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The hydrogen atom and center-of-mass 
coordinates



The hydrogen atom

This problem can be solved essentially 
exactly
using Schrödinger’s equation

and standard mathematical 
approaches 
though the detail takes some time

We introduce the overall approach briefly
avoiding most of the algebra

showing the core ideas and main 
results
which can be understood relatively 

simply



The hydrogen atom – a “two 
particle” problem



The hydrogen atom

The hydrogen atom consists of
one electron

mass
charge -e where 

and one proton
mass
charge +e

Solving for its quantum mechanical behavior
involves solving for two quantum mechanical 
particles at once
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Hydrogen atom solutions

Classically, we think of a hydrogen 
atom as 
a negatively charged electron 

orbiting 
a positively charged proton

as in the Bohr model
That classical model suggests a way of 

separating the problem into two 
which is to use

center-of-mass coordinates



Center of mass separation



Separation into two problems

Our two separate problems become
 an atom particle 

with total mass that is the sum of 
the electron and proton masses
that can be described with its 

own Schrödinger equation for 
a particle of that mass

 an electron and a proton both 
orbiting round the “center of 
mass”



The “center of mass” approach

Just like the classical problem
in the electron-proton “orbit” 

the electron does not quite orbit 
the proton

Instead, each of them is orbiting 
around the “center of mass”

very nearly at the proton position 
but not quite



Center of mass coordinates



Center of mass separation

We formally transform to “center of 
mass” coordinates
The center of mass is like the balance 

point of a seesaw
with the electron at one end and 
the proton at the other



Center of mass separation

Because the electron is much lighter
by a factor of ~ 1836

than the proton
this center of mass

is very nearly but not quite at the 
proton position

We can essentially think the electron is 
orbiting round the proton
but with a “reduced mass” that 

incorporates this center of mass 
correction



Center of mass separation

So we construct a Schrödinger equation for the “electron”
formally in terms of the distance between the electron 
and the proton

and using the 
“reduced mass” 

where

which is slightly less than the electron mass

1 1 1

electron protonm m
 

319.104 424 485 10  kg 



Potential energy 

The potential energy we use 
comes from the Coulomb attraction of the electron 
and proton

which is an inverse square force
where r is the distance between the particles 

Integrating the force times distance
starting from the particles infinitely far apart

gives the potential energy
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Potential energy 

Note                         is negative

It takes energy to pull the 
electron and proton apart

and we are formally using 
the energy when they 
are arbitrarily far apart 

as the zero of potential 
energy here
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The hydrogen atom solutions and angular 
behavior



The Schrödinger equation for the 
hydrogen atom



Schrödinger equation for hydrogen states 

With these center-of-mass coordinates
and the Coulomb potential energy

the Schrödinger equation for the “electron” 
technically for the relative motion wavefunction     

of the electron and proton
becomes
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Spherical polar coordinates

Because the potential is 
spherically symmetric

that is, the same in all directions
this problem is best solved using 

a spherical coordinate system
with a radius from the center, r

and two angles
 is the polar angle, and 
 is the azimuthal angle
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Hydrogen atom solutions

Because the potential energy 

does not depend on angle, but only on separation r
what is called a “central potential”

we can separate the solutions into 
 an angular function 
 a radial function

so the total wavefunction is
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Spherical harmonics



Spherical harmonics

The solutions for the angular part
are “spherical harmonics”

Formally, these are of the form

where            are the 
associated Legendre functions

which are real
so the only complex part is from the 
exponential
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Spherical harmonics

The spherical harmonics are indexed by integers l and m

These functions must have the property of
coming back to where they started if we go round in 
a circle

so
Because         is periodic in this way

automatically is also
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Spherical harmonics

In
for                to be periodic in this way

which means m must be an integer
The detailed solution also requires l is an integer

specifically

and m must lie between –l and +l
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Hydrogen atom quantum numbers

There are three quantum numbers for the hydrogen 
atom

n is the principal quantum number
l is the orbital quantum number

or the angular momentum quantum number
or the azimuthal quantum number

m is the magnetic quantum number
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Spherical harmonics for a classical problem



Spherical harmonics and a classical problem

Spherical harmonics can arise in classical problems
such as the vibration modes of a spherical shell 

Classical problems only have real amplitudes
so we use two sets of spherical harmonic functions

one in which we replace the                with  
which are the real part of our complex spherical 

harmonic functions 
another in which we replace the                with

which are the imaginary part of our complex 
spherical harmonic functions 

 exp im cosm
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Spherical harmonics and a classical problem

These two different sets of spherical harmonic functions 
are really just the same functions but rotated by 90°/m
in the azimuthal (equatorial) plane

In the classical case, instead of letting m run from -l to +l
we simply choose it to be zero or positive

and use both the cosine and sine forms 
When spherical harmonic functions are plotted

even in discussions of quantum mechanical problems 
such as the hydrogen atom

it is these real forms that are shown 



Oscillating modes for spherical shell

l = 0
m = 0



Oscillating modes for spherical shell

l = 1
m = 0



Oscillating modes for spherical shell

l = 1
m = 1



Oscillating modes for spherical shell

l = 2
m = 0



Oscillating modes for spherical shell

l = 2
m = 1



Oscillating modes for spherical shell

l = 2
m = 2



Constructing spherical harmonics for a shell

The lowest solution 

is the “breathing” mode 
The spherical shell expands and contracts 

periodically  
For all other solutions

there are one or more nodal circles on the sphere
A nodal circle is one that is unchanged in that 

particular oscillating mode 

0, 0l m 



Constructing spherical harmonics for a shell

Note the following rules for the spherical shell modes
 the surfaces on opposite sides of a nodal circle 

oscillate in opposite directions
 the total number of nodal circles is equal to l
 the number of nodal circles passing through the 

poles is |m|, and they divide the sphere equally in 
the azimuthal angle (i.e., round the equator) 

 the remaining nodal circles are either equatorial or 
parallel to the equator
symmetrically distributed between the top and 
bottom halves of the sphere 
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Polar plots of spherical harmonics



Spherical harmonics

We can formally also plot the 
spherical harmonic in a 
parametric plot
where the distance from the 

center at a given angle 
represents the magnitude 
of amplitude of the 
spherical harmonic

l = 0
m = 0
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Spherical harmonics

We can formally also plot the 
spherical harmonic in a 
parametric plot
where the distance from the 

center at a given angle 
represents the magnitude 
of amplitude of the 
spherical harmonic
Adjacent “lobes” have 

opposite signs
l = 2
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Spherical harmonics and atomic orbitals



Spherical harmonics and atomic orbitals

Though we have not yet solved the 
hydrogen atom problem 
if we did that

we would get spherical harmonic 
angular shapes of the orbitals

Though other atoms are more 
complicated than the hydrogen atom
as a first approximation

their orbitals have the same 
angular form
and we use the same notation



“s, p, d, f” notation

In the use of the spherical harmonics in the solution of 
the hydrogen atom problem

different values of l give rise to 
different sets of spectral lines from hydrogen

identified empirically in the 19th century 
Spectroscopists identified groups of lines called 

 “sharp” (s) 
 “principal” (p) 
 “diffuse” (d), and 
 “fundamental” (f) 



Each of these is now identified with specific values of l
Now we also alphabetically extend to higher l values

It is convenient that 
the “s” wavefunctions are all spherically symmetric 

even though the “s” of the notation originally 
had nothing to do with spherical symmetry

We only need s, p, d, and f to describe ground states of 
atoms

“s, p, d, f” notation



Angular momentum and spherical harmonics

Bohr’s early model of the hydrogen atom
proposed angular momentum was quantized in units 
of 

A related idea survives 
in the Schrödinger equation solutions

where the orbitals have an angular momentum 
around the polar (z) axis of an amount  



m



Magnetic quantum number

m is called the magnetic quantum number because
the levels of different m split to different energies with 
applied magnetic field

the “Zeeman” effect
A point “electron” in orbits of different angular momentum

would show different energies because 
such an orbiting “point particle” is a current loop

Note m is the quantum number for angular momentum
not the “principal quantum number” n

and m can be zero also






