics and photonics, partially coherent light is the norm rather than the exception and accounts for emission
processes in LEDs, thermal emitters, photovoltaics, luminescent and scintillating materials, as well as natural light
for sensing the environment. The most general way to describe it is through its coherency matrix ρ [1, 2], which
can characterize such partial coherence over arbitrary channels of the system, e.g., spatial, temporal, spectral,
or polarization degrees of freedom. Methods to reconstruct ρ for a few polarization-spatial channels have been
demonstrated via projective measurements [3]. Despite the ubiquity of partial coherence in optical phenomena,
there is no general, scalable method to measure ρ , nor to decompose it into its mutually incoherent parts.
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Fig. 1: Processing partially coherent light with arrays of self-configuring Mach-
Zehnder interferometers. a. An incident wavefront of partially coherent waves (de-
scribed by coherency matrix ρ) is sent through a triangular array of Mach-Zehnder in-
terferometers (MZI). Each node of the array is a 2× 2 MZI encoding a SU(2) matrix.
A sequential power optimization diagonalizes the coherency matrix ρ , resulting in un-
correlated output signals. b. Example input and output coherency matrices, the latter
resulting from the sequential power optimization. c. The power optimization routine se-
quentially maximizes the power at each output channel (with channel index i from 0 to
N −1), mapping each output sequentially to the corresponding coherency matrix eigen-
value (λi). Inset: Matrix product showing that UMZI learns U† (up to a diagonal matrix
of phases). d. Resulting fidelity over power optimization iteration.

Meshes of Mach-Zehnder
interferometers (MZI) have
proven very effective at manip-
ulating [4] and measuring [5]
coherent multi-mode light.
Now, we propose that these
self-configuring meshes can
measure the full coherency
matrix of partially coherent
light, additionally separating
it into its mutually incoherent
orthogonal components.

Our method performs se-
quential power optimization
over the N output channels
of a self-configuring network,
thereby learning the matrix
eigenvectors, which can then be
deduced directly from the re-
sulting settings of the network
elements. The corresponding
eigenvalues can be measured
by reading out the average
values of the output intensities.
In this process, the mesh network has also separated the incoming light into its mutually incoherent orthogonal
components, and the unitary network is then also implementing the linear transform that diagonalizes the
coherency matrix, effectively measuring this matrix. Our method therefore paves the way to full characterization
and processing of partially coherent light.

We consider N “channels” of input light, whose amplitudes are denoted by a N-dimensional vector x. These
channels can describe spatial, polarization, or even spectral modes of light xi with partial coherence described
by the coherency matrix ρ [1], such that ρi j = ⟨xix∗j⟩, where ⟨·⟩ denotes ensemble averaging. The matrix ρ is
Hermitian and non-negative, so can be written as ρ = UDU†, where U is a unitary matrix, and D is a diagonal
matrix of eigenvalues λi ≥ 0. Characterizing ρ entails measuring the unitary operator U and the eigenvalues λi.

A linear operation UMZI on these channels transforms the coherency matrix as : ρ ′ = UMZIρU†
MZI [2] (where

ρ ′ = ⟨yy†⟩ and y =UMZIx is the network output). In the following, we consider linear transformations imparted by
self-configuring networks of MZIs [6], such as the triangular network shown in Fig. 1a [7]. It is known that such
networks can implement arbitrary linear transformations between inputs and outputs by automatically “learning”
the corresponding singular value decomposition [6]. Each node of the network acts on two neighboring channels
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only and imparts a reconfigurable SU(2) matrix with parameters (θ ,ϕ).
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Fig. 2: Analyzer circuit design. The analyzer net-
work consists in a single layer of nodes that can
be configured in either one of three gates: identity,
swap, and Hadamard gates (mixing). The output
signals are then analyzed via balanced homodyne
measurements.

We devised a sequential power optimization algorithm that per-
forms diagonalization of the coherency matrix ρ for a given set
of inputs xi. Each step of the algorithm consists in the maximiza-
tion of the time-averaged power at one of the output ports (from
k = N − 1 to 1, with the convention of Fig. 1a). At step k, the
network optimization is the following:

max
(θ ,ϕ)∈Sk

⟨yky∗k⟩= λk,

where λk is the k-th largest eigenvalue (ordered such that λ0 <
.. . < λN−1), and Sk is the k-th diagonal of MZI nodes. For illus-
trative purposes, each node of the network in the 4-channel ex-
ample of Fig. 1a is labelled with the corresponding output port
optimization (with S3 shown in orange, S2 in purple, and S1 in
green, respectively). This algorithm is a direct consequence of the
min-max or Courant-Fischer theorem for Hermitian matrices.

One key for this algorithm is that the MZI network should consist of multiple self-configuring layers or rows [5,
6]. Then we can optimize the mesh settings sequentially for one row of MZIs at a a time, the relative power at
output node k gives λk, and the unitary network “diagonalizes” the coherency matrix ρ (see Fig. 1b), such that
UMZI =U†. So, reading out the network parameters and output powers fully characterizes the coherency matrix.

We demonstrate the validity of our approach with numerical experiments in Fig. 1c-d with a 10-channel partially
incoherent input. The input fields x are parametrized as a 10-dimensional vector of random variables described
by covariance matrix ρ . As the power optimization is carried out, each channel’s output power gives the corre-
sponding eigenvalue of ρ (in our example, the condition number of ρ is λ9/λ0 = 1.3× 103). The corresponding
fidelity F = ⟨|UMZIU |, Id⟩HS (where ⟨·⟩HS is the Hilbert-Schmidt dot product) increases throughout the power
optimization and reaches values > 0.99. In our numerical implementation, gradients of the time-averaged output
powers were calculated using automatic differentiation and optimized with stochastic gradient descent [8]. In ex-
perimental implementations, various gradient calculation or measurement techniques could be used, such as in
situ back-propagation [9] or dithering [4].

Once configured, the fields in different output channels of this network should be mutually incoherent; if we
then attempt to interfere each pair of outputs, we should see no interference between them as the relative phase
of those outputs is varied. To test such mutual incoherence, one can use an additional output analyzer layer of
MZIs, as in Fig. 2, after the coherency diagonalization circuit UMZI =U†. To interfere any two outputs, the MZI
nodes can be appropriately configured as (1) identity; (2) swap; (3) or mix (i.e., 50:50 splitter, as in Hadamard
gates), shown in Fig. 2, onto an output photodetector. Scanning the relative input phase using the analyzer input
phase shifters should then produce no interference fringes, which is equivalent to performing balanced homodyne
measurements, yielding a zero-mean power ⟨yiy

†
j⟩= 0.

In conclusion, we have shown that self-configuring photonic networks, such as triangular arrays of MZIs, can
automatically learn and measure the coherency matrix of an input wave across N channels. We envision that this
method could process and analyze the coherency of light and matter in partially coherent light emission processes
and sensing.
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