

Particles, atoms, and crystals

1

The hydrogen atom and center-of-mass
coordinates

Modern physics for engineers

David Miller

The hydrogen atom

This problem can be solved essentially exactly

using Schrödinger's equation
and standard mathematical
approaches

though the detail takes some time

We introduce the overall approach briefly
avoiding most of the algebra

showing the core ideas and main
results

which can be understood relatively
simply

The hydrogen atom – a “two
particle” problem

The hydrogen atom

The hydrogen atom consists of

one electron

mass $m_e \simeq 9.109\ 382\ 91 \times 10^{-31}$ kg

charge $-e$ where $e \simeq 1.602\ 176\ 565 \times 10^{-19}$ C

and one proton

mass $m_p \simeq 1.672\ 621\ 777 \times 10^{-27}$ kg

charge $+e$

Solving for its quantum mechanical behavior

involves solving for two quantum mechanical particles at once

Hydrogen atom solutions

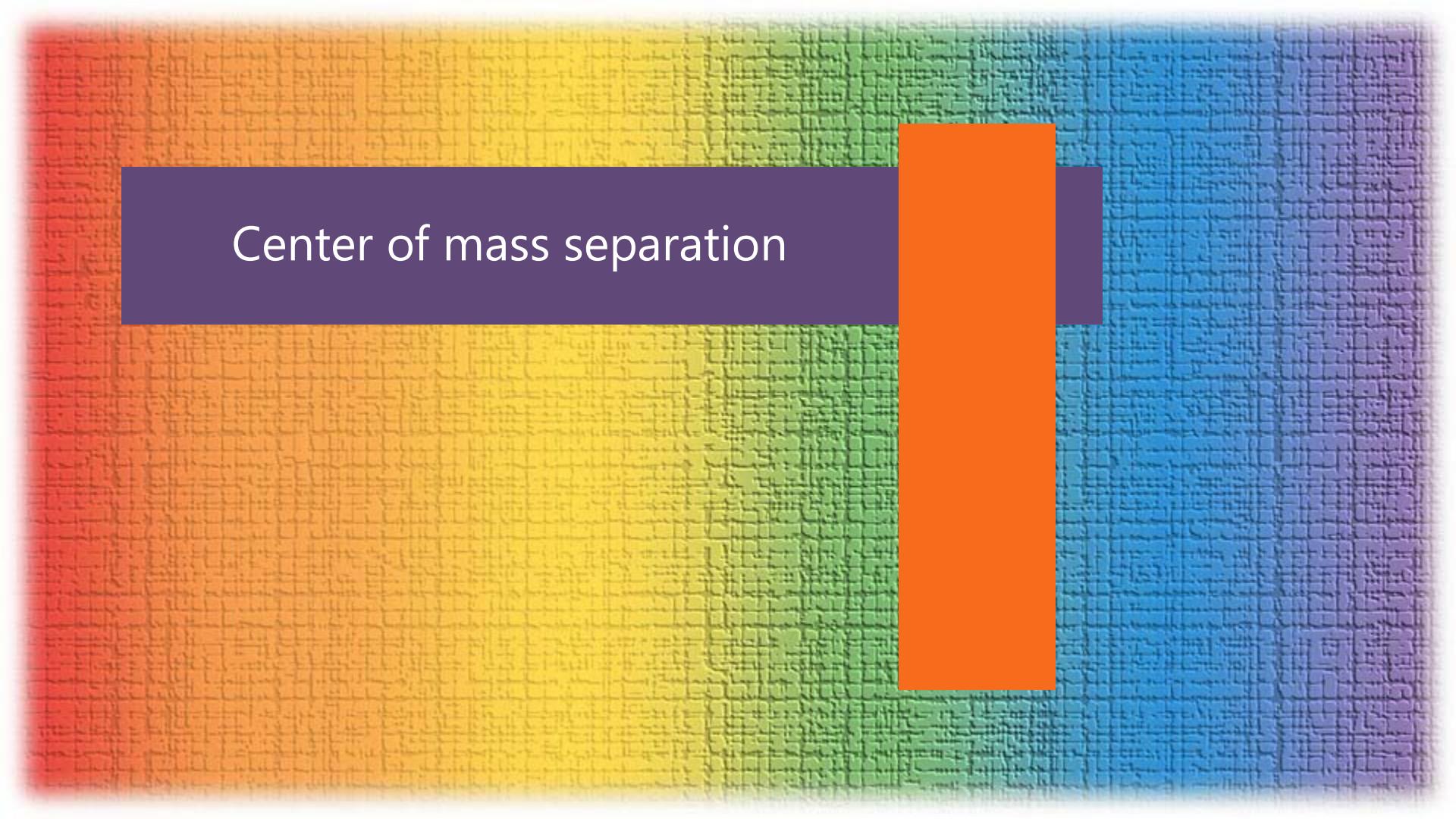
Classically, we think of a hydrogen atom as

a negatively charged electron orbiting

a positively charged proton as in the Bohr model

That classical model suggests a way of separating the problem into two which is to use

center-of-mass coordinates



Center of mass separation

Separation into two problems

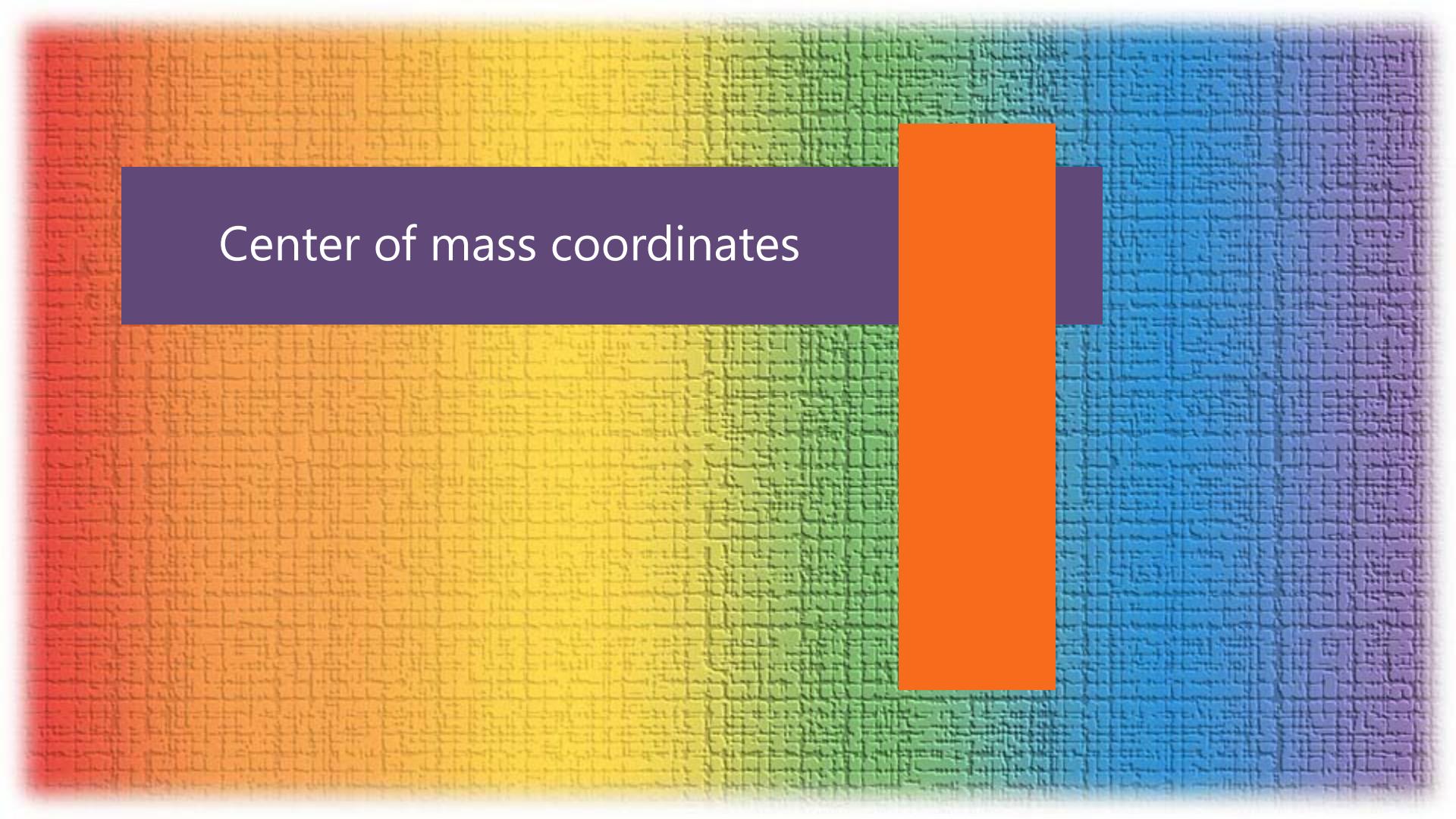
Our two separate problems become

- an atom particle
 - with total mass that is the sum of the electron and proton masses
 - that can be described with its own Schrödinger equation for a particle of that mass
- an electron and a proton both orbiting round the “center of mass”

The “center of mass” approach

Just like the classical problem
in the electron-proton “orbit”
the electron does not quite orbit
the proton

Instead, each of them is orbiting
around the “center of mass”
very nearly at the proton position
but not quite



Center of mass coordinates

Center of mass separation

We formally transform to “center of mass” coordinates

The center of mass is like the balance point of a seesaw

with the electron at one end and the proton at the other

Center of mass separation

Because the electron is much lighter
by a factor of ~ 1836
than the proton
this center of mass
is very nearly but not quite at the
proton position

We can essentially think the electron is
orbiting round the proton
but with a “reduced mass” that
incorporates this center of mass
correction

Center of mass separation

So we construct a Schrödinger equation for the “electron” formally in terms of the distance between the electron and the proton

and using the

“reduced mass” μ

where

$$\frac{1}{\mu} = \frac{1}{m_{electron}} + \frac{1}{m_{proton}}$$

which is slightly less than the electron mass

$$\mu \approx 9.104\ 424\ 485 \times 10^{-31} \text{ kg}$$

Potential energy

The potential energy we use

comes from the Coulomb attraction of the electron and proton

which is an inverse square force $\propto 1/r^2$

where r is the distance between the particles

Integrating the force times distance

starting from the particles infinitely far apart

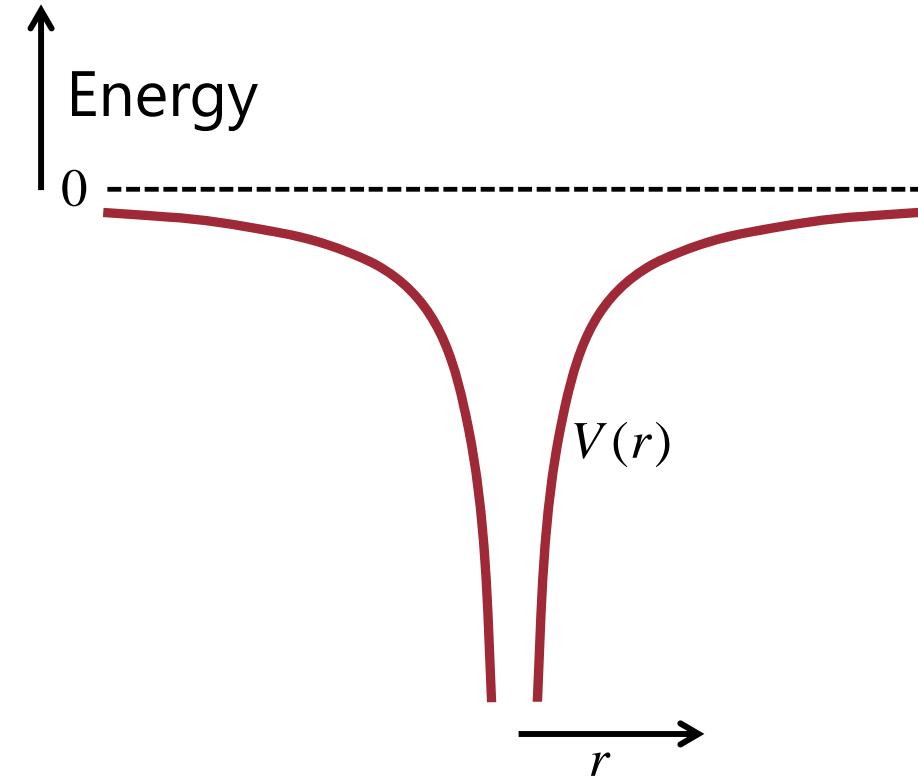
gives the potential energy

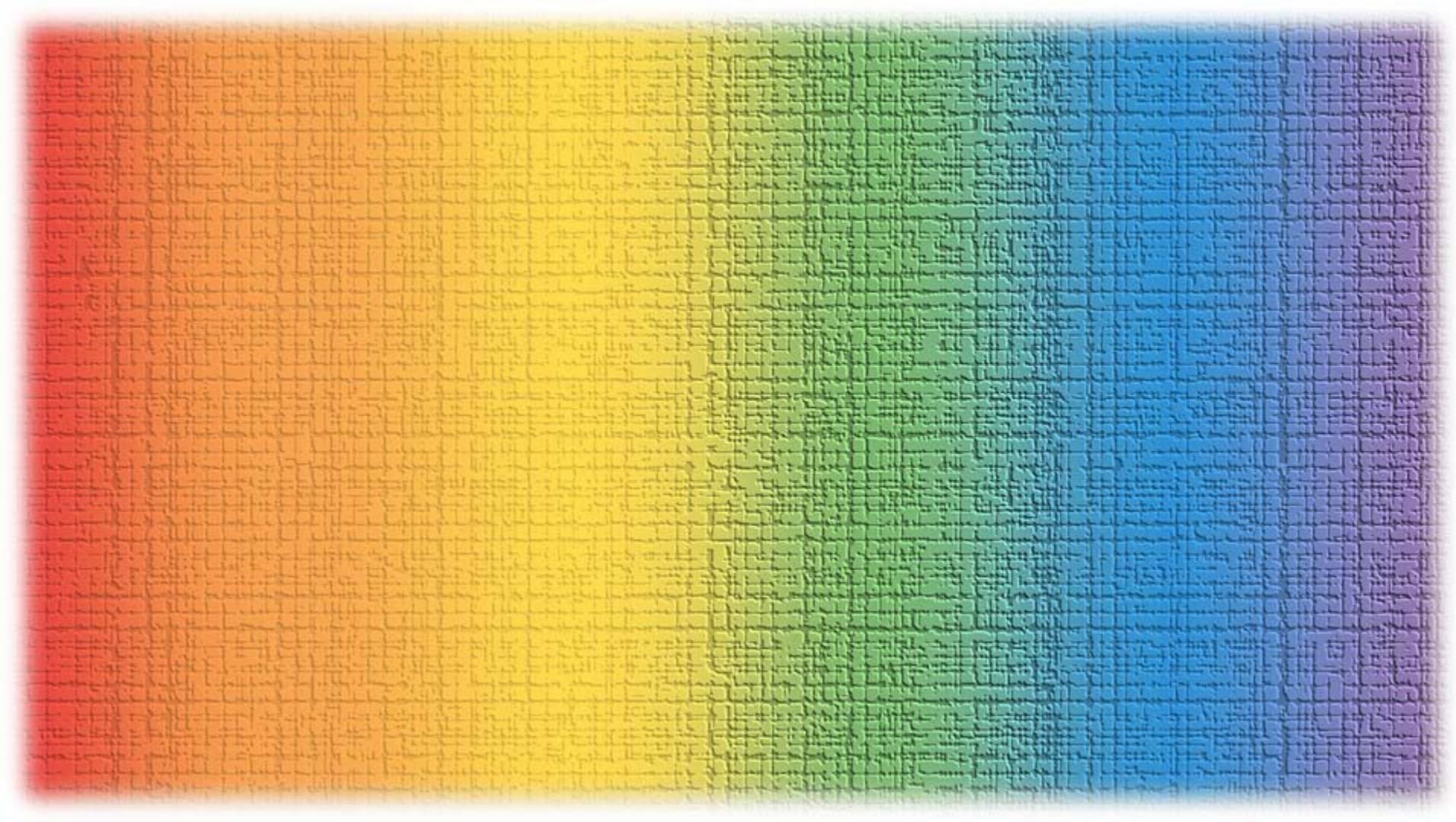
$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r} \quad \epsilon_0 = \frac{1}{4\pi \times 10^{-7} c^2} \simeq 8.854\ 187\ 817\ldots \times 10^{-12} \text{ F/m}$$

Potential energy

Note $V(r) = -\frac{e^2}{4\pi\epsilon_0 r}$ is negative

It takes energy to pull the electron and proton apart and we are formally using the energy when they are arbitrarily far apart as the zero of potential energy here





Particles, atoms, and crystals

1

The hydrogen atom solutions and angular
behavior

Modern physics for engineers

David Miller

The Schrödinger equation for the hydrogen atom

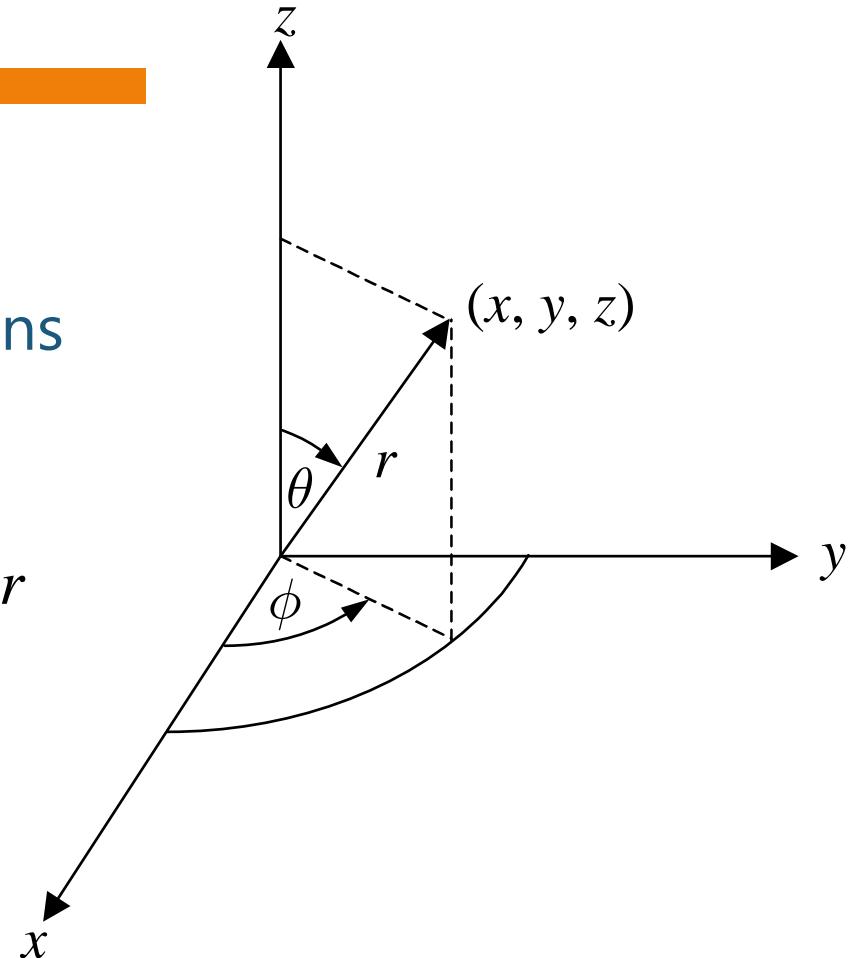
Schrödinger equation for hydrogen states

With these center-of-mass coordinates
and the Coulomb potential energy
the Schrödinger equation for the “electron”
technically for the relative motion wavefunction
 $U(\mathbf{r})$ of the electron and proton
becomes

$$\left(\frac{-\hbar^2}{2\mu} \nabla^2 - \frac{e^2}{4\pi\epsilon_0 r} \right) U(\mathbf{r}) = EU(\mathbf{r})$$

Spherical polar coordinates

Because the potential is **spherically symmetric** that is, the same in all directions this problem is best solved using a **spherical coordinate system** with a radius from the center, r and two angles θ is the polar angle, and ϕ is the azimuthal angle



Hydrogen atom solutions

Because the potential energy $V(r) = -\frac{e^2}{4\pi\epsilon_0 r}$

does not depend on angle, but only on separation r
what is called a “central potential”

we can separate the solutions into

- an angular function $Y(\theta, \phi)$
- a radial function $R(r)$

so the total wavefunction is

$$U(\mathbf{r}) = R(r)Y(\theta, \phi)$$

Spherical harmonics

Spherical harmonics

The solutions for the angular part $Y(\theta, \phi)$
are “spherical harmonics”

Formally, these are of the form

$$Y_{lm}(\theta, \phi) \propto P_l^m(\cos \theta) \exp(im\phi)$$

where $P_l^m(x)$ are the
associated Legendre functions

which are real

so the only complex part is from the
exponential

Spherical harmonics

The spherical harmonics are indexed by integers l and m

$$Y_{lm}(\theta, \phi) \propto P_l^m(\cos \theta) \exp(im\phi)$$

These functions must have the property of

coming back to where they started if we go round in
a circle

so $Y(\theta, \phi) = Y(\theta + 2\pi, \phi) = Y(\theta, \phi + 2\pi)$

Because $\cos \theta$ is periodic in this way

$P_l^m(\cos \theta)$ automatically is also

Spherical harmonics

$$\text{In } Y_{lm}(\theta, \phi) \propto P_l^m(\cos \theta) \exp(im\phi)$$

for $\exp(im\phi)$ to be periodic in this way

$$\exp(im\phi) = \exp[im(\phi + 2\pi)] = \exp(2\pi im) \exp(im\phi)$$

which means m must be an integer

The detailed solution also requires l is an integer
specifically

$$l = 0, 1, 2, 3, \dots$$

and m must lie between $-l$ and $+l$

$$-l \leq m \leq l$$

Hydrogen atom quantum numbers

There are three quantum numbers for the hydrogen atom

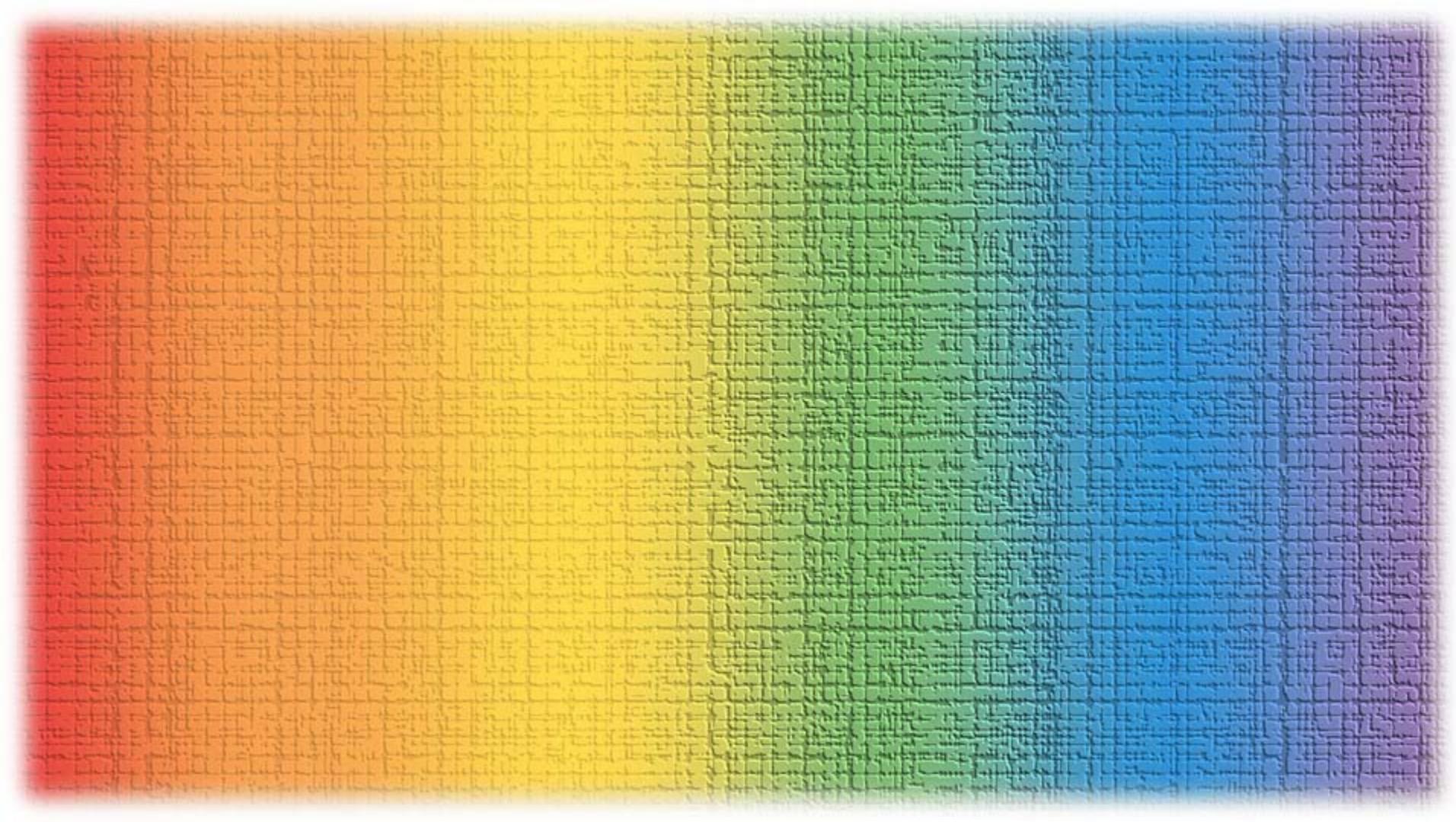
n is the principal quantum number

l is the orbital quantum number

or the angular momentum quantum number

or the azimuthal quantum number

m is the magnetic quantum number



Particles, atoms, and crystals

1

Spherical harmonics for a classical problem

Modern physics for engineers

David Miller

Spherical harmonics and a classical problem

Spherical harmonics can arise in classical problems

such as the vibration modes of a spherical shell

Classical problems only have real amplitudes

so we use two sets of spherical harmonic functions

one in which we replace the $\exp(im\phi)$ with $\cos m\phi$

which are the real part of our complex spherical harmonic functions

another in which we replace the $\exp(im\phi)$ with $\sin m\phi$

which are the imaginary part of our complex spherical harmonic functions

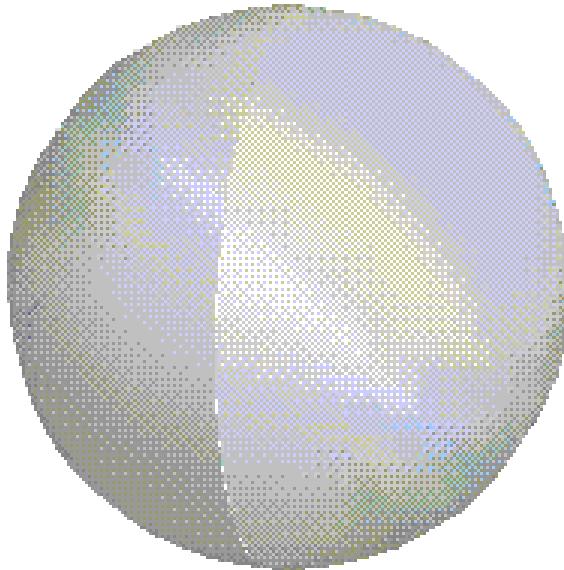
Spherical harmonics and a classical problem

These two different sets of spherical harmonic functions
are really just the same functions but rotated by $90^\circ/m$
in the azimuthal (equatorial) plane

In the classical case, instead of letting m run from $-l$ to $+l$
we simply choose it to be zero or positive
and use both the cosine and sine forms

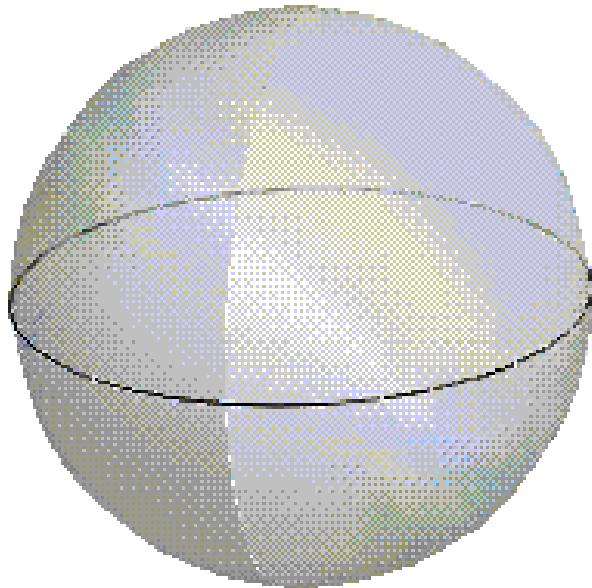
When spherical harmonic functions are plotted
even in discussions of quantum mechanical problems
such as the hydrogen atom
it is these real forms that are shown

Oscillating modes for spherical shell



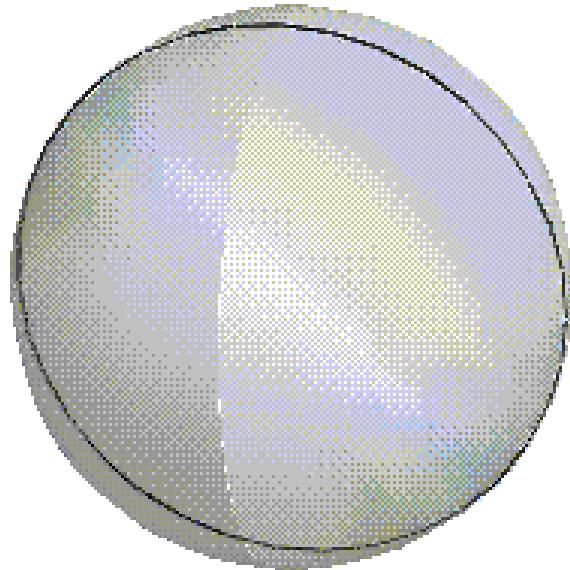
$l = 0$
 $m = 0$

Oscillating modes for spherical shell



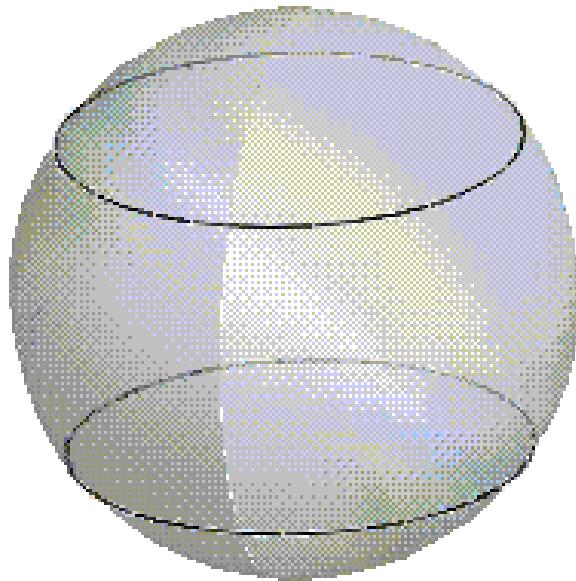
$l = 1$
 $m = 0$

Oscillating modes for spherical shell



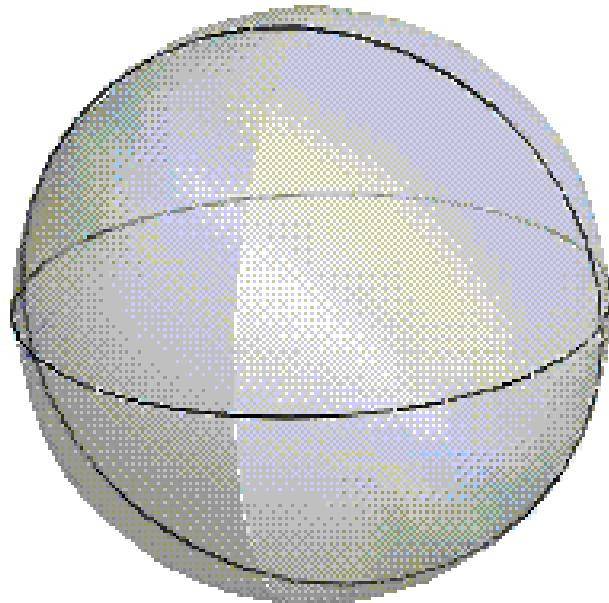
$l = 1$
 $m = 1$

Oscillating modes for spherical shell



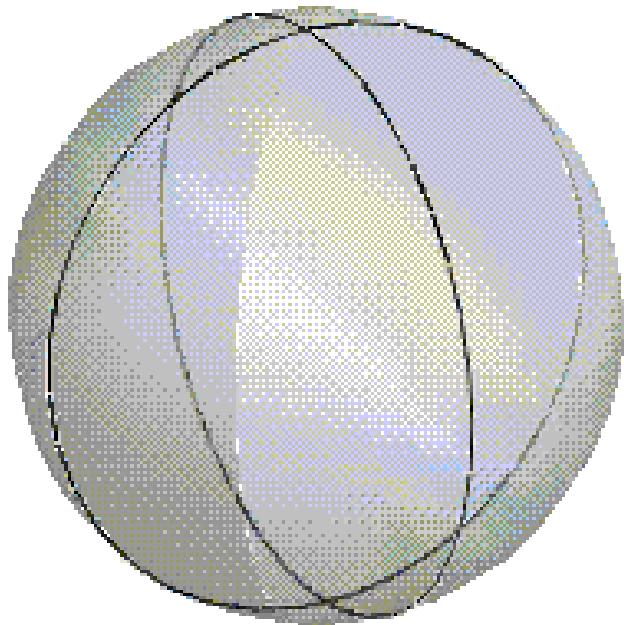
$l = 2$
 $m = 0$

Oscillating modes for spherical shell



$$\begin{aligned}l &= 2 \\m &= 1\end{aligned}$$

Oscillating modes for spherical shell



$$\begin{aligned}l &= 2 \\m &= 2\end{aligned}$$

Constructing spherical harmonics for a shell

The lowest solution

$$l = 0, m = 0$$

is the “breathing” mode

The spherical shell expands and contracts
periodically

For all other solutions

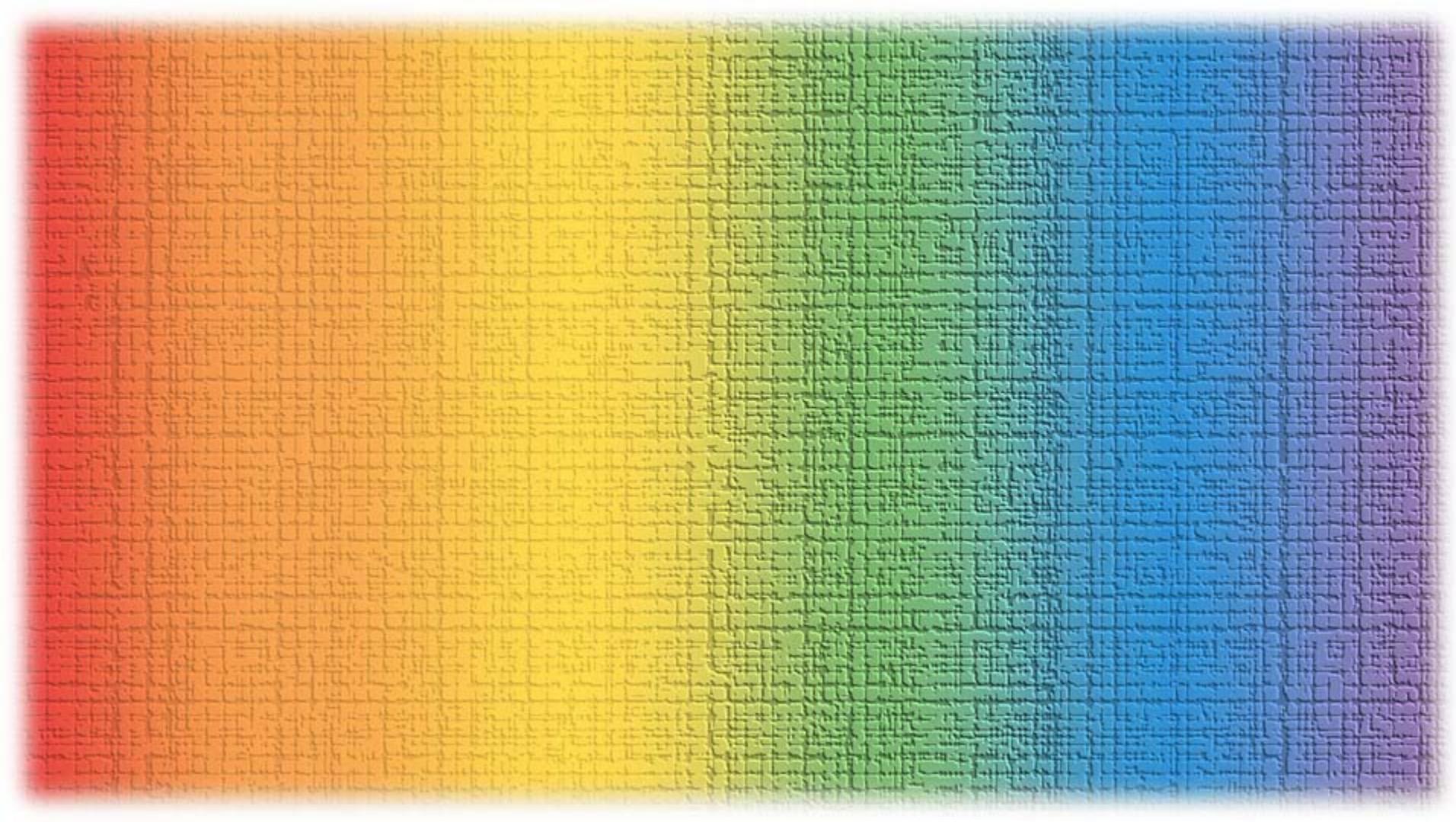
there are one or more nodal circles on the sphere

A nodal circle is one that is unchanged in that
particular oscillating mode

Constructing spherical harmonics for a shell

Note the following rules for the spherical shell modes

- the surfaces on opposite sides of a nodal circle oscillate in opposite directions
- the total number of nodal circles is equal to l
- the number of nodal circles passing through the poles is $|m|$, and they divide the sphere equally in the azimuthal angle ϕ (i.e., round the equator)
- the remaining nodal circles are either equatorial or parallel to the equator
 - symmetrically distributed between the top and bottom halves of the sphere



Particles, atoms, and crystals

1

Polar plots of spherical harmonics

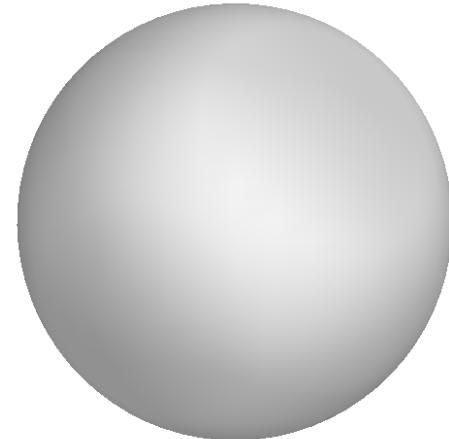
Modern physics for engineers

David Miller

Spherical harmonics

We can formally also plot the spherical harmonic in a parametric plot

where the distance from the center at a given angle represents the magnitude of amplitude of the spherical harmonic



$$l = 0$$
$$m = 0$$

Spherical harmonics

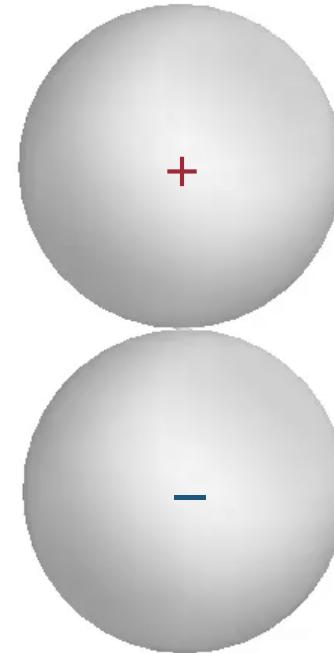
We can formally also plot the spherical harmonic in a parametric plot

where the distance from the center at a given angle

represents the magnitude of amplitude of the spherical harmonic

Adjacent “lobes” have opposite signs

$$l = 1$$
$$m = 0$$



Spherical harmonics

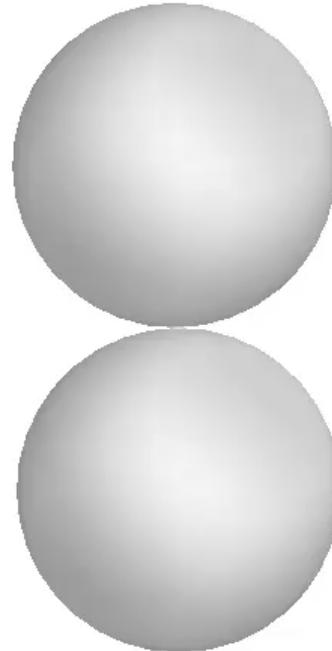
We can formally also plot the spherical harmonic in a parametric plot

where the distance from the center at a given angle

represents the magnitude of amplitude of the spherical harmonic

Adjacent “lobes” have opposite signs

$$l = 1$$
$$m = 0$$



Spherical harmonics

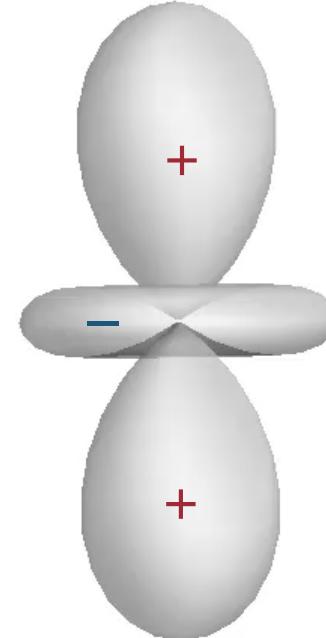
We can formally also plot the spherical harmonic in a parametric plot

where the distance from the center at a given angle

represents the magnitude of amplitude of the spherical harmonic

Adjacent “lobes” have opposite signs

$$l = 2$$
$$m = 0$$



Spherical harmonics

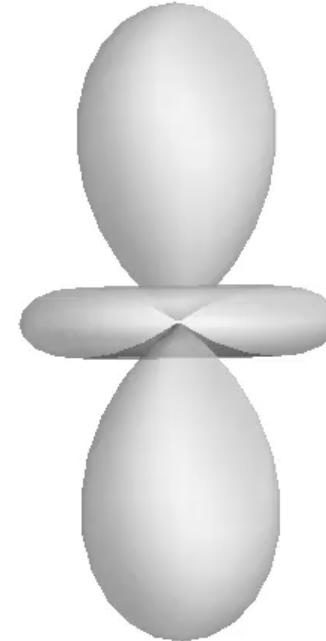
We can formally also plot the spherical harmonic in a parametric plot

where the distance from the center at a given angle

represents the magnitude of amplitude of the spherical harmonic

Adjacent “lobes” have opposite signs

$$l = 2$$
$$m = 0$$



Spherical harmonics

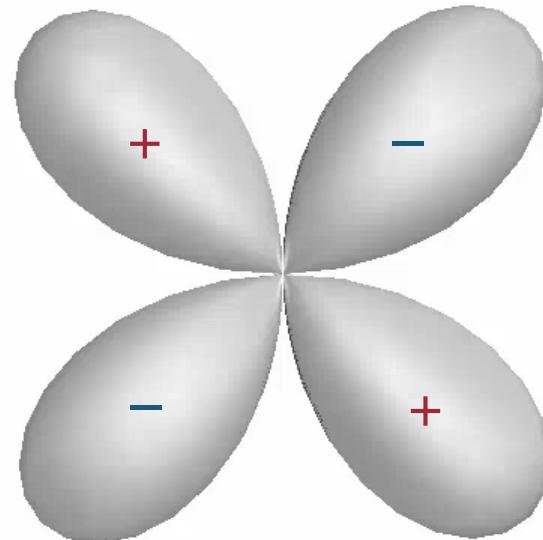
We can formally also plot the spherical harmonic in a parametric plot

where the distance from the center at a given angle

represents the magnitude of amplitude of the spherical harmonic

Adjacent “lobes” have opposite signs

$$l = 2$$
$$m = 1$$



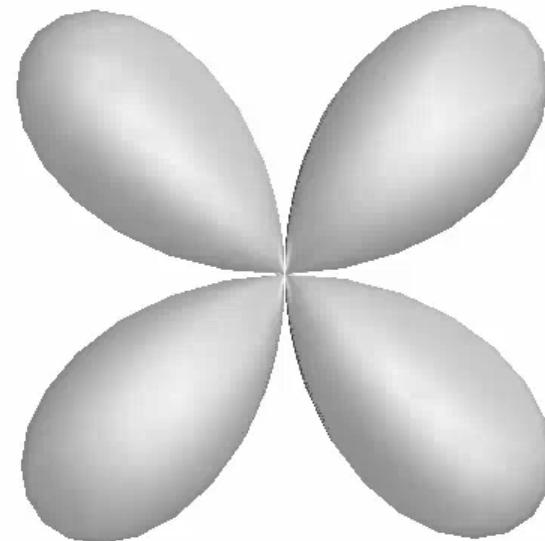
Spherical harmonics

We can formally also plot the spherical harmonic in a parametric plot

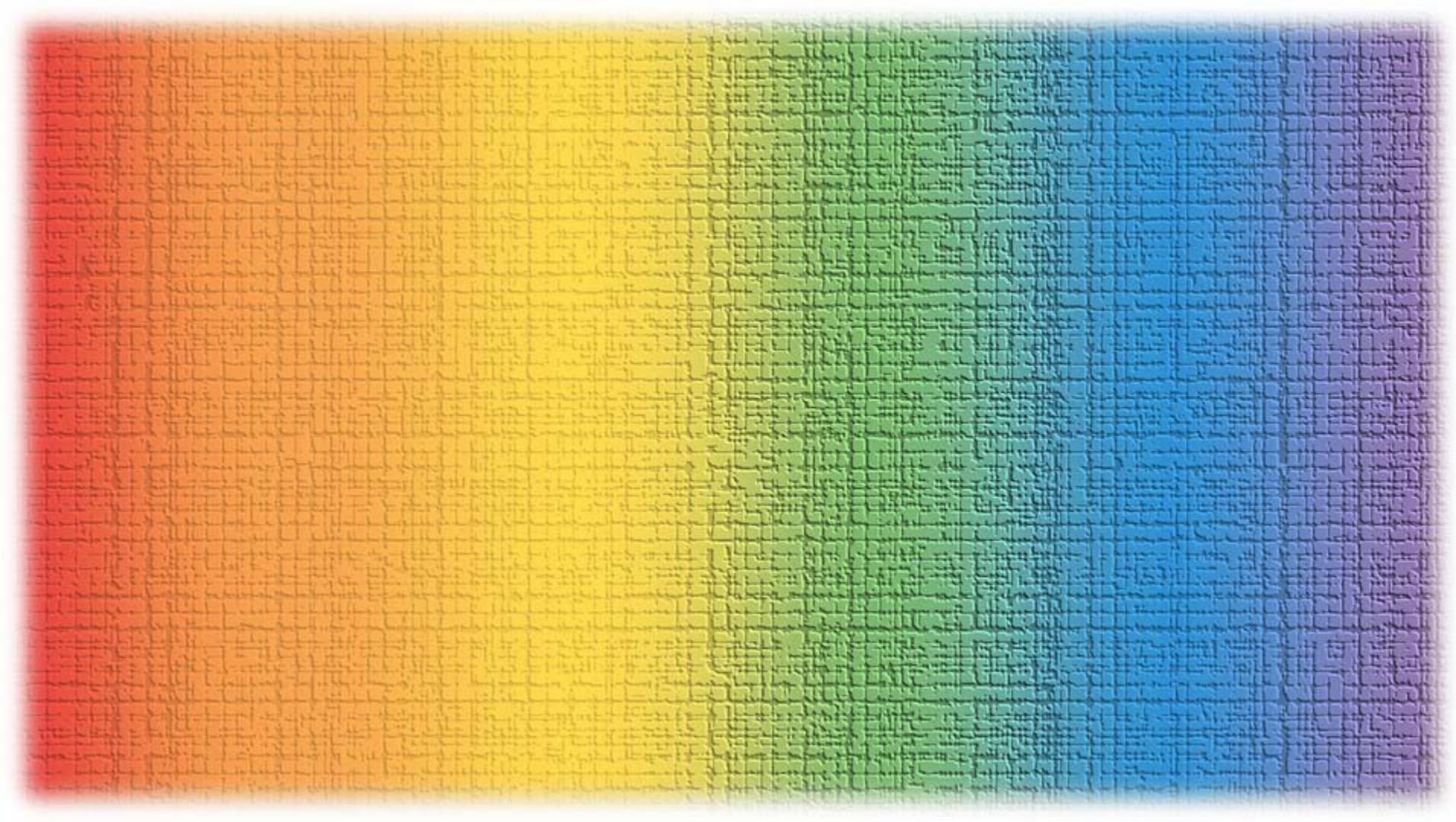
where the distance from the center at a given angle

represents the magnitude of amplitude of the spherical harmonic

Adjacent “lobes” have opposite signs



$$l = 2$$
$$m = 1$$



Particles, atoms, and crystals

1

Spherical harmonics and atomic orbitals

Modern physics for engineers

David Miller

Spherical harmonics and atomic orbitals

Though we have not yet solved the hydrogen atom problem
if we did that

we would get spherical harmonic angular shapes of the orbitals

Though other atoms are more complicated than the hydrogen atom
as a first approximation

their orbitals have the same angular form
and we use the same notation

“s, p, d, f” notation

In the use of the spherical harmonics in the solution of the hydrogen atom problem different values of l give rise to

different sets of spectral lines from hydrogen identified empirically in the 19th century

Spectroscopists identified groups of lines called

- “sharp” (s)
- “principal” (p)
- “diffuse” (d), and
- “fundamental” (f)

"s, p, d, f" notation

Each of these is now identified with specific values of l

Now we also alphabetically extend to higher l values

l	0	1	2	3	4	5
notation	s	p	d	f	g	h

It is convenient that

the "s" wavefunctions are all spherically symmetric

even though the "s" of the notation originally
had nothing to do with spherical symmetry

We only need s, p, d, and f to describe ground states of atoms

Angular momentum and spherical harmonics

Bohr's early model of the hydrogen atom

proposed angular momentum was quantized in units
of \hbar

A related idea survives

in the Schrödinger equation solutions

where the orbitals have an angular momentum
around the polar (z) axis of an amount $m\hbar$

Magnetic quantum number

m is called the magnetic quantum number because
the levels of different m split to different energies with
applied magnetic field
the “Zeeman” effect

A point “electron” in orbits of different angular momentum
would show different energies because
such an orbiting “point particle” is a current loop

Note m is the quantum number for angular momentum
not the “principal quantum number” n
and m can be zero also

