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Hydrogen atom radial solutions



Radial solutions

We remember that we had written before that 
the solution for the hydrogen atom wavefunctions 
can be written in the “separated” product form

We have now discussed the angular part
which we found was described by spherical 
harmonics

Now we return to examining the radial part  
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The radial functions are formally

where the Bohr radius is given by

and           are the associated Laguerre polynomials
and we require 

n is an integer, starting at 1, with 

Hydrogen atom solution – radial functions
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Eigen energies for the hydrogen atom

When we substitute the total solution 

back into the original Schrödinger eigen equation

the allowed values for E are
where the Rydberg (energy) is   
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Hydrogen eigen energies 

Note these energies 

do not depend on either l or m
but only on n, the principal 

quantum number
Given the different shapes of the 

orbitals 
for different n,  l, and m

this is a surprising result
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Radial wavefunctions - n = 1

We plot wavefunctions using 
distance units of the Bohr 
radius
so 
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Radial wavefunctions - n = 2 

l = 0

l = 1

     2,0
2 2 exp / 2

4
R     

0 5 10 15
0.2

0.2

0.4

0.6

0.8

Radius 

R
 2,0R 

 2,1R 

   2,1
6 exp / 2

12
R    



Radial wavefunctions - n = 3 
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Hydrogen atom complete solutions



Hydrogen orbital probability density
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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spherical harmonic
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spherical harmonic
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Hydrogen orbital probability density
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Hydrogen orbital probability density
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Behavior of the complete hydrogen solutions

(i) The overall “size” of the wavefunctions becomes 
larger with larger n

The wavefunctions generally have an overall 
exponential decay of the form

so this exponential decay is slower with r for larger n
(ii) The radial wavefunctions have n – l – 1 zeros 

These zeros are from the roots of the polynomial 
functions

This completes our mathematical solution of the 
hydrogen atom problem
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Behavior of the complete hydrogen solutions

In summary of the quantum numbers, all integers 
for the so-called principal quantum number  

for the angular momentum quantum number

for the magnetic quantum number 

We also now know the eigenenergies
Note the energy does not depend on l or m
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Electron spin and Pauli exclusion



Electron spin and the Pauli exclusion principle

By the early 1920’s atoms were being grouped based on 
“shells”

e.g., of 2 electrons, 8 electrons, 18 electrons, …
Pauli realized in 1924 that

introducing one more quantum number beyond the n, l, 
and m already present in extensions of Bohr’s model

and allowing two values 
now called spin-up and spin-down

he could explain much about atoms
based on only one electron per “state”



Electron spin and Pauli exclusion

The idea that 
only one electron is allowed for each 

different set of quantum numbers
or equivalently

we can only have one electron in a 
given “state”

is
the Pauli exclusion principle

Pauli exclusion also explains 
why condensed matter has most of the 

volume it has



Electron spin

Later, the new quantum number 
introduced by Pauli
was called spin

in part because it is like the behavior
of a classical spinning particle

A classical spinning particle of some size
would have angular momentum

and, for a charged particle 
would correspond to a current loop 

and hence a magnetic moment
The electron has both angular 

momentum and a magnetic moment



Electron spin

But, quantitatively
the electron does not correspond with any such 
classical spinning body

And, quantum mechanically
the electron behaves as if the magnitude of its “spin” 
angular momentum is 

So, instead of an orbital angular momentum quantum 
number l that takes integer values

we have a quantum number s for the electron where
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Electron spin

With this half-integer value for s we see 
electron spin is not associated with a spatial 
wavefunction corresponding to an orbit

because this non-integer value means 
any such spatial wavefunction would not get 

back to where it started on going round in a 
circle

Spin is more abstract property that 
we cannot completely visualize in a spatial way



Spin magnetic quantum number

We can define a magnetic spin quantum number, ms
analogously to the (orbital) magnetic quantum 
number m and its relation to l, that is

which means we can have

, known as “spin-up”

, known as “spin-down” 
and we can write the angular momentum as 
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“Explanation” of spin

Spin was introduced “ad hoc” to explain 
electron occupation of orbitals and 
effects of magnetic fields

Dirac showed in 1928 that with a 
a relativistically correct equation

instead of the Schrödinger equation
he obtained spin automatically

The “explanation” of Pauli exclusion 
comes from the “spin-statistics theorem”

which requires relativistic quantum 
mechanics






