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Tunnelling escape of waves

David A. B. Miller    1  , Zeyu Kuang    2 & Owen D. Miller    2

Applications of waves in communications, information processing and 
sensing need a clear understanding of how many strongly coupled channels 
or degrees of freedom exist in and out of volumes of space and how the 
coupling falls off for larger numbers. Numerical results are possible, and 
some heuristics exist, but there has been no simple physical picture and 
explanation for arbitrary volumes. By considering waves from a bounding 
spherical volume, we show a clear onset of a tunnelling escape of waves that 
both defines a limiting number of well-coupled channels for any volume and 
explains the subsequent rapid fall-off of coupling strengths. The approach 
works over all size scales, from nanophotonics and small radiofrequency 
antennas up to imaging optics. It gives a unified view from the multipole 
expansions common for antennas and small objects to the limiting plane 
and evanescent waves of large optics, showing that all such waves can escape 
to propagation to some degree, by tunnelling if necessary, and gives a 
precise diffraction limit.

With emerging nanophotonics, increasingly we can design1,2 and fab-
ricate sophisticated objects down to wavelength sizes or below. Grow-
ing bandwidth demands in radiofrequency wireless communications 
require we exploit spatial channels more effectively. The resulting 
antenna systems are growing to increasingly sophisticated structures 
many wavelengths in size3–5. Information processing, such as for artifi-
cial intelligence, requires ever increasing numbers of channels, which 
optics could provide, whether for improved inference in neural net-
works6 or more generally in optical interconnects7 and processing8. 
The numbers of strong channels can determine how much and what 
kind of information we can measure in sensing applications such as 
microscopy or imaging or how many designable elements or basis 
functions we need in design.

We can quite rigorously define such independent channels, math-
ematically and physically, as ‘communication modes’9,10. A core ques-
tion, both for design and applications, is whether we can understand 
how many different (that is, orthogonal) waves or communication 
mode channels can propagate in and out of objects or volumes. Such 
counting is increasingly relevant in optics now that we can control and 
detect light mode by mode11–13. This question has arguably never had a 
simple answer, especially as we move through objects on scales of a few 
wavelengths. Although we may believe that diffraction limits lie behind 
such counting, and we can certainly calculate the orthogonal channels 

and their coupling strengths for any specific case10, we lack any simple 
general model and intuition for important key behaviours (see the 
examples in ref. 10 and in many other analyses9,14–18). In particular, why 
do the coupling strengths tend to fall off rapidly past some number of 
well-coupled channels? And, indeed, just what defines that number?

We show here that there is a useful and unified approach with sim-
ple results and physical intuition. This approach spans continuously 
from sub-wavelength objects to large optical scales. A key concept is 
the idea of tunnelling escape of spherical waves. We find that the onset 
of this tunnelling can be precisely defined, allowing a clear counting 
of strongly coupled channels that propagate without tunnelling. Past 
this number, the tunnelling behaviour explains the fall-off and just how 
rapid it must be. The complementary problem of waves focusing into 
a volume similarly obeys a required onset of tunnelling that explains 
the difficulty of focusing past diffraction limits. The final step in our 
argument is that, for any wave from some finite volume, we can use 
a mathematical bounding sphere and the waves emerging from it to 
describe any wave that would leave (or enter) that bounding sphere; 
the sets of spherical waves are complete for describing all waves in free 
space or a uniform medium. Because we can establish the number of 
spherical waves that can propagate out of this bounding sphere without 
tunnelling, we have a simple estimate of an upper bound to the num-
ber of strongly coupled channels out of any finite volume, and we can 
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(literally ‘vanishing’) wave never escapes to propagate in the x direc-
tion. Figure 1b shows a spherical wave that, at a radial distance ro from 
the centre, has an amplitude in angle given by a spherical harmonic 
function of order n. Such spherical waves retain their angular shape 
as they expand radially.

Suppose this spherical wave initially varies too rapidly (in trans-
verse directions, on the sphere surface) compared to a wavelength. This 
wave still expands spherically, but must tunnel radially until it reaches 
some escape radius rescn for this n. Such ‘tunnelling’ is characterized 
here by quasi-exponential decay, initially similar to the evanescent 
decay of the plane-wave case above. After the escape radius, the wave’s 
transverse variation is slow enough that it can start to propagate, in 
a quasi-oscillatory spherical wave similar to the spatially oscillatory 
behaviour of a propagating plane wave.

Although the wave amplitude remaining after tunnelling may be 
quite small, that wave will continue expanding, settling to an ~1/radius 
decay of its amplitude, as in a spherically expanding propagating wave. 
So, waves from finite bodies, even if they start out somewhat evanescently, 
do not remain so. At least to some degree, they escape to propagation.

Scalar waves
To justify this argument, we analyse spherical waves, starting with the 
scalar case, with a Helmholtz wave equation:

∇2U(r) + k2U(r) = 0 (1)

for a wave U(r) of frequency fo in a uniform medium such as vacuum, 
air or an isotropic dielectric. (For some wave velocity v, the wavevector 
magnitude k = 2π/λo = ω/v, where the wavelength and angular frequency 
are λo = v/fo and ω = 2πfo, respectively.) Using complex waves with time 
dependence exp(−iωt), first we note that a plane wave solution has the 
form U(r) ∝ exp(ik ⋅ r) in space, with wavevector k = kxx̂ + kyŷ + kzẑ, 
where kx, ky and kz are the wavevector components in the x, y and z direc-
tions (with corresponding unit vectors x̂, ŷ and ẑ). Such a solution 
exp(ik ⋅ r) ≡ exp(ikxx) exp(ikyy) exp(ikzz), of equation (1), implicitly  
in infinite space, is separable as U(r) = X(x)Y(y)Z(z), with k2x + k2y + k2z = k2. 
If k2y + k2z > k2, then X(x) ∝ exp (−κx ), where κ =√k2y+k2z−k2 ; presuming 
any sources are on the ‘left’, in the region with x < 0, we take the positive 
square root. This is the classic evanescent wave, decaying exponentially 
for all x > 0. Note that it never becomes a propagating wave for any 
positive x, and the change from propagating to evanescent is totally 
abrupt as soon as k2y + k2z > k2.

We can write the separated equation for X(x) (Supplementary 
Text 1.1) as

−d2ξ(ρ)
dρ2 + V(ρ)ξ(ρ) = Eξ(ρ) (2)

where ρ = kxx and X(x) ≡ ξ(ρ), which is in the form of a one-dimensional 
Schrödinger equation26, with a ‘potential’ energy V(ρ) = (k2y + k2z )/k2  
(here actually independent of ρ), and an ‘eigenenergy’ E = 1. Quite gen-
erally, an equation like equation (2) can be trivially rewritten as

d2ξ(ρ)
dρ2 = [V(ρ) − E ]ξ(ρ) (3)

So, if V(ρ) > E (a positive tunnelling barrier height), the second deriva-
tive has the same sign as the function ξ(ρ). That means, for positive 
values of the function, the function is curving up for increasing ρ (or, 
for negative function values it is curving down), which is a character-
istic we see in exponential curves, and we can call this case ‘tunnelling’ 
or (quasi) exponential. Conversely, if V(ρ) < E (a negative tunnelling 
barrier height), the second derivative has the opposite sign from the 
function. Then, if the function is positive, it is curving down, forcing 
it to cross the axis to become negative with increasing ρ. Once it is 

understand that the coupling strength falls off quasi-exponentially 
past some number because the waves then have to tunnel to escape 
(or enter) the bounding volume. This onset of tunnelling also gives a 
precise definition of a diffraction limit for volumes.

Spherical waves and tunnelling
To set up our larger argument, we first describe spherical waves  
and their behaviour. Just as plane waves describe waves from  
(infinite) plane surfaces, so spherical waves based on spherical har-
monic and spherical Bessel functions usefully describe waves from 
spherical surfaces or finite objects. Their mathematics is well under-
stood, for example, in relation to scattering from spherical objects19–23 
and from multipole expansions of fields24,25 (details are provided in 
Supplementary Texts 1 and 2).

Figure 1 illustrates the argument. For infinite plane waves 
(Fig. 1a), if the wave varies too rapidly in the y and z directions, we 
have evanescent decay in the x direction. Such a truly evanescent 
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Fig. 1 | Comparison of an evanescent plane wave and an initially tunnelling 
spherical wave. a, A plane wave emerging from an infinite surface in the y–z 
plane, showing evanescent (tunnelling) decay in the positive x direction.  
b, A spherical wave emerging from a spherical surface—the initial tunnelling 
behaviour changes to propagating behaviour past the escape radius. The wave in 
each case is the amplitude of an oscillating wave as a snapshot in time. The wave 
in a is the simple evanescent, exponentially decaying plane wave. The wave in b is 
the amplitude as a function of radius with the underlying 1/radius fall-off of a 
spherically expanding wave removed, technically plotted for the phase where it 
corresponds to the Cn Riccati–Bessel function. Also shown is the effective 
tunnelling barrier height for the waves. For the plane wave, this is a positive 
constant. For the spherical wave, it falls off as 1/(radius)2, becoming zero at the 
escape radius. When this barrier height is zero or negative, the wave is ‘above’ the 
tunnelling barrier, so it becomes propagating for all larger radii. (There is no 
significance to the point at which the wave and the tunnelling barrier height cross 
in a; these two are different graphs.) Both waves start with unit overall amplitude, 
at the plane surface for a and at the sphere surface for b, and with the same initial 
decay in distance. The plane wave in a has a transverse pattern corresponding to 
nz = 1.034 and ny = 0.674 periods per wavelength in the z and y directions, 
respectively, equivalent to kz = 2πnz and ky = 2πny radians per wavelength. The 
spherical wave in b has a spherical harmonic angular form with n = 22 and m = 12. 
The spherical surface has radius ro = 2.9 wavelengths. The escape radius is ~3.58 
wavelengths, so ~0.68 wavelengths larger than ro. The tunnelling barrier height 
starts at 0.524 in both cases, being n2

z + n2
y − 1 ≡ [(k2z + k2y)/k2] − 1 for plane 

waves and [n(n + 1)/(kr)2] − 1 for the spherical waves, for radial distance r.
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negative, it then starts curving up, forcing it to cross the axis again to 
become positive, and so on. This is a characteristic seen in oscillatory 
functions, like sine waves, and we call this case ‘propagating’ or (quasi) 
oscillatory. (Other recent work27 has explored an abstract quantum 
tunnelling approach with finite plane surfaces, though our spherical 
approach here is different.)

The scalar Helmholtz equation (1) can also be solved in spherical 
polar coordinates, r, θ and ϕ (for example, ref. 25; Supplementary Text 
1.2). Specifically, one can look for separable solutions U(r) = R(r)Y(θ, ϕ). 
The angular solutions Y(θ, ϕ) are the spherical harmonics Ynm(θ, ϕ), with 
n = 0, 1, 2, … and, using the complex forms, −n ≤ m ≤ n (for example,  
ref. 26). The radial solutions R(r) are the spherical Bessel functions 
zn(kr), also for n = 0, 1, 2, …. Using a dimensionless radial variable ρ = kr, 
these radial functions satisfy the differential equation

ρ2 d
2zn(ρ)
dρ2 + 2ρdzn(ρ)

dρ
+ ( ρ2 − n(n + 1))zn(ρ) = 0 (4)

Spherical Bessel functions of the first and second kinds, respectively 
jn(ρ) and yn(ρ), give two (real) independent solutions of equation (4). For 
a given n, linear combinations of these are also solutions. In particular, 
the spherical Hankel function of the first kind

h(1)n (ρ) = jn(ρ) + iyn(ρ) (5)

corresponds to outward-propagating waves at large distances. (The 
notation zn(ρ) stands in for any of jn(ρ), yn(ρ) or h(1)n (ρ) in equation (4).) 
All these solutions have an underlying 1/r or 1/ρ dependence at large r 
or ρ, which corresponds to them falling off ultimately as spherically 
expanding waves. Indeed, specifically,

h(1)n (ρ) → i exp(iρ)ρ ≡ i
k
exp(ikr)

r (6)

is a spherically expanding propagating wave as r →∞.
We can multiply by radius to take out this underlying 1/r or 1/ρ 

dependence, giving radial solutions then expressed using what are 
known as Riccati–Bessel functions, Sn(ρ) = ρjn(ρ) and Cn(ρ) = −ρyn(ρ), 
and in particular, the ‘outgoing’ Riccati–Bessel function

ξn(ρ) = ρh(1)n (ρ) ≡ Sn(ρ) − iCn(ρ) (7)

Such functions can be convenient for viewing the wave more as a func-
tion of angle rather than transverse position at any radius.

There is, however, one other very important consequence of using 
a Riccati–Bessel functions like ξn(ρ): they obey the Riccati–Bessel dif-
ferential equation, which can be written

−d2ξn(ρ)
dρ2 + n(n + 1)

ρ2 ξn(ρ) = ξn(ρ) (8)

(Note that substituting from equation (7) in equation (8) will recover 
equation (4).) This equation is now in exactly the Schrödinger form 
as in equation (2). ‘Eigenenergy’ E is equal to 1 as before, but now the 
effective radial potential is

V(ρ) = n(n + 1)
ρ2 (9)

which falls off (as 1/ρ2) with radius ρ or r (= ρ/k). We can usefully now 
define the ‘escape radius’ as

ρescn = √n(n + 1)or, equivalently,

rescn =
√n(n + 1)

k
≡ λo

2π
√n(n + 1)

(10)

which marks the boundary between tunnelling and propagating behav-
iour for the wave, that is, the point r or ρ at which V(kr) = E(= 1). So, we 
have the following outgoing wave solutions:

Unm(r) = h(1)n (kr)Ynm(θ, ϕ)

≡ ξn(kr)
kr

Ynm(θ, ϕ) n = 0, 1, 2, …, −n ≤ m ≤ n
(11)

If an outward wave has an angular form Ynm(θ, ϕ), then for r < rescn, this 
wave (in the Riccati–Bessel form ξn(kr)) is tunnelling outwards, but 
once it passes the escape radius rescn, it becomes propagating, escaping 
at least to some degree. This contrasts with (infinite) plane waves of 
the form U(r) ∝ exp(ik ⋅ r) . If such waves start out as evanescent (so 
with k2y + k2z > k2), they remain evanescent at all x, eventually vanishing 
completely.

The wave plotted in Fig. 1b is such a Riccati–Bessel function, show-
ing tunnelling-like behaviour up to the escape radius, and propagating 
behaviour for larger radii. (See Supplementary Fig. 5 in the Supplemen-
tary Text for the behaviour as a function of time.)

Although this transition between tunnelling and propagating 
behaviour at the escape radius is clear from differential equation (8), it 
is not at all obvious from the usual algebraic expressions for spherical 
Bessel or Riccati–Bessel functions, which involve series of inverse pow-
ers of the radius together with sine and cosine functions (for example, 
ref. 25, p. 426); this may be why this tunnelling behaviour is not already 
better known.

Incidentally, the scalar spherical waves found in this way are also 
the waves associated with the communication modes9,10 between 
spherical surfaces (Supplementary Text 3).

Vector electromagnetic waves
There are three different forms of vector wave solutions to the vector 
Helmholtz equation (Supplementary Text 2), with one ‘longitudinal’ 
and two ‘transverse’ polarizations. The angular aspects are describable 
based on three vector spherical harmonic functions. Importantly, the 
tunnelling in the radial behaviour R(r) described above for scalar waves 
persists into the vector cases.

Although the longitudinal wave exists for sound and elastic waves, 
electromagnetic waves have just two, transverse forms. Each of those 
is separable into radial and angular parts, with the radial parts obeying 
the same equation as the function R(r) above, but with the angular part 
being a vector spherical harmonic function. Explicitly, for outgoing 
waves, we have a set of transverse electric (TE) waves, with the electric 
field (from equation (134) in the Supplementary Text) given by

E(TE)nm (r, θ, ϕ) = i√
μ
ε h(1)n (kr)Cmn(θ, ϕ)

≡ i√
μ
ε

ξn(kr)
kr

Cmn(θ, ϕ) n = 1, 2, …, −n ≤ m ≤ n
(12)

and transverse magnetic (TM) waves, with the magnetic field (from 
equation (138) in the Supplementary Text) given by

H(TM)
nm (r, θ, ϕ) = ih(1)n (kr)Cmn(θ, ϕ)

≡ i ξn(kr)
kr

Cmn(θ, ϕ) n = 1, 2, …, −n ≤ m ≤ n
(13)

Here, Cmn is the vector spherical harmonic function

Cmn(θ, ϕ) = ∇ × [rYnm(θ, ϕ)]

≡ ∇Ynm(θ, ϕ) × rn = 1, 2, …, −n ≤ m ≤ n
(14)

http://www.nature.com/naturephotonics
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Note explicitly that radial behaviour is given by functions h(1)n (kr) or 
ξn(kr), just as in the scalar case. The main differences are as follows:

•	 We have two waves for each choice of n and m, which we can view 
as being TE- and TM-polarized waves, respectively.

•	 Their angular form, which is vectorial, is based on the gradient 
∇Ynm of the spherical harmonic rather than just the (scalar) spheri-
cal harmonic Ynm directly. Because Ynm(θ, ϕ) only depends on 
angles, not radius, ∇Ynm only has vector components in the θ̂ and 
ϕ̂ directions on the sphere surface, so it and the function Cmn(θ, ɸ) 
contain only transverse components—vectors that lie in the sphere 
surface.

•	 In contrast to the scalar solutions (equation (11)), there are no 
electromagnetic waves for n = 0.

The electric field E(TM)
nm  corresponding to H(TM)

nm  and the magnetic 
field H(TE)

nm  corresponding to E(TE)nm  are given by Supplementary equations 
(137) and (133), respectively. The TE and TM waves for a given n and m 
describe perpendicularly polarized waves, with E(TM)

nm  perpendicular 
to E(TE)nm , and similarly for the magnetic fields H(TE)

nm  and H(TM)
nm . The polari-

zations of both E(TE)nm  and H(TM)
nm  are always transverse (perpendicular to 

the radius vector r), and the corresponding fields E(TM)
nm  and H(TE)

nm  are 
transverse in the far field, though they have radial components in the 
near field.

This approach corresponds exactly to the multipole expansion of 
outward-propagating electromagnetic fields. We write fields in forms 
equivalent to Jackson’s definitions25, and derivations of equations (12) 
and (13) can be found there25 (Supplementary Text 2 provides general 

vector wave derivations). Our tunnelling analysis conceptually con-
nects multipole and quasi-evanescent behaviours in one formalism. 
These vector spherical waves are the waves associated with the (vec-
tor) communication modes between spherical surfaces or volumes14.

Note that our analysis also tells us that, to observe strong radiation 
from high-n multipoles from some object, to avoid having to tunnel 
to escape the object would have to be essentially of the scale of twice 
the escape radius (so the diameter of the bounding sphere) for that n.

Counting waves from spherical surfaces
The escape radius allows a useful counting of waves associated with a 
spherical surface of radius ro. There is a maximum value np of n for which 
all the associated spherical harmonic waves propagate without tun-
nelling to escape, which requires ro > rescn for a given n. From equation 
(10), solving the quadratic equation n(n + 1) = (kro)2, the largest n for 
which kro > √n(n + 1) is

np(ro) = floor [√(1/4) + NSH − (1/2)] (15)

(floor(u) is the largest integer ≤ u). Here, NSH is the ‘spherical heuristic 
number’:

NSH = (kro)
2 ≡ 4πr2o

(λ2o/π)
= AS
(λ2o/π)

(16)

where AS = 4πr2o is the area of the spherical surface. (The concept of 
NSH was introduced empirically in ref. 10; this algebraic definition of 
NSH also emerged in analytic work on spherical waves14. Note too that 
the rule of thumb of using n up to ~kro in spherical wave scattering 
expansions (ref. 28, p. 126) is nearly the same as these results.) Note 
that, for kro < √2, or, equivalently, NSH < 2 or ro < resc1, where

resc1 = λo/(√2π) ≃ 0.225λo (17)

only the n = 0 wave propagates without requiring tunnelling escape. 
Because there are no n = 0 electromagnetic waves, all electromag-
netic waves from (bounding) volumes smaller than this radius resc1 
must tunnel to escape. This difficulty that electromagnetic waves 
have in getting out of small volumes is consistent with the well-known 
Chu antenna limit29, which states that the antenna Q-factor must 
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increase for small antennas. Indeed, we expect that the energy stor-
age in the quasi-exponential ‘tunnelling’ part of these waves should 
form part of the reactive field around such small antennas. Note again 
that there is no corresponding requirement for scalar waves, such 
as normal sound waves, which is consistent with small microphones 
and loudspeakers not having a corresponding limit and high Q-factor 
requirement, and hence remaining quite effective even for deeply 
sub-wavelength sizes.

We can now calculate the total number Nps of (scalar) spherical 
harmonic waves with values of n up to (and including) np. Because there 
are 2n + 1 different m values (and hence spherical harmonics Ynm) for 
each n, it is the case that

Nps = 1 + 3 + 5 +⋯(2np + 1) ≡
np
∑
q=0

(2q + 1) = (np + 1)2 (18)

For electromagnetic waves, with no n = 0 waves, we remove that one 
wave, giving

Np = Nps − 1 = np(np + 2) (19)

which is the number of such electromagnetic waves per polarization.
Because the Riccati–Bessel ξn(kr) functions take out the underly-

ing 1/r decay of spherical waves, a simple metric for how effectively a 
spherical wave of index n propagates outwards from a radius ro is the 
relative far-field magnitude squared:

γn(kro) = |ξn(∞)|2/||ξn(kro)||
2 (20)

Incidentally, for a given n, this coupling γn is the same for every m value; 
this might seem surprising given the different associated shapes of Ynm, 
although analogous behaviours can be seen in other spherical prob-
lems, such as the independence of the hydrogen-atom energies from 
the corresponding m quantum number26. Note, too, that n is always 
the total number of nodal circles in a spherical harmonic, independ-
ent of the m value.

In Fig. 2a,c, we plot γn(kro) against n, and in Fig. 2b,d parametrically 
against the cumulative number (n + 1)2 of scalar waves (equation (18)). 
(Supplementary Fig. 6 also presents curves like Fig. 2a,b for differ-
ent radii of spherical surfaces.) We see several interesting and useful 
behaviours in Fig. 2.

•	 For small volumes—for example, a few wavelengths or smaller 
in radius—relatively quite a few waves can escape by tunnelling 
with usefully large (for example, >10−2) propagating amplitudes.

•	 The spherical heuristic number NSH is a good approximation to 
the total number Np of waves (per polarization) that start out as 
propagating.

•	 As the radius of the spherical volume increases, a smaller fraction 
of the waves can usefully escape by tunnelling, compared to those 
that start out as propagating. So, the transition to waves that must 
tunnel to increasing weak escape is increasingly relatively abrupt 
for larger volumes. So, in practice, with increasing size, we tend 
towards a simpler categorization of waves being either propagat-
ing or (approximately) evanescent.

The actual number of waves that propagate strictly without tun-
nelling is a series of steps of integer height as a function of the radius of 
the spherical surface (Fig. 3). The number NSH is a continuous smooth 
function that passes through those steps (Fig. 3). Hence, it can, overall, 
be a good simple estimate for this number Np.

Note that NSH in equation (16) is also the area AS = 4πr2o  of the 
spherical surface divided by an area λ2o/π. So NSH corresponds to one 
such wave for every λ2o/π of area on the sphere, connecting this spheri-
cal wave behaviour to heuristic diffraction limits in conventional opti-
cal systems with more planar surfaces, which limit focal spots to 
approximately a (square) half wavelength because of diffraction. Note, 
too, that at moderate to large n, we have np ≃ √NSH = 2πro/λo, which 
is the circumference of the sphere in wavelengths.

Figure 3 also shows the number of waves that couple to the far 
field with coupling γn (equation (20)) greater than specific values of 
0.1 and 0.01. (These would correspond to horizontal lines at 10−1 and 
10−2 on Fig. 2d.) Some such waves will be tunnelling to escape, but 
might still be practically useful, for example, for communications 
or sensing. We see that there are quite substantial numbers of such 
additional waves for a small sphere radius, though relatively fewer 
for larger radii.

Although we consider only outgoing waves explicitly here, in 
practice these same numbers of waves also correspond essentially 
to the number of incoming waves that can penetrate into an empty 
spherical (bounding) volume (Supplementary Text 4). Spherical waves 
beyond this limit will essentially reflect off an empty spherical volume 
of free space (becoming standing waves), so objects smaller than this 
volume are essentially invisible to, or ‘self-cloaked’30 from, such waves.

Waves from arbitrary volumes
Now we can formally complete our argument on counting strongly 
coupled waves from arbitrary volumes. The sets of scalar and elec-
tromagnetic spherical waves we have constructed are complete for 
describing any (outgoing) wave on a spherical surface. Hence, they can 
also describe any wave emerging from sources in a volume enclosed by 
that bounding spherical surface (Fig. 4). Because we have established 
how many orthogonal basis-set waves can emerge from this spherical 
surface without tunnelling, we have established an upper bound on 
the maximum number of orthogonal waves that could emerge from 
the source volume without tunnelling. We could also extend this esti-
mate to allow for waves that could tunnel from the spherical surface 
to escape to some specified degree.

Heuristic result for restricted solid angles
Once the spherical surface becomes several wavelengths or larger in 
size, the number of waves (per polarization) that propagate without 
tunnelling becomes quite large. At radii of ~3, 5 and 10 wavelengths, 
for example, these numbers are ~350, 1,000 and 4,000, respectively. 
So, we can divide NSH by 4π steradians to obtain, for a spherical surface 
of radius rS, the (approximate) number of propagating waves per unit 
solid angle:

NΩ ≃
πr2S
λ2o

(21)

Imagine, then, some receiving surface of area AR at some (perpen-
dicular) distance L from the centre of the spherical surface (Fig. 5), so 

Source
volume

Bounding
spherical
surface  

Outgoing radiation
from spherical

surface  

Fig. 4 | A spherical bounding surface that just encloses some source volume 
or object. Any waves from the source volume that reach the spherical surface can 
be described in terms of spherical waves on that surface.
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subtending a solid angle Ω ≃ AR/L2. Then from equation (21) we could 
estimate a total number of propagating wave channels

NH =
πr2S
λ2o

AR
L2 = ATAR

λ2oL2
(22)

where AT = πr2S, which we note is the apparent circular cross-sectional 
area of the source volume (Fig. 5). We note that equation (22) is exactly 
the number previously deduced as the ‘paraxial heuristic number’ of 
well-coupled channels between planar source and receiver spaces10 
(equation (64) in ref. 10). (See also appendix A in ref. 10 for the many 
heuristic derivations of the number.) So, if we count only those waves 
that do not require tunnelling to escape, we can derive previous heu-
ristic results for the ‘diffraction-limited’ number of channels in par-
axial optical systems. (Note, too, that NΩ, equation (21), is not itself 
restricted to paraxial cases.) These approaches could also be viewed 
as asking for the approximate number of these (spherical harmonic) 
basis functions required to adequately describe the resulting possible 
waves on the receiving surface from such a source volume.

Discussion and conclusions
We have shown a unified way of thinking about waves in and out of 
volumes, from the propagating and evanescent fields of large optics 
to the multipole expansions of antennas and nanophotonics. This is 
based rigorously on the propagation of spherical waves associated 
with the spherical bounding surface around some volume or object. 
For all volumes from approximately a wavelength scale and upwards, 
a maximum number of well-coupled waves or orthogonal channels is 
understood as those that do not have to tunnel to escape the spherical 
surface. This onset of tunnelling corresponds to a ‘knee’ in coupling 
strength after which coupling falls rapidly because of the tunnelling. 
A corresponding escape radius rescn = (√n(n + 1))λo/2π characterizes 
the largest order n of spherical wave of wavelength λo that can propagate 
from such a spherical surface without initially tunnelling. A spherical 
heuristic number NSH, corresponding to one wave for every λ2o/π  of 
area on the spherical surface, approximately but usefully characterizes 
the number of well-coupled waves (per polarization) and the position 
of the ‘knee’ in coupling strength. With increasing radius of the volume, 
the relative fall-off from tunnelling becomes progressively more abrupt, 
asymptoting towards the complete abruptness of the onset of truly 
evanescent behaviour for infinite plane waves. Note, though, that such 
truly evanescent waves are an artefact of the assumption of infinite 
plane waves; all corresponding waves from finite bodies eventually 
escape to some degree by tunnelling. (Note, incidentally, that similar 
radial tunnelling, propagating and escape behaviour can be derived 
for circular and cylindrical waves (Supplementary Text 5).)

Finally, this approach allows us to propose a precise definition 
of the diffraction limit: for a wave interacting with a volume, the wave 
passes the diffraction limit if any spherical component of the wave 

must tunnel to enter or leave the bounding spherical surface enclos-
ing the volume.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-024-01578-w.
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