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Radial solutions
.

We remember that we had written before that

the solution for the hydrogen atom wavefunctions
can be written in the “separated” product form

U(r)=R(r)Y(6.¢)
We have now discussed the angular part Y (6, ¢)

which we found was described by spherical
harmonics

Now we return to examining the radial part R(r)



Hydrogen atom solution — radial functions
S 1
The radial functions are formally

|
2r 2r r
R r = L2|+l = e o
o ( )Oc(naoj ”'{naoj xp( naoj

where the Bohr radius is given by
2
= 4”f°h ~0.529 A=5.29 x 10™'m
e’ u
and LL (s) are the associated Laguerre polynomials
and we require
nis an integer, starting at 1, with n>1+1

0]



Eigen energies for the hydrogen atom
N

When we substitute the total solution

U, (r)=R, (r)Y,.(6,4)

back into the original Schrédinger eigen equation

—1? e’
(—Vz _ jU (r)=EU (r)
21 Are T
_Ry

n2

the allowed values forE are E,, =

where the Rydberg (energy) is

2 2 \?
Ry=—1_H[_€ | _136ev
2ual 2\ due i
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Hydrogen eigen energies
B

Note these energies
-

Hn nz
do not depend on either l or m
but only on n, the principal
gquantum number

Given the different shapes of the
orbitals

for different n, I, and m
this is a surprising result




Radial wavefunctions-n=1
B

We plot wavefunctions using
distance units of the Bohr

2_.

radius 1>

so p=rla, R 1
Principal quantum number

n=1 0.5

Angular momentum

quantum number
|=0

Rio (,0) = 2€Xp(—p)

10
Radius p
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Radial wavefunctions - n=2
B

R, (p) = %(Z—p)exp(—pIZ) . 0.6

0.4]
| =1 0.27

-0.2°

Radius p

15



Radial wavefunctions - n=3

O ——

Radius p
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Hydrogen orbital probability density
—
X - Z cross-sectionaty =0

spherical harmonic

1)

1
0
0

n
|
m=2J




Hydrogen orbital probability density
—
X - Z cross-sectionaty =0

spherical harmonic

1)

=1
=0
=

J

n
|
m_

L

x _ logarithmic intensity scale



Hydrogen orbital probability density
—
X - Z cross-sectionaty =0

spherical harmonic
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Hydrogen orbital probability density
I
X - Z cross-sectionaty =0

spherical harmonic

S

x _ logarithmic intensity scale
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Hydrogen orbital probability density
—
X - Z cross-sectionaty =0
spherical harmonic




Hydrogen orbital probability density
—
X - Z cross-sectionaty =0

spherical harmonic
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Hydrogen orbital probability density
I
X - Z cross-sectionaty =0

spherical harmonic
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Hydrogen orbital probability density
I
X - Z cross-sectionaty =0
spherical harmonic




Hydrogen orbital probability density

X - Z cross-sectionaty =0
spherical harmonic
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Hydrogen orbital probability density
I
X - Z cross-sectionaty =0
spherical harmonic




Hydrogen orbital probability density
I
X - Z cross-sectionaty =0
spherical harmonic
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Behavior of the complete hydrogen solutions
N

(i) The overall “size” of the wavefunctions becomes
larger with larger n

The wavefunctions generally have an overall
exponential decay of the form exp(-r/na,)

so this exponential decay is slower with r for larger n

(i) The radial wavefunctions have n—1 -1 zeros
These zeros are from the roots of the polynomial
functions

This completes our mathematical solution of the
hydrogen atom problem



Behavior of the complete hydrogen solutions
N

In summary of the quantum numbers, all integers
for the so-called principal quantum number

n=123,...
for the angular momentum quantum number
| <n-1
for the magnetic quantum number
—| <m<I
: : Ry
We also now know the eigenenergies E, =-—-
n

Note the energy does not depend on | or m
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Electron spin and the Pauli exclusion principle
N

By the early 1920’s atoms were being grouped based on
“shells”

e.g., of 2 electrons, 8 electrons, 18 electrons, ...
Pauli realized in 1924 that

Introducing one more quantum number beyond the n, |,
and m already present in extensions of Bohr's model

and allowing two values
now called spin-up and spin-down
he could explain much about atoms

based on only one electron per “state”



Electron spin and Pauli exclusion

-
The idea that

only one electron is allowed for each
different set of quantum numbers

or equivalently

we can only have one electron in a
given “state”

IS
the Pauli exclusion principle
Pauli exclusion also explains

why condensed matter has most of the
volume it has



Electron spin

I
Later, the new quantum number
introduced by Pauli

was called spin
In part because it is like the behavior
of a classical spinning particle
A classical spinning particle of some size
would have angular momentum
and, for a charged particle
would correspond to a current loop
and hence a magnetic moment

The electron has both angular
momentum and a magnetic moment



Electron spin
N
But, quantitatively

the electron does not correspond with any such
classical spinning body

And, quantum mechanically

the electron behaves as if the magnitude of its “spin”
angular momentum is /2

So, instead of an orbital angular momentum quantum
number | that takes integer values

we have a quantum number s for the electron where

§==
2



Electron spin
__

With this half-integer value for s we see

electron spin is not associated with a spatial
wavefunction corresponding to an orbit

because this non-integer value means

any such spatial wavefunction would not get
back to where it started on going round in a
circle

Spin is more abstract property that
we cannot completely visualize in a spatial way



Spin magnetic quantum number
N 1

We can define a magnetic spin quantum number, m,

analogously to the (orbital) magnetic quantum
number m and its relation to |, that is

-s<m <s
which means we can have
1 11 M /)
m, ==, known as “spin-up
2
1 11 M n
m, =——, known as “spin-down
2

and we can write the angular momentum as m.x



"Explanation” of spin
I
Spin was introduced “ad hoc” to explain
electron occupation of orbitals and
effects of magnetic fields

Dirac showed in 1928 that with a
a relativistically correct equation
instead of the Schrédinger equation
he obtained spin automatically
The “explanation” of Pauli exclusion
comes from the “spin-statistics theorem”

which requires relativistic quantum
mechanics
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