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Finding and counting channels with waves

We need to count and find the spatial channels with 
waves from “sources” to “receivers”

For optical communications
For wireless communications
For sensing
For thermal physics
For quantum physics
For designing nanophotonic and metasurface 

structures
For understanding what we mean by “diffraction” 

when we are working with “volumes”, not just 
“surfaces”
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To understand orthogonal channels in optics
think of the mapping from source space to receiving space

as some linear operator or Green’s function G
Then we can use singular value decomposition (SVD) 

to find the orthogonal channels
“communication modes”

the orthogonal source functions that couple one by one 
to orthogonal received waves

Communication modes

Source or input 
volume or space

Receiving or output 
volume or spaceSψ Rφ

HS HR

VS VR

Free-space 
propagation, object 

or scatterer

G
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Finding and counting channels with waves

More generally
as a fundamental optical question

How many usable channels are there between 
some source volume and some receiving 
volume?

This is a non-trivial question
because the sets of functions themselves may be 

mathematically infinite
Does this question have a meaningful and general 

answer 
and some clear physical insight?
Yes!



How many waves can get out of a 
volume?
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How many waves can get out of a volume?

Suppose we have some arbitrary 
volume
which could contain 
some optical source
or some set of antenna elements

Can we deduce just how many 
waves or channels
can effectively get out of it
propagating into the far field
e.g., to a distant spherical shell?

volume

distant 
spherical 

shell



We return to the the singular-value 
decomposition of the coupling operator GSR

giving orthogonal source functions         
that couple, one by one, to orthogonal 

received waves
with some coupling strength sj

These pairs of functions         and 
are the “communication modes”

 

The rigorous approach to channels between volumes

Source or 
input volume 
VS or space HS

Receiving or 
output volume 
VR or space HR

Sψ RφSRG
HS HR

VS VR

Sjψ

Rjφ
“Waves, modes, communications 
and optics,” Adv. Opt. Photon. 11, 

679-825 (2019)

Source 
volume

Receiving 
volume

Sjψ Rjφ
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A paraxial example

Suppose we have a line of sources and a line of receiver points
here in an approximately “paraxial” set of dimensions

and we establish the communication modes between them 
The picture shows the cross-section of the intensity in the plane

here for the most strongly coupled mode 
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Paraxial heuristic number and paraxial degeneracy

Once we pass the number we expect from conventional “diffraction limits”
coupling strengths for further communication modes

fall off drastically and somewhat exponentially
 We might think this is because the waves “miss” the receiving space

but that is not the general explanation
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Paraxial 
heuristic 
number

Paraxial heuristic 
number

NH ~ WSWR/λL
for source and 

receiver widths 
WS, WR

separation L 
wavelength λ

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


Concentric spherical shell source and receiver spaces
are not easily analyzed by conventional “diffraction limit” theories

and do not show “paraxial degeneracy”
and the waves from the source space cannot “miss” the receiving space

but we still get some characteristic number of well-coupled 
communication modes

and a quasi-exponential fall-off of coupling beyond that
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3D examples – concentric spherical shells
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Why the abrupt fall-off past some number

Why do we always see
regardless of the shape of the source and receiving volumes or 

surfaces
some number of “well coupled” channels

followed by an abrupt, quasi-exponential fall-off past this 
number

and just what gives this number?
We might argue this is just “diffraction”

though that does not explain the concentric spheres case
where the waves cannot “miss” the receiving volume

Is there some underlying piece of physics we are missing? 
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bounding 
spherical 
surface

Waves from arbitrary volumes

How can we count the maximum number of well 
coupled waves (at a given frequency)
from some finite volume?

Our approach
Surround the volume with a mathematical 
“bounding” spherical surface
Count the number of well-coupled waves 
possible from this spherical surface
which then becomes the upper bound for 
waves from the source volume

source 
volume or 

object

outgoing 
radiation from 

spherical 
surface

D. A. B. Miller, Z. Kuang, O. D. Miller, 
“Tunneling escape of waves,” 
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Waves from arbitrary volumes

We show that, for spherical waves
with one key mathematical trick

there is a very simple and physical result
Beyond a certain simple threshold of “complexity” 
of spherical waves
they must “tunnel” to escape

Because the fall-off from tunneling is generally so 
rapid
this threshold effectively tells us the maximum 
number of well-coupled waves
and explains the quasi-exponential fall-off

source 
volume or 

object

bounding 
spherical 
surface

outgoing 
radiation from 

spherical 
surface
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Waves in spherical coordinates

In spherical coordinates r, θ, and φ
the solution to the wave equation separates to

where zn(kr) is one of the spherical Bessel 
functions of order n, and
Ynm(θ,φ) is a spherical harmonic

Here m and n are integers with
  n = 0,1,2,… and 
So, if we know the largest n for waves to 
propagate without tunneling
we can easily add up the total number of waves 
up to and including that n 
2n +1 for each n

φ

θ

x

y

z

r
(r, θ, φ)

r̂
φ̂

θ̂

( ) ( ) ( ),nm n nmU z kr Y θ φ=r

n m n− ≤ ≤



Spherical harmonics

Spherical harmonics are functions of angle only, and can be plotted on a 
spherical surface

They have n nodal circles altogether, with |m| through the poles (in their real 
form)

n=1  m=0 n=1  m=1 n=3  m=2 n=4  m=2

n=8  m=4 n=6  m=0 n=6  m=6 n=20  m=10



Escape radius

Specifically, for a given “order” n of 
spherical wave
there is an “escape radius”

So, if the radius ro of the spherical 
surface of interest 
is smaller than the escape radius 
for some order n of spherical wave
a wave with this n must tunnel 
until it reaches the escape radius
after which it can propagate

escape 
radius

tunneling 
region

propagating 
region

wave on spherical 
surface

D. A. B. Miller, Z. Kuang, O. D. Miller, 
“Tunneling escape of waves,” 
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Spherical Bessel functions and equation

Spherical Bessel functions obey

Classic radial standing wave solutions are
jn which grows quasi-exponentially for small radii

and is quasi-oscillatory for larger radii 
yn which is singular at the origin

decaying quasi-exponentially for small radii
becoming quasi-oscillatory at large radii

Physically, ρ here is the dimensionless radius
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Taking out the 1/radius dependence

Since the spherical Bessel functions have an 
underlying 1/radius dependence at large radius

as appropriate for what are ultimately 
spherically expanding waves

it could be useful to remove that dependence
multiplying by radius

which gives functions corresponding to power 
per unit solid angle 
rather than power per unit area

So, we recast in terms of such functions
known as Riccati-Bessel functions
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Riccati-Bessel equation

Given that the spherical Bessel functions satisfy

then we can easily check that all the Riccati-Bessel 
functions satisfy

We can rearrange that to

( ) ( ) ( )( ) ( )
2

2 2
2 2 1 0n n

n

d z dz
n n z

d d
ρ ρ

ρ ρ ρ ρ
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Riccati-Bessel “Schrödinger” equation

But wait!!!!!! 

is in the form of a Schrödinger equation 

                                             

with effective radial potential

and the same “eigenenergy” En=1 for all n
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Tunneling escape and escape radius

With the equation

if the “potential energy” exceeds the “total energy”, i.e., if

                                    or, equivalently 

the wave will be tunneling rather than propagating

So, for each n, there is an “escape radius”

or, equivalently, in dimensioned form
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Both plane and spherical waves start with 
the same tunneling barrier height
and hence the same initial decay
but the falling barrier height for the 
spherical wave
means it eventually escapes
to being a propagating wave

Note all such spherical waves 
eventually escape to some degree

though the evanescent plane wave
never does
This is an artifact of the “infinite” 
extent of the plane wave

escape 
radius

tunneling 
region

propagating 
region

evanescent 
decay 

(tunneling)

portion of plane 
wave on infinite 

plane surface

wave on 
spherical surface

tunneling 
region

propagating 
region

escape 
radius

distance from plane 
(wavelengths)

distance from sphere 
surface (wavelengths)

tunneling 
barrier height

tunneling 
barrier height

wave

wavex

y
z

Evanescent and spherical escaping waves



Outward wave propagation

As time progresses
the wave beyond the escape radius
propagates outwards

We plot the outward Riccati-Bessel wave
as a function of time

technically the real part of

normalized to unit amplitude at the 
sphere edge

for a sphere of radius 2.9 wavelengths
with n = 22
which has an escape radius of 
3.58 wavelengths

( ) ( )2 expn r i tξ π ω−

ro = 2.9    n = 22    rescn = 3.58



Outward wave propagation

As time progresses
the wave beyond the escape radius
propagates outwards

We plot the outward Riccati-Bessel wave
as a function of time

technically the real part of

normalized to unit amplitude at the 
sphere edge

for a sphere of radius 2.9 wavelengths
with n = 22
which has an escape radius of 
3.58 wavelengths
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Spherical heuristic number

The threshold for tunneling is easy 
to characterize
and gives a simple answer for the 
number of waves that do not need 
to tunnel
This is well approximated by the 
spherical heuristic number

where AS is the sphere area
so one “propagating” wave for 
every           of surface area 
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Defining the diffraction limit

We can now construct a precise definition of 
the “diffraction limit”

For a wave interacting with a volume 
the wave passes the diffraction limit 

if any spherical component of the wave must 
tunnel to enter or leave the bounding 
spherical surface enclosing the volume 



Electromagnetic spherical outgoing waves

These have two transverse forms, separable in radial and angular parts
with the radial parts being the same as for the scalar case, so with

the same spherical/Riccati-Bessel tunneling and propagating behavior 
and the angular part being a vector spherical harmonic function

giving “transverse electric” (TE) and “transverse magnetic” (TM) sets of waves 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , ,TE n
nm n mn mn
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r i h kr i

kr
ξµ µθ φ θ φ θ φ

ε ε
= ≡E C C
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nm n mn mn
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r i h kr i

kr
ξ

θ φ θ φ θ φ= ≡H C C
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No n=0 electromagnetic outgoing waves
Note, because Cmn is a derivative of a spherical harmonic

and the spherical harmonic for n = 0 is uniform
there is no n = 0 wave in electromagnetism 

If the first outgoing electromagnetic waves
(so, for n = 1)

are not to require tunneling to escape
the bounding spherical volume must be at least

in radius or, equivalently, in diameter

(consistent with the well-known Chu limit on antenna Q)

(Note: The escape radius for n = 0 acoustic waves is, however, zero
so, there is always one acoustic wave that can escape without tunneling

no matter how small the emitter or microphone)

( )1 / 2 0.225esc o or λ π λ= 

2 / 0.45o od λ π λ= 



Perfect cloaking - An optical “white hole”?

In this “white hole”, incoming light
appears to be mostly “sucked” into 
the “white hole” in the middle
The phase fronts all “fall” rapidly 
into the “white hole”

and then the light is regenerated
The phase fronts rapidly re-
emerge from the “white hole”

How do we make this optical “white 
hole”?
Note: it may be simpler than you 
think



Perfect cloacking - An optical “white hole”?

So, what does it take to build this cloak?
Absolutely nothing
at least for this wave

If the wave is too complicated
i.e., if it is trying to violate the “diffraction 
limit”
it can’t even effectively get into the volume
and it “reflects off free space”

This is the “inward wave” version of the 
tunneling escape
with the wave trying to tunnel to get in

Interestingly
the pulse actually looks as if it propagates 
right through!



Perfect cloaking?

It appears to move right through 
the volume at a constant speed

Watch the blue dot, which propagates at 
the usual “phase velocity” of the wave



Conclusions
There is a unified way of thinking about waves

based on waves from a spherical surface
from the propagating and evanescent fields of 

large optics 
to the multipole expansions of antennas and 

nanophotonics 
This approach gives a clear intuition

based on the onset of spherical wave tunneling 
that

 explains how many waves can easily get in 
or out of a volume
and why the fall-off is so abrupt past this 

number
 gives a rigorous and precise diffraction limit 

definition
 can also derive previous heuristic results

D. A. B. Miller, Z. Kuang, O. D. Miller, 
“Tunneling escape of waves,” 

http://arxiv.org/abs/2311.02744 
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