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Optics à la mode
served with ice cream?

No!
in the most modern style or fashion?

Sort of …
Noting too that fashions change

so our “optics à la mode” would have 
to be able to change to suit the 
“fashion”

programmable optics
and even self-configuring optics!

a pun on the word “mode”
Yes! 

Optics à la mode?
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Optical components

Classic optics
rays, imaging, plane 
waves

basic spectroscopy

Lasers and optical fiber 
communications
add “modes” 

lens mirror prism grating

resonator
fiber



New optical circuits

This silicon photonics circuit
is also a piece of optics
 with an array of fibers as its input
 and an array of fibers as its output
 and the ability to arbitrarily define 

the relation between input and 
output

How do we think about this as optics?
Is there a broader approach that 
includes this as well as existing optics
and gives us new insights and tools?

Sunil Pai et 
al., Stanford



Universal matrix multiplier chip

Universal matrix multiplying chip
“4x4” unitary Mach-Zehnder mesh with 
 a “generator” to create any 

complex input vector
 an “analyzer” to measure the 

complex output vector
This can be programmed to implement 
any “unitary” (loss-less) transformation 
from the inputs to the outputs



Matrix unit

Vector generator Vector analyzer

Mask layout and block diagram



Universal matrix multiplier chip

Full complex matrix multiplication
with vector generation and vector analysis

Photonic back-propagation neural net training

Digital matrix multiplication for cryptography

S. Pai, Z. Sun, T. W. Hughes, T. Park, B. Bartlett, I. A. D. 
Williamson, M. Minkov, M. Milanizadeh, N. Abebe, F. 
Morichetti, A Melloni, S. Fan, O. Solgaard, D. A. B. 
Miller, "Experimentally realized in situ 
backpropagation for deep learning in photonic neural 
networks," Science 380, 398-404 (2023)

S. Pai, T. Park, M. Ball, B. Penkovsky, M. Dubrovsky, N. 
Abebe, M. Milanizadeh, F. Morichetti, A. Melloni, S. 
Fan, O. Solgaard, and D. A. B. Miller, "Experimental 
evaluation of digitally verifiable photonic computing 
for blockchain and cryptocurrency," Optica 10, 552-
560 (2023) 

https://www.science.org/doi/10.1126/science.ade8450
https://www.science.org/doi/10.1126/science.ade8450
https://www.science.org/doi/10.1126/science.ade8450
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2023/04/J291.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2023/04/J291.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2023/04/J291.pdf


Self-configuring beam separator

A. Annoni et al., 
“Unscrambling light –
automatically undoing 
strong mixing between 
modes,” Light Science & 
Applications 6, e17110 
(2017) 

See, e.g., review W. Bogaerts et al., “Programmable 
photonic circuits,” Nature 586, 207 (2020)

Light from four input fibers
deliberately mixed in a mode mixer

are automatically separated out again by a mesh of interferometers
by sequential power maximizations

without calculations

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J282.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J282.pdf


Truly arbitrary linear optics
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Simple optical components – a mirror

We “design” a plane mirror
by choosing its angle

so it takes a beam of one angle
and changes it into a beam of 

another angle
For another beam at another angle

the mirror changes it to a beam of yet 
another angle

but we have no independent control 
over what happens for the second 

beam



Simple optical components – a lens

We design a lens
by choosing its index and curvatures

so it takes a plane wave in one 
direction

and focuses it to a spot
For another plane wave in another direction

the lens focuses it to another spot
but we have no independent control 

over what happens for the second 
beam



Simple “thin” optical components
This kind of behavior is general for “thin” optical components 

e.g., thin holograms, diffractive optical elements
spatial light modulators, adaptive optics,
metasurfaces

We design them to perform some useful function for one 
input beam

but we have no independent control 
of what happens for other beams

So these are not “arbitrary” optical components



Example - Separating overlapping beams

Suppose we have two different 
(orthogonal) beams

 e.g., from an optical fiber
such as 

a “single bump” beam

and 
a “two bump” beam

fieldintensity



Example - Separating overlapping beams

Mathematically, 
two (non-zero) beams are 
“orthogonal” if

Here, the product of the 
single-bump beam and the 
two-bump beam
would be negative in the top 
half

but positive in the bottom half
so the resulting integral 
would be zero

fieldintensity

( ) ( )1 2, , 0x y x y dxdy∗ ⋅ =∫∫E E

x
y E1

x
y E2



Example - Separating overlapping beams

If both of these beams emerge simultaneously from the fiber
how can we separate them 

for example to different fibers
without loss?

“loss-less” 
mode 

separator
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for example to different fibers
without loss?

“loss-less” 
mode 

separator



If both of these beams emerge simultaneously from the fiber
how can we separate them 

for example to different fibers
without loss?

Example - Separating overlapping beams

“loss-less” 
mode 

separator
+ =



In situations with
fixed
highly symmetric beams

good specific low-loss separation solutions are known

But for general cases
of lower symmetry and/or higher complexity

or where the beams change in time
general solutions have not been known

Example - Separating overlapping beams

“loss-less” 
mode 

separator
+ =



Dividing the beam into “patches”

We can approach the beam-separation problem
by presuming it will be good enough 

to imagine that we can divide the beam 
into a finite number of “patches”



Dividing the beam into “patches”

We can approach the beam-separation problem
by presuming it will be good enough 

to imagine that we can divide the beam 
into a finite number of “patches”

We treat each of these patches
as if it was approximately uniform

in intensity and 
in phase

At least with a sufficiently large number of 
patches

this could be a good enough approximation
and “sampling loss” may be small



Dividing the beam into “patches”

Even relatively small numbers of 
patches

are sufficient to distinguish 
beams of low or moderate 
complexity
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Dividing the beam into “patches”

Even relatively small numbers of 
patches

are sufficient to distinguish 
beams of low or moderate 
complexity



Separating beams

So, by dividing the beam into patches
we may be able to approximate the problem 

by one of finite dimensions
Indeed, the approach discussed here

will only be practical for problems of limited 
dimensionality

e.g., 10’s or possibly 100’s 
But still, even in principle

how can we separate these beams?



Mach-Zehnder interferometer 
meshes
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Nulling a Mach-Zehnder output

Consider a waveguide Mach-Zehnder 
interferometer (MZI)
formed from two “50:50” beam 
splitters
and at least two phase shifters

one, φ, to control the relative 
phase of the two inputs

a second, θ, to control the relative 
phase on the interferometer 
“arms”

beam splitters

φ θ



Nulling a Mach-Zehnder output

In such an MZI with 50:50 
beamsplitters
for any relative input amplitudes and 
phases 
we can “null” out the power at the 
bottom output

by two successive single-
parameter power minimizations
first, using φ
second, using θ

φ θ



“Diagonal line” self-aligning coupler

Minimize the power in detector D1 
by adjusting the corresponding φ 

and then θ
putting all power in the upper output

φ θ

φ θ

φ θ

D1

D2

D3

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


“Diagonal line” self-aligning coupler

Minimize the power in detector D2 
by adjusting the corresponding φ 

and then θ
putting all power in the upper output

φ θ

φ θ

φ θ

D1

D2

D3

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


“Diagonal line” self-aligning coupler

Minimize the power in detector D3 
by adjusting the corresponding φ 

and then θ
putting all power in the upper output

φ θ

φ θ

φ θ

D1

D2

D3

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Self-aligning beam coupler

Grating couplers could couple a 
free-space beam to a set of 
waveguides
Then
we could automatically couple 
all the power to the one 
output guide

This could run continuously
tracking changes in the beam

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

Grating couplers

Photodetectors

Output waveguide
Top view

Perspective 
view

Optional lenslet array

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Self-aligning beam coupler

This has several different uses
 tracking an input source

both in angle and focusing
 correcting for aberrations
 analyzing amplitude and phase 

of the components of a beam
 …

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

Grating couplers

Photodetectors

Output waveguide
Top view

Perspective 
view

Optional lenslet array

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Separating beams with 
interferometer meshes

stanford.io/47BsEiw



Separating multiple orthogonal beams

Once we have aligned beam 1 to output 1 using detectors D11 – D13
an orthogonal input beam 2 would pass entirely into the detectors 

D11 – D13 
If we make these detectors mostly transparent

this second beam would pass into the second diagonal “row”
where we self-align it to output 2 using detectors D21 – D22

separating two overlapping orthogonal beams to separate outputs

1
2
3
4

11
12

13
14 23

22
21

1
2D11

D12
D13

D21
D22

Input beam(s) 
(sampled into 
waveguides)

Output 
beams

"Self-aligning 
universal beam 
coupler," Opt. 

Express 21, 6360 
(2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Separating multiple orthogonal beams

D22

M11

M12

M13

M14

D11

D12

D13

M22 D21
M23 M32

M31

M21

D31

1

2
3

4

1

2
3

4

Adding more rows and self-alignments
separates a number of orthogonal beams 

equal to the number of beam “segments”, here, 4

"Self-aligning 
universal beam 
coupler," Opt. 

Express 21, 6360 
(2013)

Input beam(s) 
(sampled into 
waveguides)

Output 
beams

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Separating multiple orthogonal beams

D22

M11

M12

M13

M14

D11

D12

D13

M22 D21
M23 M32

M31

M21

D31

1

2
3

4

1

2
3

4

If we put identifying “tones” on each orthogonal input “beam”
and have the corresponding diagonal row of detectors look for that tone

then the mesh can continually adapt to the orthogonal inputs
even when they are all present at the same time

and even if they change

Input beam(s) 
(sampled into 
waveguides)

Output 
beams

"Self-aligning 
universal beam 
coupler," Opt. 

Express 21, 6360 
(2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


A. Annoni, E. Guglielmi, M. 
Carminati, G. Ferrari, M. Sampietro, 
D. A. B. Miller, A. Melloni, and F. 
Morichetti, “Unscrambling light –
automatically undoing strong 
mixing between modes,” Light 
Science & Applications 6, e17110 
(2017) 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf


Establishing optimum orthogonal channels

In this architecture, using meshes on both sides
we proposed we could find optimal orthogonal channels through a scatterer

between waveguides on the left and waveguides on the right 
by iterating back and forward between the two sides

“Establishing optimal 
wave communication 

channels automatically,” 
J. Lightwave Technol. 

31, 3987 (2013) 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf


Establishing optimum orthogonal channels - experiment

We have now demonstrated this with two “facing” 
interferometer meshes with

arbitrary optics between them
The optics can be misaligned

and we can introduce 
aberrations or partial blocking 

in the path
The system still self-aligns to find 

the best, orthogonal channels
This uses simple power optimizations

on one “channel” at a time
at the output of each line of interferometers at the 

receiving end

   
 

   

  
 

S. SeyedinNavadeh, M. Milanizadeh, F. Zanetto, G. Ferrari, M. Sampietro, M. Sorel, D. A. B. Miller, A. Melloni, and F. Morichetti, 
"Determining the optimal communication channels of arbitrary optical systems using integrated photonic processors," Nat. 

Photon. 18, 149-155 (2024)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf


Establishing optimum orthogonal channels - experiment

Two “9x2” meshes allow automatic self-configuration
signals in WG1 on the right can automatically be aligned to appear out of WG1 

on the left, and, at the same time 
signals in WG2 on the right can automatically be aligned to appear out of WG2 

on the left

(a)

2D Array of 
Grating Couplers

Bidiagonal Meshes of MZIs

Integrated Mach-Zehnder 
Interferometer (MZI)

(b)

Mesh1
Mesh2

SM. SeyedinNavadeh et al. https://www.researchsquare.com/article/rs-2997266/v1S. SeyedinNavadeh, M. Milanizadeh, F. Zanetto, G. Ferrari, M. Sampietro, M. Sorel, D. A. B. Miller, A. Melloni, and F. 
Morichetti, "Determining the optimal communication channels of arbitrary optical systems using integrated photonic 

processors," Nat. Photon. 18, 149-155 (2024)

https://www.researchsquare.com/article/rs-2997266/v1
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf


Establishing optimum orthogonal channels - experiment

Even after inserting a partially blocking mask in the optical path between 
the meshes

the system can re-establish orthogonal channels automatically
with > 30 dB rejection between the channels

(a)

2D Array of 
Grating Couplers

Bidiagonal Meshes of MZIs

Integrated Mach-Zehnder 
Interferometer (MZI)

(b)

Mesh1
Mesh2

SM. SeyedinNavadeh et al. https://www.researchsquare.com/article/rs-2997266/v1S. SeyedinNavadeh, M. Milanizadeh, F. Zanetto, G. Ferrari, M. Sampietro, M. Sorel, D. A. B. Miller, A. Melloni, and F. 
Morichetti, "Determining the optimal communication channels of arbitrary optical systems using integrated photonic 

processors," Nat. Photon. 18, 149-155 (2024)

https://www.researchsquare.com/article/rs-2997266/v1
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf


A new way of looking at optics
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A new way of looking at optics

This new way
 reproduces existing results

such as the limits from diffraction
 resolves paradoxes about the number of channels for 

communication 
 clearly defines such channels
 gives us new physical laws

that only emerge from this view
e.g., new “Kirchhoff” radiation laws
new “modal” Einstein “A&B” law 



Modal optics

We want a “modal” optics
to give the “right” way to describe optical systems

The optimal sets of functions
which even have basic physical laws that apply only to them

that give the most economical way to describe systems
including the “right” number of the “right” functions

To do this properly
we need to move beyond “resonator” and “waveguide” modes

and even beyond standard “beams”

Ray optics Imaging 
optics

Fourier 
optics

Full electro-
magnetic 
simulation

Modal optics

Beams

Resonator 
modes

Waveguide 
modes

"Waves, modes, 
communications, and 

optics: a tutorial," 
Adv. Opt. Photon. 11, 

679-825 (2019) 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf


We are used to modes for
resonators
propagating modes in waveguides

We like “modes” because they are 
economical

We can use a few mode amplitudes
not fields at every point

We can often “count” modes meaningfully 

A different way of thinking about modes and waves

S



Modes have very useful mathematical 
properties, e.g., 

orthogonality
completeness

We can give a definition of a mode

A different way of thinking about modes and waves

A mode is an eigenfunction of 
an eigen problem describing a 

physical system

S



But when we look generally at 
communications with waves
or scatterers, optical devices, or 

nanostructures 
we need a different kind of “mode” that 

looks at  
 “source” or input spaces
 and “receiving” or output spaces

They are “modes” in two spaces
not one space

They are not the “beams” between 
the spaces

A different way of thinking about modes and waves

"Waves, modes, communications, 
and optics: a tutorial," Adv. Opt. 

Photon. 11, 679-825 (2019) 

Source 
volume

Receiving 
volume

Device, object 
or scatterer

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf


To set up the mathematics of this problem
we consider two spaces

A source or input volume VS (rigorously, a Hilbert space HS )
containing the possible source functions

written using a Dirac notation for convenience, e.g., 
A receiving or output volume VR (rigorously a Hilbert space HR )

containing the possible wave functions
written using a Dirac notation for convenience, e.g., 

Communication modes

Sψ Rφ
Source or 

input volume 
or space HS

VS Receiving or 
output volume 

or spaceHR

VR

Sψ

Rφ



The sources in the input space give waves in the receiving space 
through some coupling operator

For free space, this would be based on a free-space Green’s function
such as a scalar monochromatic Green’s function

giving the wave at point rR in the receiving space from the 
point source at rS in the source space

Communication modes

( ) ( )exp1;
4

R S
R S

R S

ik
Gω π

−
= −

−

r r
r r

r r

Source or 
input volume 

or space

Receiving or 
output volume 

or space
Sψ Rφ

SRG

SRG
HS HR

VS VR



Choosing eigen problems

We want eigen problems to get modes
but we need two eigen problems because 

we have two different spaces
But these are not just the usual eigen 

problems of, say, 
a resonator in each volume

There is, however, a key mathematical trick we 
can use instead



Finding mode pairs

With the coupling operator GSR between the spaces
 for the source space, solve the eigen problem for 

the operator 

which gives an orthogonal set of 
source functions (or mathematical vectors)          

in HS 

2†
SR SR Sj j Sjsψ ψ=G G

†
SR SRG G

Sjψ

Note:       is the Hermitian adjoint of       . As a matrix, it would be the complex 
conjugate of the transpose of the matrix. As a Green’s function, it is the complex 
conjugate, with the roles of “source” and “receiver” points interchanged.

†
SRG SRG



Finding mode pairs

With the coupling operator GSR between the spaces
 for the receiving space, solve the eigen problem for 

the operator

which gives an orthogonal set of 
wave functions (or mathematical vectors)          

in HR

(These problems have the same, positive eigenvalues        ) 

2†
SR SR Rj j Rjsφ φ=G G

†
SR SRG G

Rjφ

2

js



Finding mode pairs

When we have done this, we find that 

So, the source eigenfunction 
generates the corresponding eigenfunction

the wave        in the receiving space 
with the coupling amplitude

Sjψ

Rjφ

js

SR Sj j Rjsψ φ=G

We have established the communication mode pairs of functions

This process is the singular-value decomposition 
of the coupling operator GSR



Matrix description of singular value decomposition (SVD)

For any linear operator D 
at least as long as it is bounded, i.e., finite output for finite input

we can perform the singular value decomposition 
                        or equivalently 

U and V are unitary operators (    is automatically also unitary)
Ddiag is a diagonal operator with elements sm 

which are called the singular values
          are the columns of U (and        are the rows of     )
          are the columns of V

†
diagD = VD U m m m

m
s φ ψ∑D =

mφ
mψ mψ †U

†U



We can use singular-value decomposition (SVD) 
for the more general case of a scatterer, optical device, or object

described by some operator D 

Mode-converter basis sets

Source or input 
volume or space

Receiving or output 
volume or spaceSψ Rφ

HS HR

VS VR

Device, object 
or scatterer

D

"All linear optical devices are 
mode converters," Opt. Express 

20, 23985 (2012)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf


One immediate consequence is that
because we can perform the SVD of any linear operator D

we have what we can call 
the mode-converter basis sets of functions

a set of orthogonal source functions
that lead, one by one  

to a set of corresponding orthogonal received waves

Mode-converter basis sets

Source or input 
volume or space

Receiving or output 
volume or spaceSψ Rφ

HS HR

VS VR

Device, object 
or scatterer

D

"All linear optical devices are 
mode converters," Opt. Express 

20, 23985 (2012)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf


In turn, that means that
there is a set of orthogonal channels through 
any linear scatterer

which are given by these mode-converter input and 
output function pairs

a generalization of the communication modes
now used as a description of an optical device or 

scatterer

Mode-converter basis sets

Source or input 
volume or space

Receiving or output 
volume or spaceSψ Rφ

HS HR

VS VR

Device, object 
or scatterer

D

"All linear optical devices are 
mode converters," Opt. Express 

20, 23985 (2012)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf


Communication mode and mode converter basis sets

This realization that any optical system can be 
represented using 

an orthogonal set of input functions
that map, one by one

to an orthogonal set of output 
functions

is quite a profound one in optics
It leads to new fundamental results

and a new way of making arbitrary optics

"All linear optical devices 
are mode converters," 

Opt. Express 20, 23985-
23993 (2012) 

“Waves, modes, 
communications and 

optics,” Adv. Opt. Photon. 
11, 679 (2019)

“Communicating with 
Waves Between Volumes –

Evaluating Orthogonal 
Spatial Channels and 
Limits on Coupling 

Strengths,” Appl. Opt. 39, 
1681 (2000). 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J150.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J150.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J150.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J150.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J150.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J150.pdf


Establishing optimum orthogonal channels - experiment

This apparatus we discussed above
with two self-configuring interferometer meshes

finds the first two communication modes through this optical system
by a process of maximization, without calculations

(a)

2D Array of 
Grating Couplers

Bidiagonal Meshes of MZIs

Integrated Mach-Zehnder 
Interferometer (MZI)

(b)

Mesh1
Mesh2

SM. SeyedinNavadeh et al. https://www.researchsquare.com/article/rs-2997266/v1S. SeyedinNavadeh, M. Milanizadeh, F. Zanetto, G. Ferrari, M. Sampietro, M. Sorel, D. A. B. Miller, A. Melloni, and F. 
Morichetti, "Determining the optimal communication channels of arbitrary optical systems using integrated photonic 

processors," Nat. Photon. 18, 149-155 (2024)

https://www.researchsquare.com/article/rs-2997266/v1
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf


“Flipping round” the SVD

Now, we know that we can construct any unitary 
linear operator in optics

using a mesh of interferometers
And we now know we can perform the SVD of any 

linear optical system
which decomposes it mathematically into a 

product of three operators
a unitary, a diagonal and a unitary 

Can we take one more step
and emulate any linear operator with 

interferometer meshes?



SD1

SD2

SD3

SD4

M11

M12

M13

M14

WI1

WI2

WI3

WI4

D11

D12

D13

M22 D21
M23 M32

M31

M21

D22 D31 M11

M12

M13

M14

WO1

WO2

WO3

WO4

D11

D12

D13

M22D21
M23M32

M31

M21

D22D31

Self-aligning input coupler

Self-aligning output coupler
Modulators

Input 
waveguides

Output waveguides

General multiple mode converter

The self-aligning input coupler mesh on the left can couple any four orthogonal inputs
each to different single waveguides in the middle

This is a first, arbitrary “unitary matrix” multiplication
The amplitude and phase of this conversion can be controlled by the modulators in the middle

These modulators are implementing the singular values
Light in those single waveguides can be converted into any other set of four orthogonal outputs 

on the right 
by the self-aligning output coupler mesh on the right

This is the second arbitrary “unitary matrix” multiplication

"Self-configuring universal 
linear optical component," 

Photon. Res. 1, 1 (2013) 



General multiple mode converter

So, the optical “units” in the mesh implement the singular value 
decomposition

So, for an optical system of a given dimensionality
we can emulate any linear optical system

Note we are implementing an arbitrary linear optical component
by constructing it using its mode converter basis sets

†
diagD = VD U

†U

V
diagD

"Self-configuring universal 
linear optical component," 

Photon. Res. 1, 1 (2013) 



General multiple mode converter

The input mode converter basis functions are the ones that 
are converted to light in single waveguides in the middle

The output mode converter basis functions are the ones 
generated by light in a single waveguide in the middle

The coupling strengths from input to output mode-converter modes
are the singular values implemented by the modulators in the middle

†U

V
diagD

"Self-configuring universal 
linear optical component," 

Photon. Res. 1, 1 (2013) 



General multiple mode converter

This is the first proof that any linear optical component is possible in 
principle

and that any linear optical system can be factored into a set of 2-beam 
interferences

The proof is that we have shown how you can make it

†U

V
diagD

"Self-configuring universal 
linear optical component," 

Photon. Res. 1, 1 (2013) 



Synthesizing wave fields

stanford.io/47BsEiw



Constructing examples with point sources and receivers

We can see how this works first for a finite number of point sources and 
receivers

e.g., “loudspeakers” at positions rS1, rS2, rS3, etc., in the source volume
and “microphones” at positions rR1, rR2, rR3, etc., in the receiving 

volume
Using the Green’s function, we can construct the resulting matrix to 

represent GSR

rS1

rS2

rS3…

rR1 rR2
rR3 …

Source volume Receiving volume

SRG

Coupling 
operator



3 sources and receivers

For these source and receiving points
using the Green’s function

gives the matrix (for unit wavelength λ)

Source 
points

Receiving 
points

rS1

rS2

rS3

rR1

rR2

rR3

5λ

2λ

y

z

( ) ( )exp1;
4

R S
R S

R S

ik
Gω π

−
= −

−

r r
r r

r r

1 0.7 0.6 0.64 0.45
1 0.7 0.6 1 0.7 0.6

62.83
0.64 0.45 0.7 0.6 1

SR

i i
i i
i i

− + − + 
−  ≅ − + − + 

− + − +  

G



A larger example

Dense sets of points in 
a planar rectangular optical source 
“volume”

a cuboidal optical receiving volume
We can similarly construct the matrix 
representing GSR
and perform the SVD of it 
to get the source and receiving 
vectors and coupling strengths 
(singular values)

rectangular 
optical source 

area

cuboidal optical 
receiving volume

V. S. de Angelis, A. H. Dorrah, L. A. Ambrosio, D. A. B. 
Miller, and F. Capasso, "3D holography using 

communication mode optics," in Optica Imaging 
Congress 2024 (3D, AOMS, COSI, ISA, pcAOP), Technical 

Digest Series (Optica Publishing Group, 2024), paper 
DF4H.4. https://doi.org/10.1364/3D.2024.DF4H.4

https://doi.org/10.1364/3D.2024.DF4H.4


Generating arbitrary waves with communication modes

Suppose we want a specific wave         in the receiving space
We expand it in the “receiving” communication modes as 

 where                        is the “inner product” or “overlap integral”

Since

to generate any specific component               for this expansion 

we need an amplitude           of the source function

So, the required source function          to generate         is 

This lets us generate any desired wave in the receiving space 
even if the coupling strengths sj are not the same for every communication mode

Roφ
Ro j Rjj

aφ φ=∑
j Rj Roa φ φ=

q Rqa φ
SR Sj j Rjsψ φ=G

Sqψ/q qa s

Soψ Roφ
1j

So Sj Rj Ro Sj
j jj j

a
s s

ψ ψ φ φ ψ= ≡∑ ∑

“Waves, modes, 
communications and 

optics,” Adv. Opt. Photon. 
11, 679 (2019)

de Angelis et al., "3D 
holography using 

communication mode 
optics," in Optica Imaging 

Congress 2024, paper 
DF4H.4.

https://doi.org/10.1364/3
D.2024.DF4H.4

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://doi.org/10.1364/3D.2024.DF4H.4
https://doi.org/10.1364/3D.2024.DF4H.4


Designing and creating a 3-D optical field

Using this approach, we can 
generate an arbitrary desired 3D 
field
calculating the necessary 
amplitudes for the pixel “point 
sources” on a spatial light 
modulator
to generate the field of interest in 
the 3D volume

de Angelis et al., "3D holography using communication 
mode optics," in Optica Imaging Congress 2024, paper 

DF4H.4. https://doi.org/10.1364/3D.2024.DF4H.4

https://doi.org/10.1364/3D.2024.DF4H.4
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Designing and creating a 3-D optical field

Using this approach, we can 
generate an arbitrary desired 3D 
field
calculating the necessary 
amplitudes for the pixel “point 
sources” on a spatial light 
modulator
to generate the field of interest in 
the 3D volume

de Angelis et al., "3D holography using communication 
mode optics," in Optica Imaging Congress 2024, paper 

DF4H.4. https://doi.org/10.1364/3D.2024.DF4H.4

https://doi.org/10.1364/3D.2024.DF4H.4


Waves, modes, and minimum 
thicknesses for optics

DM, "Why optics 
needs thickness," 

Science 379, 41 (2023)

stanford.io/47BsEiw

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/


input 
surface

output 
surface

input 
light

d

left right

dividing 
surface, S

transverse 
aperture

David Miller, "Why optics needs 
thickness," Science 379, 41 (2023)

Why optics needs thickness

For metasurfaces and metastructures
and for compact optics generally

we need to understand whether they need 
thickness
Can we make a given optical device in just 
one “layer”, for example?

Generally, no. 
But why?

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/


Why optics needs thickness

Think of an optical system with
an input surface

such as a lens surface or metasurface 
an output surface

such as an image sensor plane
with a distance d between them

Note we are not yet specifying what is 
between these two surfaces
and we will not need to do so

output 
surface

input 
surface

input 
light

d

DM, Science 379, 41 (2023)



The key idea – channels through a transverse aperture

Now imagine we divide each surface in two parts
left and right

by passing an imaginary mathematical dividing 
surface S through them

This defines a “transverse aperture”
Because of what we want the system to do

some number C of channels must pass 
from right to left (or left to right) 

through this aperture 
We call C the “overlapping nonlocality”
The transverse aperture must be large enough

for these channels to propagate through it
which requires minimum area and/or thickness 

input 
surface

output 
surface

input 
light

d

left right

dividing 
surface, S

transverse 
aperture

DM, Science 379, 41 (2023)



Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

input 
surface

output 
surface

output pixels

input region for 
one output pixel

Imager example



Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

overlapping nonlocality
the input regions for different 
output points overlap with one 
another

input 
surface

output 
surface

output pixels

input region for 
one output pixel

Imager example



Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

overlapping nonlocality
the input regions for different 
output points overlap with one 
another

overlapping nonlocality C
loosely, the number of such 
overlapping “channels”

For an imager, C ends up being half 
the number of pixels

input 
surface

output 
surface

output pixels

input region for 
one output pixel

Imager example



Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

overlapping nonlocality
the input regions for different 
output points overlap with one 
another

overlapping nonlocality C
loosely, the number of such 
overlapping “channels”

For this example, C is 4

Space-invariant example
e.g., image differentiator

input 
surface

output 
surface output pixels

4 input regions 
cross this 

dividing line
input region for 
one output pixel

C = 4



How big a transverse aperture for a given C?

For a 1D system with free-space wavelength 
λo and maximum refractive index nmax

we presume we need a thickness

for each channel
where we allow for some practical factor 
α > 1
which comes from some practical 

restriction on the range of 
usable angles
or usable k-space

inside the device 

/ 2o maxd nλ α∆ ≥
d

input 
lightinput surface

output surface

dividing 
surface, S

x
y

z

transverse 
aperture



Quite generally, for some value of Cx in a one-
dimensional device
with                            of thickness per channel

then

so

For our one-dimensional imager with

For                   ,                 (one “line” of a 12 MP 
smartphone camera),                and no “rays” past 
45° angle,

Note: this will also be the limit for a 2D imager 
based on conventional lenses  

 

Thickness of a one-dimensional imager

d

input 
lightinput surface

output surface

dividing 
surface, S

x
y

z

transverse 
aperture/ 2x o maxd C nλ α≥

/ 2o maxd nλ α∆ ≥

θkz

kx

kNx pixels

xd C d≥ ∆

/ 2x xC N=

/ 4x o maxd N nλ α≥

700 nmoλ = 4000xN =
1.5maxn =

1.6 mmd ≥ See V. Blahnik, O. Schindelbeck, 
Advanced Optical Technologies 10, 
145 (2021) for general discussion of 
modern smartphone cameras



input 
surface

output 
surface

input 
light

d

left right

dividing 
surface, S

transverse 
aperture

Why optics needs thickness

For a conventional cell phone camera
in practice, even if we took all the thickness out 
of the lenses themselves
the camera would still need to be ~ 1.6 mm 
thick

The formal way to analyze this problem is to 
perform 
the singular value decomposition of the 
coupling between 
the left side of the input and the right side of 
the output
allowing us to count the number of modes 
we need

David Miller, "Why optics needs 
thickness," Science 379, 41 (2023)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/


Why optics needs thickness

This explains the necessary thickness of, e.g., 
 smart phone cameras, which are within a 

factor of 3 of this limit
 “space plates” intended to make imagers 

thinner
 metasurface/metastructure devices as the 

“kernel” becomes more nonlocal
e.g., as in image differentiation

Guo et al., Optica 7, 1133 (2020)

H. Wang et al., ACS 
Photonics 9, 1358 (2022)

David Miller, "Why optics needs 
thickness," Science 379, 41 (2023)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/


How many waves can get out of a 
volume?

David Miller, Stanford University
Zeyu Kuang, Owen Miller, Yale University

stanford.io/47BsEiw



How many waves can get out of a volume?

Suppose we have some arbitrary 
volume
which could contain 
some optical source
or some set of antenna elements

Can we deduce just how many 
waves or channels
can effectively get out of it
propagating into the far field
e.g., to a distant spherical shell?

volume

distant 
spherical 

shell



We return to the the singular-value 
decomposition of the coupling operator GSR

giving orthogonal source functions         
that couple, one by one, to orthogonal 

received waves
with some coupling strength sj

These pairs of functions         and 
are the “communication modes”

 

The rigorous approach to channels between volumes

Source or 
input volume 
VS or space HS

Receiving or 
output volume 
VR or space HR

Sψ RφSRG
HS HR

VS VR

Sjψ

Rjφ
“Waves, modes, communications 
and optics,” Adv. Opt. Photon. 11, 

679-825 (2019)

Source 
volume

Receiving 
volume

Sjψ Rjφ

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


A paraxial example

Suppose we have a line of sources and a line of receiver points
here in an approximately “paraxial” set of dimensions

and we establish the communication modes between them 
The picture shows the cross-section of the intensity in the plane

here for the most strongly coupled mode 
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Paraxial heuristic number and paraxial degeneracy

Once we pass the number we expect from conventional “diffraction limits”
coupling strengths for further communication modes

fall off drastically and somewhat exponentially
 We might think this is because the waves “miss” the receiving space

but that is not the general explanation

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S

10-2

10-4

10-6

10-8

1 5 10 15 20 25

1

Mode number, j

Re
la

tiv
e 

m
ag

ni
tu

de
 

of
 si

ng
ul

ar
 v

al
ue

 |s
j/s

1|

“Waves, modes, 
communications and 

optics,” Adv. Opt. 
Photon. 11, 679 (2019)

Paraxial 
heuristic 
number

Paraxial heuristic 
number

NH ~ WSWR/λL
for source and 

receiver widths 
WS, WR

separation L 
wavelength λ

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


Concentric spherical shell source and receiver spaces
are not easily analyzed by conventional “diffraction limit” theories

and do not show “paraxial degeneracy”
and the waves from the source space cannot “miss” the receiving space

but we still get some characteristic number of well-coupled 
communication modes

and a quasi-exponential fall-off of coupling beyond that
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3D examples – concentric spherical shells

“Waves, modes, 
communications and 

optics,” Adv. Opt. 
Photon. 11, 679 (2019)

Z. Kuang, D. A. B. Miller, and O. D. 
Miller, “Bounds on the Coupling 

Strengths of Communication 
Channels and Their Information 

Capacities,” 
https://doi.org/10.48550/arXiv.220

5.05150 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://doi.org/10.48550/arXiv.2205.05150
https://doi.org/10.48550/arXiv.2205.05150


Why the abrupt fall-off past some number

Why do we always see
regardless of the shape of the source and receiving volumes or 

surfaces
some number of “well coupled” channels

followed by an abrupt, quasi-exponential fall-off past this 
number

and just what gives this number?
We might argue this is just “diffraction”

though that does not explain the concentric spheres case
where the waves cannot “miss” the receiving volume

Is there some underlying piece of physics we are missing? 



Tunneling escape of waves

David Miller, Stanford University
Zeyu Kuang, Owen Miller, Yale University

stanford.io/3X4Kk0Y



bounding 
spherical 
surface

Waves from arbitrary volumes

How can we count the maximum number of well 
coupled waves (at a given frequency)
from some finite volume?

Our approach
Surround the volume with a mathematical 
“bounding” spherical surface
Count the number of well-coupled waves 
possible from this spherical surface
which then becomes the upper bound for 
waves from the source volume

source 
volume or 

object

outgoing 
radiation from 

spherical 
surface

D. A. B. Miller, Z. Kuang, O. D. Miller, 
“Tunneling escape of waves,” 

http://arxiv.org/abs/2311.02744 

http://arxiv.org/abs/2311.02744


Waves from arbitrary volumes

We show that, for spherical waves
with one key mathematical trick

there is a very simple and physical result
Beyond a certain simple threshold of “complexity” 
of spherical waves
they must “tunnel” to escape

Because the fall-off from tunneling is generally so 
rapid
this threshold effectively tells us the maximum 
number of well-coupled waves
and explains the quasi-exponential fall-off
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Waves in spherical coordinates

In spherical coordinates r, θ, and φ
the solution to the wave equation separates to

where zn(kr) is one of the spherical Bessel 
functions of order n, and
Ynm(θ,φ) is a spherical harmonic

Here m and n are integers with
  n = 0,1,2,… and 
So, if we know the largest n for waves to 
propagate without tunneling
we can easily add up the total number of waves 
up to and including that n 
2n +1 for each n

φ
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y

z

r
(r, θ, φ)
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Spherical harmonics

Spherical harmonics are functions of angle only, and can be plotted on a 
spherical surface

They have n nodal circles altogether, with |m| through the poles (in their real 
form)

n=1  m=0 n=1  m=1 n=3  m=2 n=4  m=2

n=8  m=4 n=6  m=0 n=6  m=6 n=20  m=10



Escape radius

Specifically, for a given “order” n of 
spherical wave
there is an “escape radius”

So, if the radius ro of the spherical 
surface of interest 
is smaller than the escape radius 
for some order n of spherical wave
a wave with this n must tunnel 
until it reaches the escape radius
after which it can propagate
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Spherical Bessel functions and equation

Spherical Bessel functions obey

Classic radial standing wave solutions are
jn which grows quasi-exponentially for small radii

and is quasi-oscillatory for larger radii 
yn which is singular at the origin

decaying quasi-exponentially for small radii
becoming quasi-oscillatory at large radii

Physically, ρ here is the dimensionless radius
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Taking out the 1/radius dependence

Since the spherical Bessel functions have an 
underlying 1/radius dependence at large radius

as appropriate for what are ultimately 
spherically expanding waves

it could be useful to remove that dependence
multiplying by radius

which gives functions corresponding to power 
per unit solid angle 
rather than power per unit area

So, we recast in terms of such functions
known as Riccati-Bessel functions

( ) ( )n nS jρ ρ ρ= ( ) ( )n nC yρ ρ ρ= −

( ) ( ) ( ) ( ) ( )1
n n n nh S iCξ ρ ρ ρ ρ ρ= ≡ −

(
)

(
)

,
n

n
j

y
ρ

ρ
−

Sp
he

ric
al

 B
es

se
l f

un
ct

io
ns

 

jn

-yn

ρDimensionless radius, 

(
)

(
)

,
n

n
S

C
ρ

ρ
Ri

cc
at

i-B
es

se
l f

un
ct

io
ns

Sn

Cn



Riccati-Bessel equation

Given that the spherical Bessel functions satisfy

then we can easily check that all the Riccati-Bessel 
functions satisfy

We can rearrange that to
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Riccati-Bessel “Schrödinger” equation

But wait!!!!!! 

is in the form of a Schrödinger equation 

                                             

with effective radial potential

and the same “eigenenergy” En=1 for all n
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Tunneling escape and escape radius

With the equation

if the “potential energy” exceeds the “total energy”, i.e., if

                                    or, equivalently 

the wave will be tunneling rather than propagating

So, for each n, there is an “escape radius”

or, equivalently, in dimensioned form
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Both plane and spherical waves start with 
the same tunneling barrier height
and hence the same initial decay
but the falling barrier height for the 
spherical wave
means it eventually escapes
to being a propagating wave

Note all such spherical waves 
eventually escape to some degree

though the evanescent plane wave
never does
This is an artifact of the “infinite” 
extent of the plane wave
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Snapshot in time of a spherical wave

Real part of outward (Riccati- Bessel) spherical wave
Starting spherical surface radius 2.9 wavelengths
Wave with n = 20, m = 10, escape radius 3.26 wavelengths

Note the angular shape is constant as the wave expands



Outward wave propagation

As time progresses
the wave beyond the escape radius
propagates outwards

We plot the outward Riccati-Bessel wave
as a function of time

technically the real part of

normalized to unit amplitude at the 
sphere edge

for a sphere of radius 2.9 wavelengths
with n = 22
which has an escape radius of 
3.58 wavelengths

( ) ( )2 expn r i tξ π ω−

ro = 2.9    n = 22    rescn = 3.58
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Spherical heuristic number

The threshold for tunneling is easy 
to characterize
and gives a simple answer for the 
number of waves that do not need 
to tunnel
This is well approximated by the 
spherical heuristic number

where AS is the sphere area
so one “propagating” wave for 
every           of surface area 
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Relative far-field magnitude squared

As the size of the spherical surface increases
the cut-off becomes increasingly relatively abrupt

tending towards the “absolutely abrupt” cut-off of evanescent waves
Note the spherical heuristic number NSH is a good approximation to the 

total exact number Np  of “propagating” waves even down to ~ 1 
wavelength of radius 
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Defining the diffraction limit

We can now construct a precise definition of 
the “diffraction limit”

For a wave interacting with a volume 
the wave passes the diffraction limit 

if any spherical component of the wave must 
tunnel to enter or leave the bounding 
spherical surface enclosing the volume 



Electromagnetic spherical outgoing waves

These have two transverse forms, separable in radial and angular parts
with the radial parts being the same as for the scalar case, so with

the same spherical/Riccati-Bessel tunneling and propagating behavior 
and the angular part being a vector spherical harmonic function

giving “transverse electric” (TE) and “transverse magnetic” (TM) sets of waves 
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No n=0 electromagnetic outgoing waves
Note, because Cmn is a derivative of a spherical harmonic

and the spherical harmonic for n = 0 is uniform
there is no n = 0 wave in electromagnetism 

If the first outgoing electromagnetic waves
(so, for n = 1)

are not to require tunneling to escape
the bounding spherical volume must be at least

in radius or, equivalently, in diameter

(consistent with the well-known Chu limit on antenna Q)

(Note: The escape radius for n = 0 acoustic waves is, however, zero
so, there is always one acoustic wave that can escape without tunneling

no matter how small the emitter or microphone)
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Perfect cloaking - An optical “white hole”?

In this “white hole”, incoming light
appears to be mostly “sucked” into 
the “white hole” in the middle
The phase fronts all “fall” rapidly 
into the “white hole”

and then the light is regenerated
The phase fronts rapidly re-
emerge from the “white hole”

How do we make this optical “white 
hole”?
Note: it may be simpler than you 
think



Perfect cloacking - An optical “white hole”?

So, what does it take to build this cloak?
Absolutely nothing
at least for this wave

If the wave is too complicated
i.e., if it is trying to violate the “diffraction 
limit”
it can’t even effectively get into the volume
and it “reflects off free space”

This is the “inward wave” version of the 
tunneling escape
with the wave trying to tunnel to get in

Interestingly
the pulse actually looks as if it propagates 
right through!



Perfect cloaking?

It appears to move right through 
the volume at a constant speed

Watch the blue dot, which propagates at 
the usual “phase velocity” of the wave



Conclusions

New generations of programmable optics are 
emerging now

enabling a wide range of things we could not do 
before

and even setting themselves up
A new modal way of looking at optics

based on singular value decomposition
describes these and other optical devices

and gives us new fundamental and practical 
results and limits

stanford.io/47BsEiw
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