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Many-electron atoms



Many-electron atoms

All atoms other than hydrogen
have some larger integer number

Z, the “atomic number”
of protons in the nucleus

and hence of positive charges
and also Z electrons

Electrons progressively fill the 
“orbitals”
in order of increasing energy

the “Aufbau” principle



An “average” potential



Many-electron atoms

Many-electron atoms are 
complicated because 
the electrons all interact with one 

another through their Coulomb 
repulsion

A useful approach is to presume that 
each electron sees an average 

potential energy 
from all the other electrons

together with the potential from 
the nucleus 



Many-electron atoms

That average potential is usually 
determined iteratively
which can be a complex process

Setting the details aside
we can still approximately

understand how many-electron 
atoms behave



Central potentials



Central potentials

As a reasonable first approximation
we can presume that the 

distribution of charge density from 
all the other electrons
is approximately spherically 
symmetric
at least in the core levels of the 

atom
giving a so-called “central 

potential”



Central potentials

As a result
even in more complicated atoms

we can continue to use the 
spherical harmonics 
as the first approximation to the 

angular form of the orbitals
and use the “hydrogen atom” 

labels for them
e.g., s, p, d, f, etc.



Radial functions



Radial functions

For many-electron atoms, the radial 
functions 
are different from the hydrogen 

ones 
One electron now sees both the 

charge on the nucleus
and the charge from the other 

electrons in the atom



Radial functions

But we still expect a set of radial 
functions
indexed by some quantum number n

with behaviors that are broadly 
similar to those of the hydrogen 
atom radial functions
for example, in the number of 

“zeros”
and in the relation between the 
allowed values of l and m and 
the quantum number n
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Filling “shells” in atoms



Filling of “shells”

For a large Z
first, we would expect two electrons 

(of opposite spin) 
to be very tightly bound in 1s-like 
states
because of the very strong 

attraction to the Z positive 
charges of the nucleus



Filling of “shells”

For the next electrons we might add
those first two electrons partially 

“screen” or cancel the positive 
charge on the nucleus
so the next 2s-like and 2p-like 
orbitals will be less tightly bound



Orbitals with larger l

The 2p orbitals 
are slightly farther from the nucleus 

than the 2s orbitals
so the nucleus’ positive charge is 

more screened
so they are less tightly bound than 

the 2s orbitals
This behavior is general for orbitals of 

progressively larger l
so now orbitals of different l

do not have the same energy any 
more



Shells and filling rules

If we neglected the different energies for different l
we would expect “shells” of a given n to fill up

2 1s electrons in the first n = 1 shell
8 in the second

2 2s electrons and 6 2p electrons
18 in the third

2 3s electrons, 6 3p electrons, 10 3d electrons
and so on



Shells and filling rules

Because of the different energies for different l
the states do no quite fill up in this order

One simple rule that is mostly but not perfectly 
followed:

states are filled up starting from smaller values of 
n + l and 

proceeding to larger values of n + l
with the states of lower n being filled first for 

each particular value of the sum n + l 
This is Madelung’s rule



Madelung’s rule



Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n
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Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n
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1s1

atomic number 1



Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n

1s
2s
3s
4s
5s
6s

2p
3p
4p
5p
6p

3d
4d
5d
6d

4f
5f
…
…7s 7p …

1s

2s

3s

4s
5s

2p

3p

4p 3d

En
er

gy
 o

rd
er

in
g

1n l 

2n l 

3n l 

4n l 

5n l 

helium
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Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n
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Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n
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Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n

1s
2s
3s
4s
5s
6s

2p
3p
4p
5p
6p

3d
4d
5d
6d

4f
5f
…
…7s 7p …

1s

2s

3s

4s
5s

2p

3p

4p 3d

En
er

gy
 o

rd
er

in
g

1n l 

2n l 

3n l 

4n l 

5n l 

oxygen

1s22s22p4

atomic number 8



Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n

1s
2s
3s
4s
5s
6s

2p
3p
4p
5p
6p

3d
4d
5d
6d

4f
5f
…
…7s 7p …

1s

2s

3s

4s
5s

2p

3p

4p 3d

En
er

gy
 o

rd
er

in
g

1n l 

2n l 

3n l 

4n l 

5n l 

chlorine
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Madelung’s rule

Fill states from smaller n + l to larger n + l
And within that, filling states from smaller n to larger n
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“Noble gas” shorthand for atomic configurations
To save some writing

and because the “filled” inner shells of higher 
numbered atoms have the same configurations

we can use the atomic configurations of the noble 
gasses as a shorthand notation

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2

2 2 6 2 6

2 2 6 2 6 2 6

2 2 6 2 6 10 2 6 10 2 6

2 2 6 2 6 10 2 6 10 2 6 10 2 6

He   1s
Ne   1s 2s 2p    He  2s 2p
Ar   1s 2s 2p 3s 3p    Ne  3s 3p
Kr 1s 2s 2p 3s 3p 3d 4s 4p    Ar  3d 4s 4p
Xe   1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p   Kr  4d 5s 5p

≡
≡

≡
≡

≡
≡

≡

≡
≡



Order of notation for atomic configurations
The order for the notation does not matter
The configuration 1s22s22p63s23p64s23d2 for titanium is 

in “Madelung’s rule” order
The noble gas configurations are in order of increasing n

and then in order of increasing l within each group 
with the same n
[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2

2 2 6 2 6

2 2 6 2 6 2 6

2 2 6 2 6 10 2 6 10 2 6

2 2 6 2 6 10 2 6 10 2 6 10 2 6

He   1s
Ne   1s 2s 2p    He  2s 2p
Ar   1s 2s 2p 3s 3p    Ne  3s 3p
Kr 1s 2s 2p 3s 3p 3d 4s 4p    Ar  3d 4s 4p
Xe   1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p   Kr  4d 5s 5p

≡
≡

≡
≡

≡
≡

≡

≡
≡



Multi-electron atoms and chemistry

This approach to multi-electron 
atoms 
largely explains the electronic 

configuration of atoms
and why it is the electrons in the 
last or “valence” “shell”  
that participate in most of the 

chemical reactions
those being the least tightly 

bound electrons in the atom
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Fermions and bosons



Spin and elementary particles



Spin and elementary particles

Spin is an intrinsic property of all 
“elementary” particles
Its magnitude is fixed for each type 

of particle 
Particles divide into two categories

fermions
which have half-integer spin

bosons
which have integer spin



Spin and elementary particles

Of the various particles we come 
across in daily life
electrons, protons, and neutrons 

all have spin ½
and are fermions

photons 
have spin 1

and are bosons



Spin and elementary particles

All of the “elementary particles”
that is, ones that are not apparently 
made up out of other particles

appear to have either spin ½ or spin 1
with the exceptions of 

the Higgs boson
which is thought to have spin 0

and the graviton 
which is posited to have spin 2



Compound particles



Compound particles

We can have compound “particles” 
whose spins are sums and/or differences 

of their constituent particles
Protons and neutrons are not strictly 

elementary particles
They are each made of three “quarks”

Quarks themselves are fermions
The helium-4 nucleus (the alpha particle)

is made of 4 spin ½ particles
two protons and two neutrons

and is a boson



Fermions, bosons and Pauli 
exclusion



Fermions, bosons and Pauli exclusion

Fermions obey Pauli exclusion 
but bosons do not

So, we can have any number of 
bosons all in the same state

One important consequence
the laser

which can have very large 
numbers of photons 
all in the same “mode”

i.e., the same light beam



A common misconception



A common misconception

One common misconception is to 
think that 

“electrons interact because they 
are fermions” 

and 
“photons do not interact because 
they are bosons”



A common misconception

In fact
electrons interact 

because they are charged
photons have extremely weak 

interactions 
because they are not charged 

Helium-4 nuclei
which are bosons

would interact very strongly



A common misconception

Part of the confusion is that we say 
that 
we can have multiple bosons in the 

same state
For strongly interacting bosons like 

helium-4 nuclei
that is indeed still true

But …



A common misconception

An eigenstate occupied by some 
large number of helium-4 nuclei 
would not necessarily be the same 

eigenstate that we would put one 
helium-4 nucleus in
The interaction between the 
bosons 
would change the eigenstates of 

the system
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Identical particles



Identical particles

We think of classical particles as 
being
“non-identical”

One brick is slightly different from 
another brick

Quantum mechanical particles of a 
given type 
are absolutely identical to one 

another
with no way whatsoever of telling 
them apart



An analogy for identical particles

This means that the counting of 
possible states of multiple identical 
quantum particles 
is different from that of classical 

particles 
This kind of perfectly “identical” 

entities 
is actually known to us in our 

everyday world
An analogy will help!



Identical particles

Dollar bills are not identical
They each have different serial 

numbers
Dollars in bank accounts 

are identical
It is not meaningful to ask which 
dollar is in which account

This is the sense that quantum 
mechanical particles of a given 
kind are identical



Bank account analogy

Suppose you have 
an antique jar (a) in the kitchen for 

your spending money 
and a box (b) under the bed for 

your savings money 
You put your dollar bills 

each labeled with a unique number
into either the antique jar (a) or 
the box (b)

a

b



Bank account analogy

This is like the quantum mechanical 
situation of 
non-identical particles (the dollar 

bills) and 
different single-particle states or 
modes (a or b) 
into which they can be put 

– the jar or the box

a

b



Bank account analogy

If I have two dollar bills 
then there are four possible 

situations 
i.e., states of the entire system 

of two dollar bills in the antique 
jar and/or the box

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar
bill 1 in the antique jar and bill 2 in 

the box

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar
bill 1 in the antique jar and bill 2 in 

the box
bill 1 in the antique jar and bill 2 in 

the antique jar

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar
bill 1 in the antique jar and bill 2 in 

the box
bill 1 in the antique jar and bill 2 in 

the antique jar
making four states altogether

This reproduces the counting for 
non-identical particles



Bank account analogy

Consider next that you have two bank accounts
a checking account (a), and a savings account (b) 

You may still have the same amount of money
$2

You may know how much money you have in each account 
but the dollars are themselves identical in the accounts 

So now there are only three possible states
Two dollars in savings
One dollar in savings and one in checking
Two dollars in checking



Bank account analogy

Note that, in these three possible states
Two dollars in savings
One dollar in savings and one in checking
Two dollars in checking

there are 
2 states with both dollars in the same account

but only one in which they are in different 
accounts

This bank account argument above gives the counting 
for boson states



Bank account analogy

Consider now that you have two bank accounts 
a checking account (a) and a savings account (b)

but you are living in the Protectorate of Pauliana
where you may have no more than one dollar in each 
bank account 

Then for your two dollars
there is only one possible state

one dollar in savings
one dollar in checking

This gives the counting for fermion states



Counting states with two “bank accounts”

For the case of identical fermions 
there is only one possible state for our two dollars

with each dollar being in a different bank account 
For identical bosons 

there are three possible states for our two dollars
in two of which both are in the same bank account
and in one of which they are in different bank accounts

For non-identical (classical) particles
there are four possible states for our dollar bills

in two of which both are in the same bank account
and in two of which they are in different bank accounts



Identical particles

This “identicality” of quantum 
mechanical particles 
changes the way that they 

distribute themselves among 
available states 
when we think about thermal 
distributions 
which has major consequences 

for devices of many kinds




