

Particles, atoms, and crystals

3

Many-electron atoms

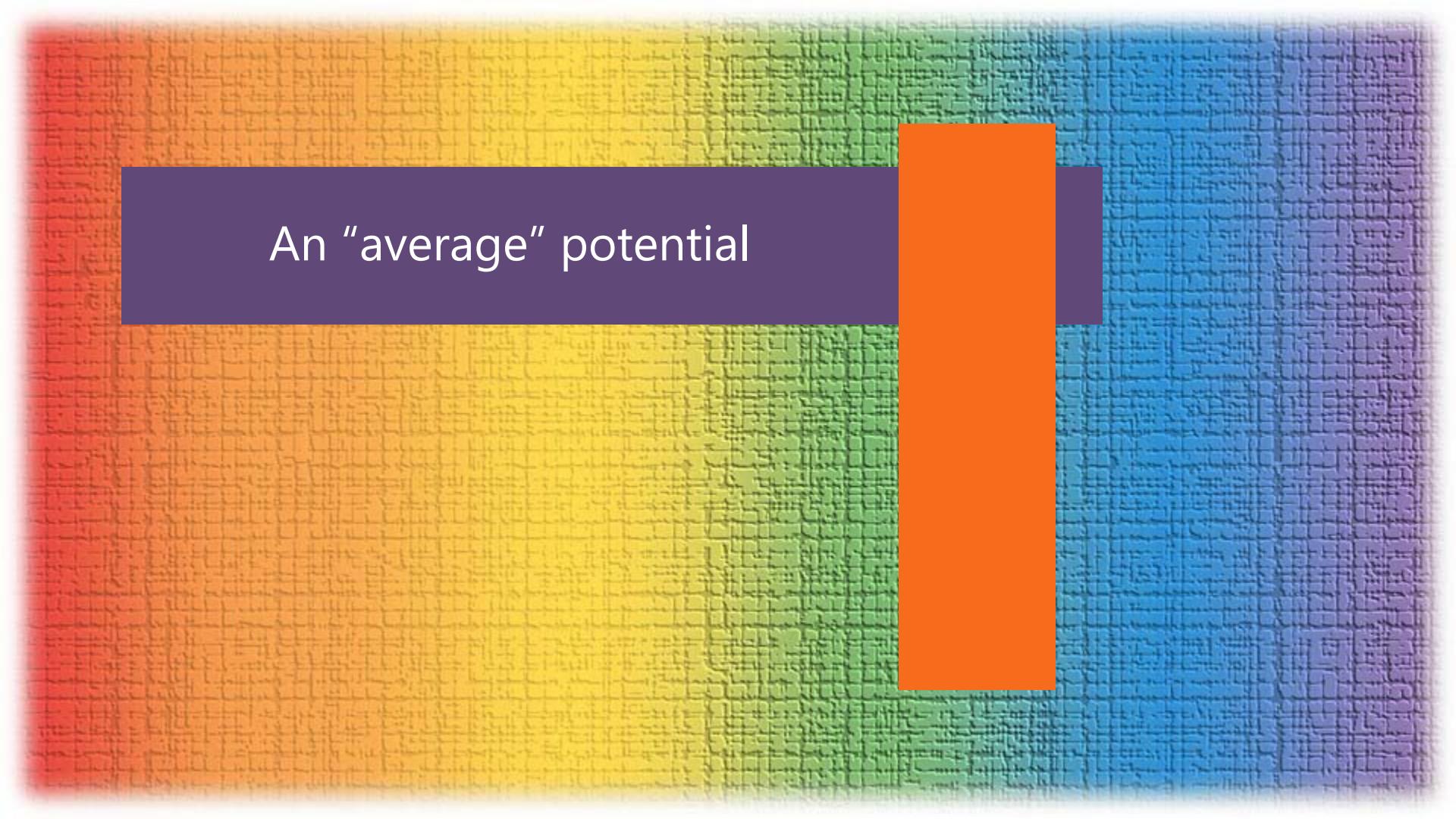
Modern physics for engineers

David Miller

Many-electron atoms

All atoms other than hydrogen
have some larger integer number
 Z , the “atomic number”
of protons in the nucleus
and hence of positive charges
and also Z electrons

Electrons progressively fill the
“orbitals”
in order of increasing energy
the “Aufbau” principle



An “average” potential

Many-electron atoms

Many-electron atoms are complicated because the electrons all interact with one another through their Coulomb repulsion

A useful approach is to presume that each electron sees an average potential energy from all the other electrons together with the potential from the nucleus

Many-electron atoms

That average potential is usually
determined iteratively
which can be a complex process
Setting the details aside

we can still approximately
understand how many-electron
atoms behave

Central potentials

Central potentials

As a reasonable first approximation
we can presume that the
distribution of charge density from
all the other electrons
is approximately spherically
symmetric
at least in the core levels of the
atom
giving a so-called “central
potential”

Central potentials

As a result

even in more complicated atoms
we can continue to use the
spherical harmonics
as the first approximation to the
angular form of the orbitals
and use the “hydrogen atom”
labels for them
e.g., s, p, d, f, etc.

Radial functions

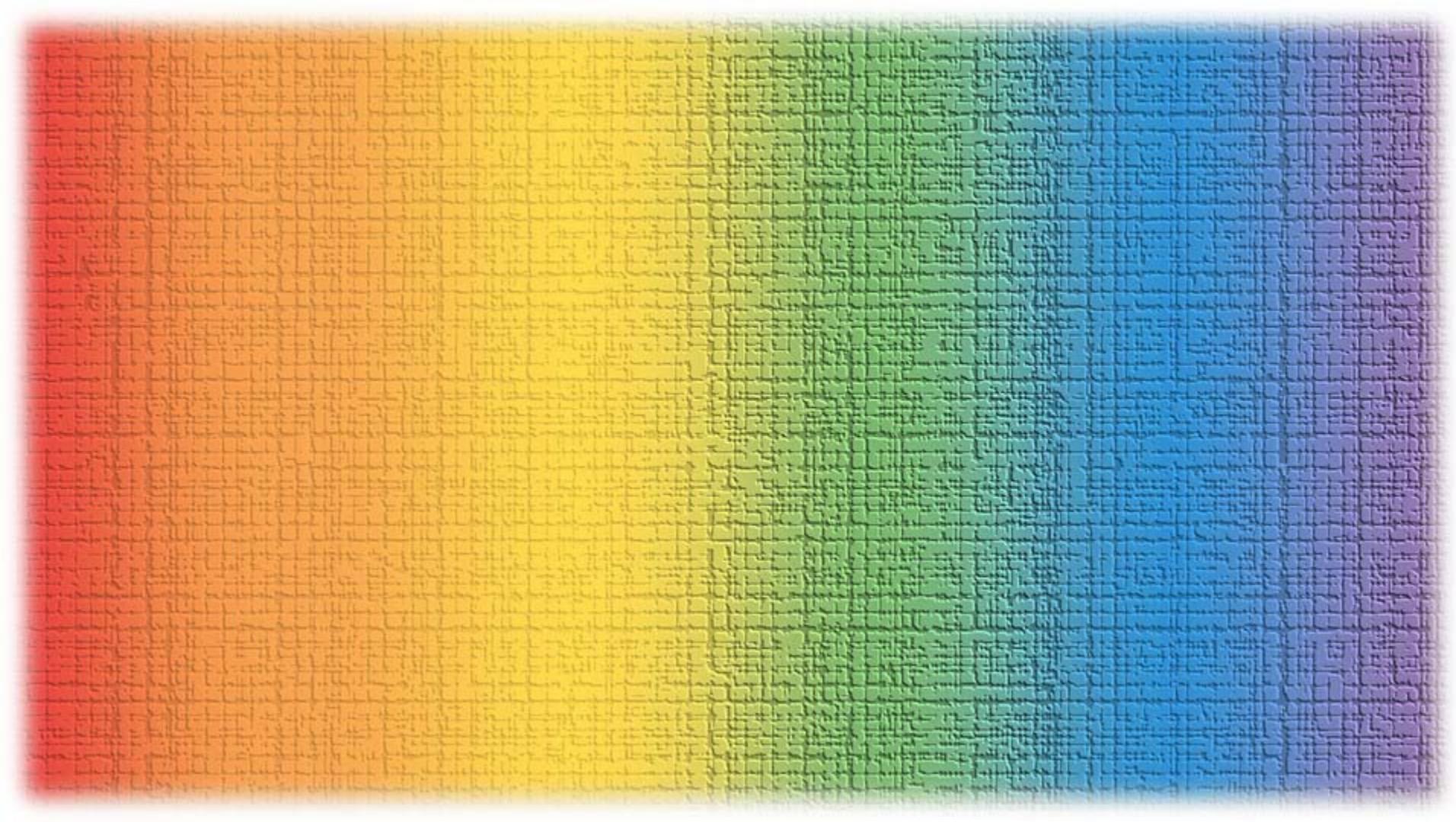
Radial functions

For many-electron atoms, the radial functions
are different from the hydrogen ones

One electron now sees both the charge on the nucleus and the charge from the other electrons in the atom

Radial functions

But we still expect a set of radial functions indexed by some quantum number n with behaviors that are broadly similar to those of the hydrogen atom radial functions for example, in the number of “zeros” and in the relation between the allowed values of l and m and the quantum number n



Particles, atoms, and crystals

3

Filling “shells” in atoms

Modern physics for engineers

David Miller

Filling of “shells”

For a large Z

first, we would expect two electrons
(of opposite spin)

to be very tightly bound in 1s-like
states

because of the very strong
attraction to the Z positive
charges of the nucleus

Filling of "shells"

For the next electrons we might add

those first two electrons partially
"screen" or cancel the positive
charge on the nucleus

so the next 2s-like and 2p-like
orbitals will be less tightly bound

Orbitals with larger l

The 2p orbitals

are slightly farther from the nucleus
than the 2s orbitals

so the nucleus' positive charge is
more screened

so they are less tightly bound than
the 2s orbitals

This behavior is general for orbitals of
progressively larger l

so now orbitals of different l
do not have the same energy any
more

Shells and filling rules

If we neglected the different energies for different l

we would expect “shells” of a given n to fill up

2 1s electrons in the first $n = 1$ shell

8 in the second

2 2s electrons and 6 2p electrons

18 in the third

2 3s electrons, 6 3p electrons, 10 3d electrons

and so on

Shells and filling rules

Because of the different energies for different l
the states do not quite fill up in this order

One simple rule that is mostly but not perfectly followed:

states are filled up starting from smaller values of $n + l$ and

proceeding to larger values of $n + l$
with the states of lower n being filled first for each particular value of the sum $n + l$

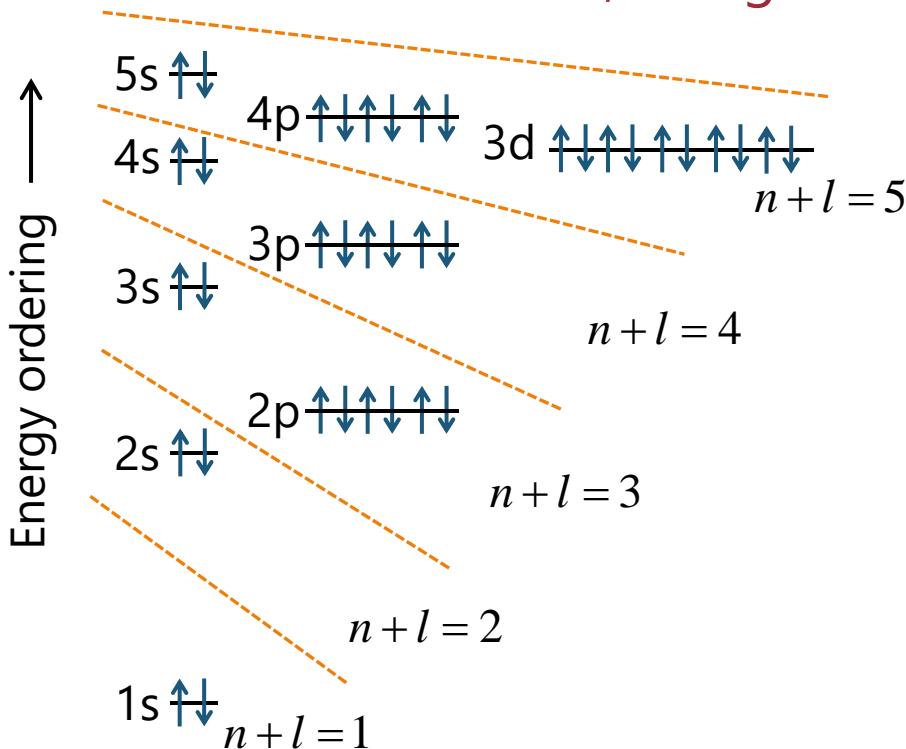
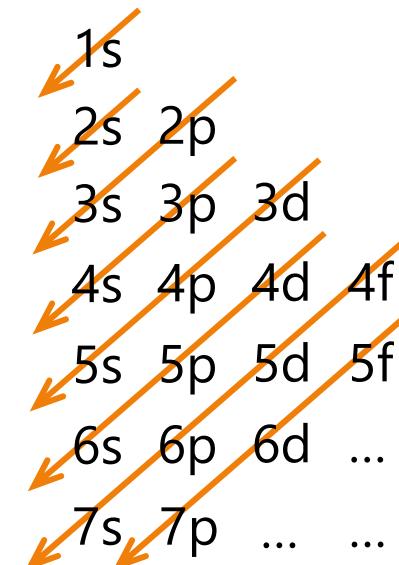
This is Madelung's rule

Madelung's rule

Madelung's rule

Fill states from smaller $n + l$ to larger $n + l$

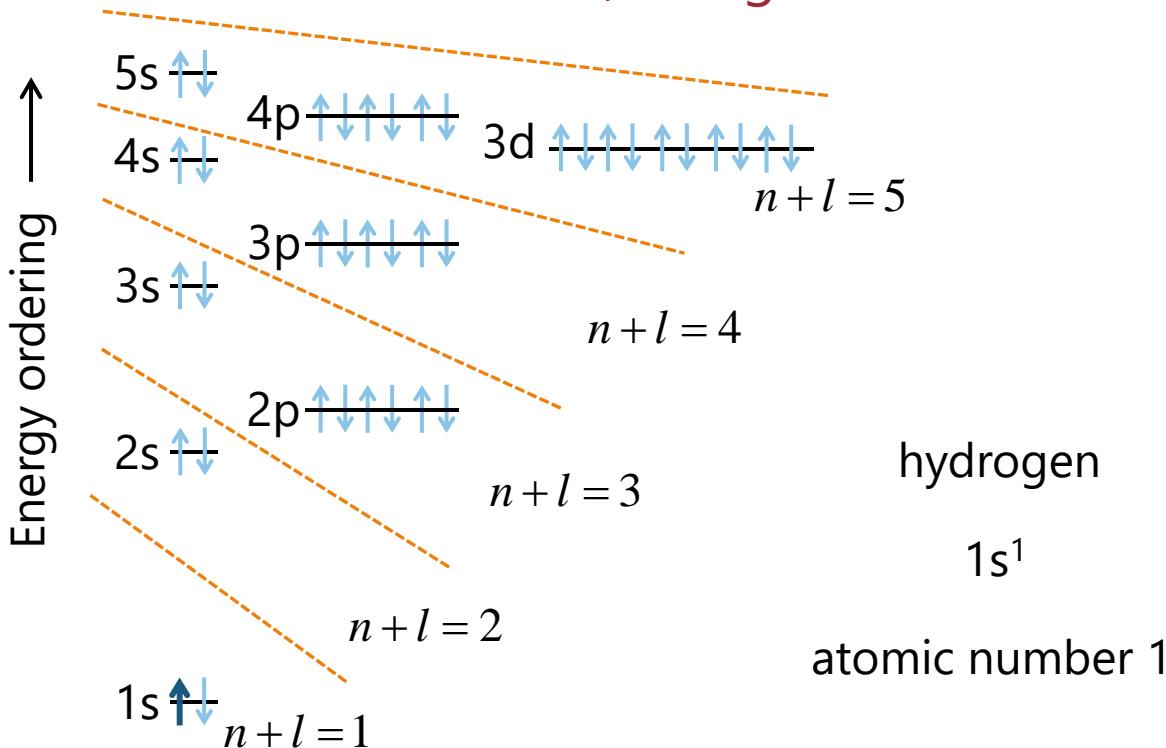
And within that, filling states from smaller n to larger n



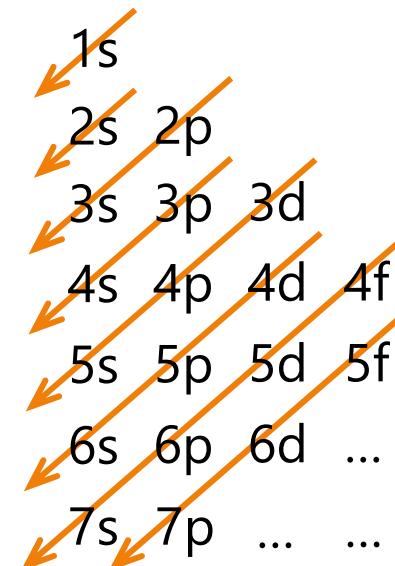
Madelung's rule

Fill states from smaller $n + l$ to larger $n + l$

And within that, filling states from smaller n to larger n



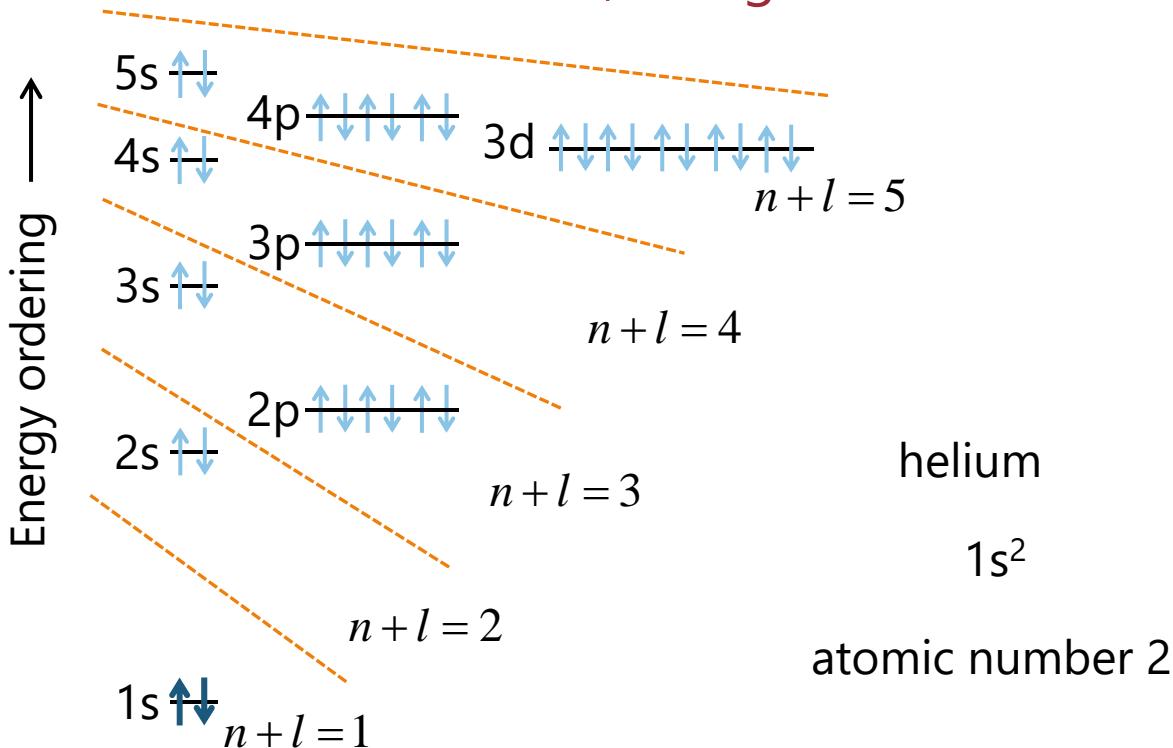
hydrogen
 $1s^1$
atomic number 1



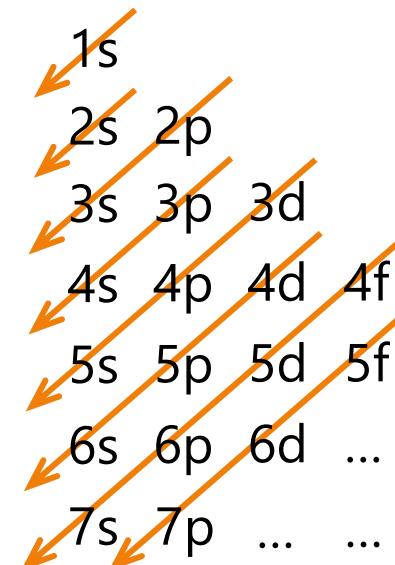
Madelung's rule

Fill states from smaller $n + l$ to larger $n + l$

And within that, filling states from smaller n to larger n



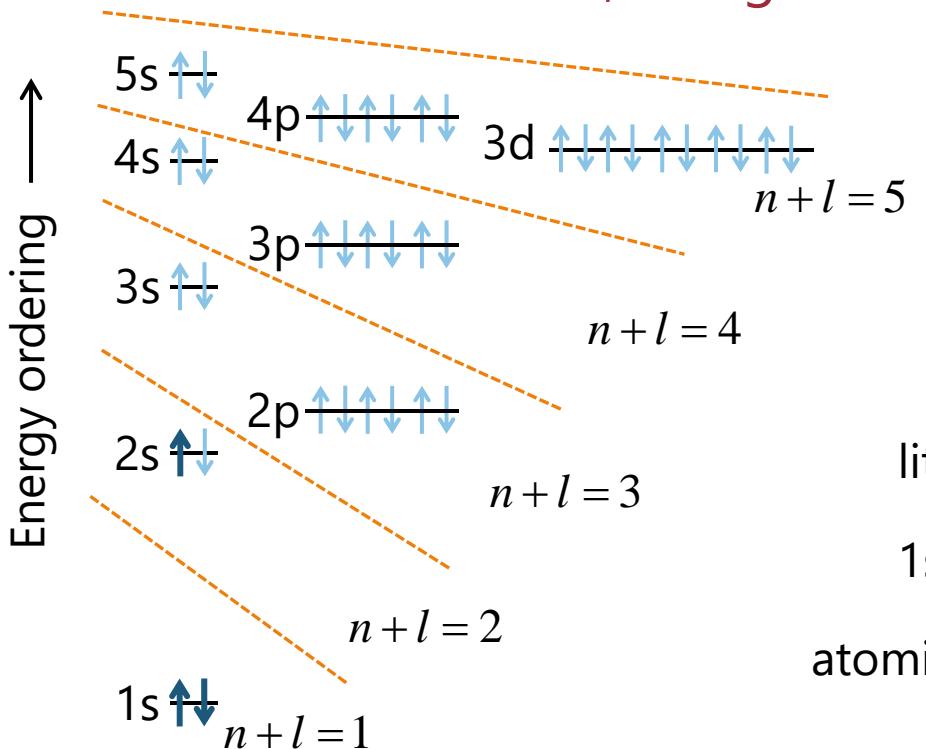
helium
 $1s^2$
atomic number 2



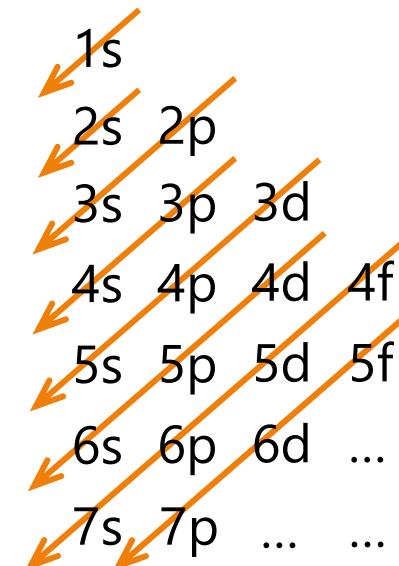
Madelung's rule

Fill states from smaller $n + l$ to larger $n + l$

And within that, filling states from smaller n to larger n



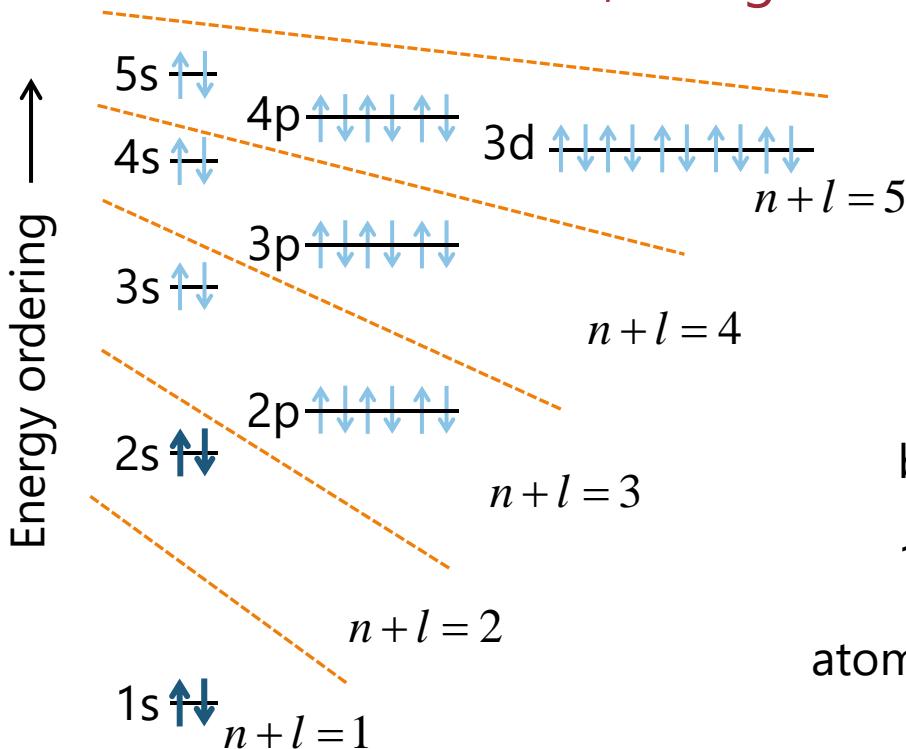
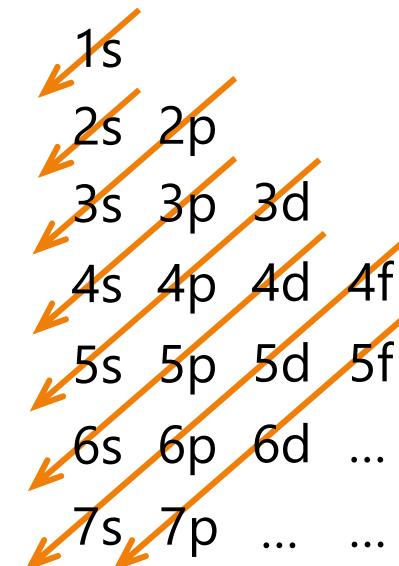
lithium
atomic number 3
 $1s^2 2s^1$



Madelung's rule

Fill states from smaller $n + l$ to larger $n + l$

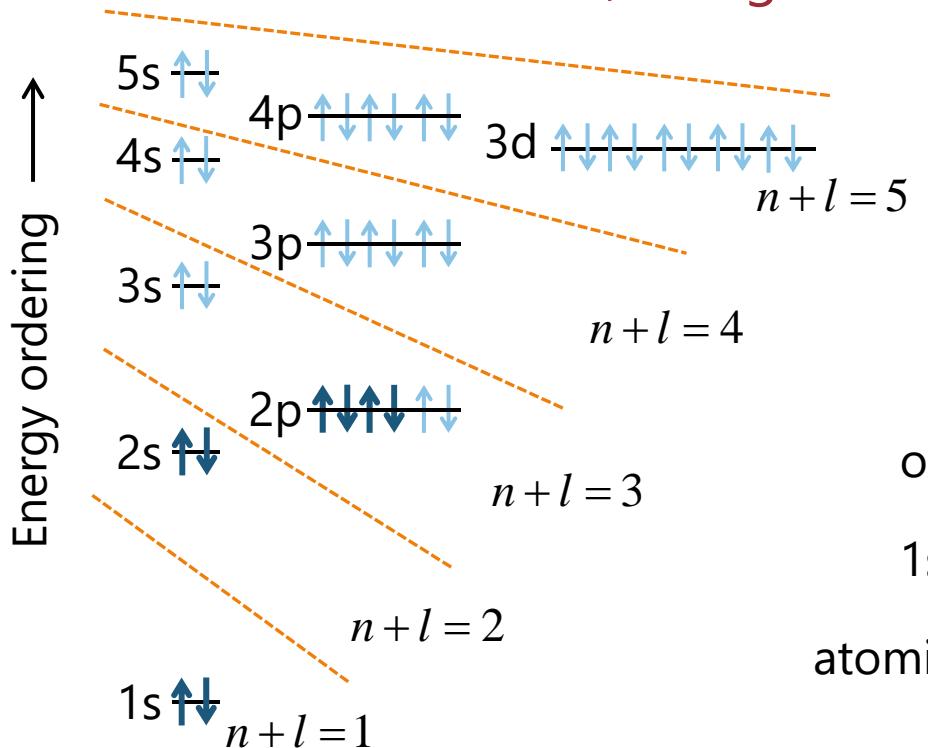
And within that, filling states from smaller n to larger n



Madelung's rule

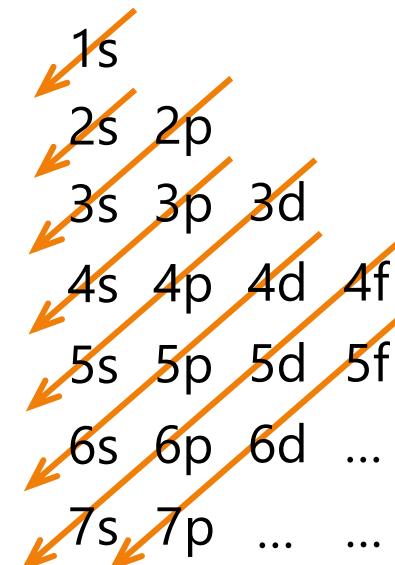
Fill states from smaller $n + l$ to larger $n + l$

And within that, filling states from smaller n to larger n



oxygen
atomic number 8

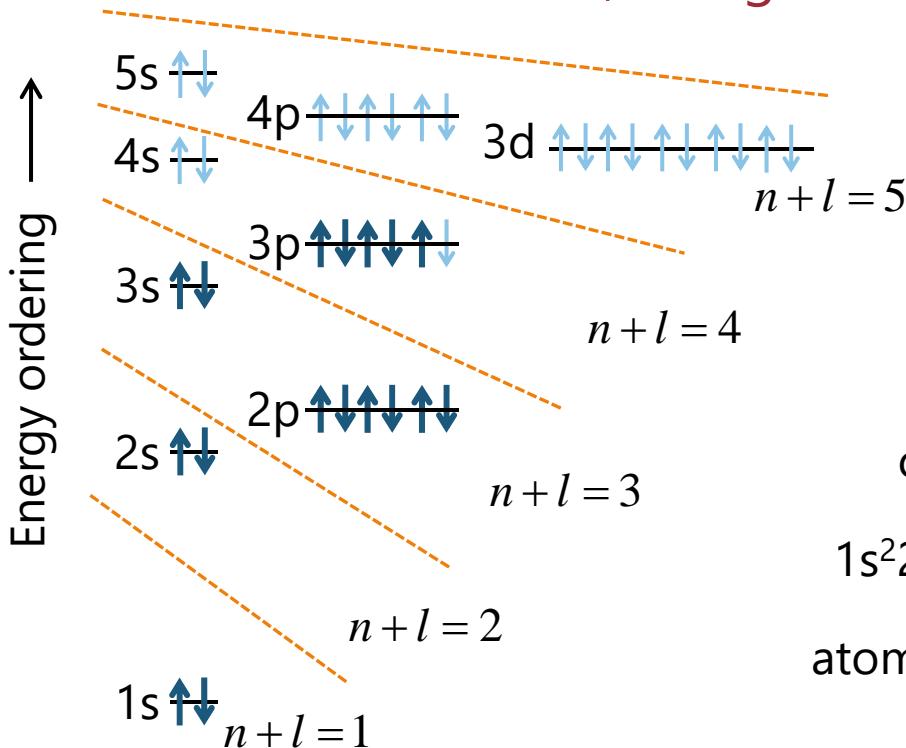
$1s^2 2s^2 2p^4$



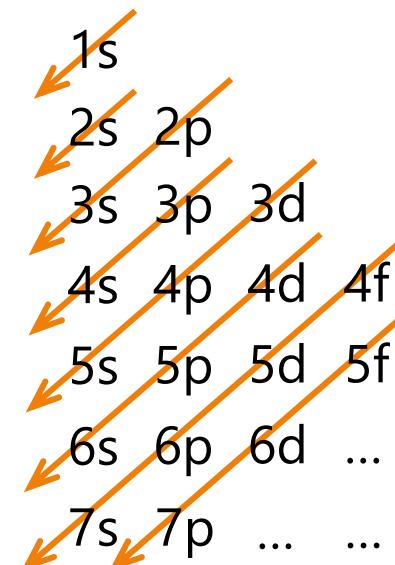
Madelung's rule

Fill states from smaller $n + l$ to larger $n + l$

And within that, filling states from smaller n to larger n



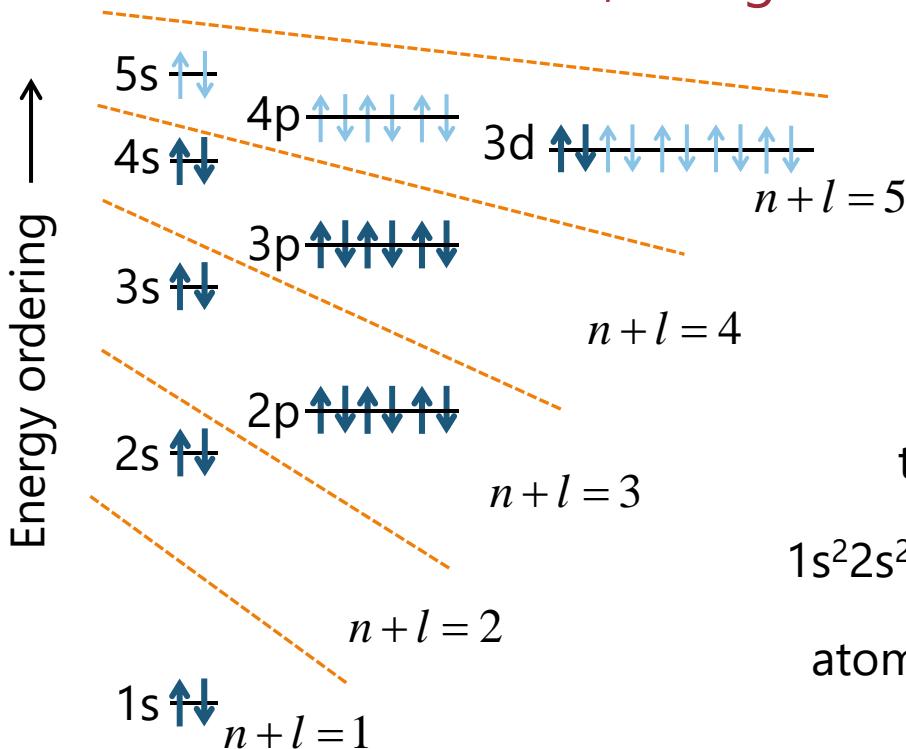
chlorine
 $1s^2 2s^2 2p^6 3s^2 3p^5$
atomic number 17



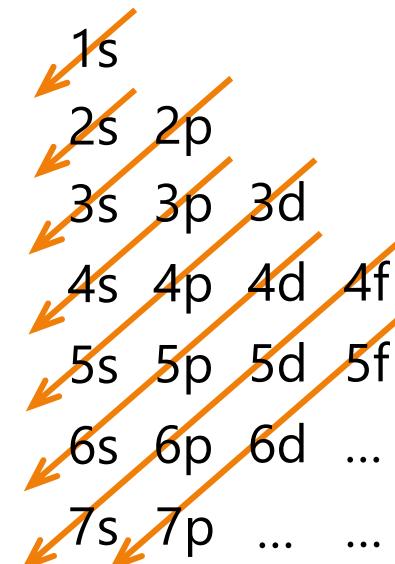
Madelung's rule

Fill states from smaller $n + l$ to larger $n + l$

And within that, filling states from smaller n to larger n



titanium
 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$
atomic number 22



“Noble gas” shorthand for atomic configurations

To save some writing

and because the “filled” inner shells of higher numbered atoms have the same configurations

we can use the atomic configurations of the noble gasses as a shorthand notation

$$[\text{He}] \equiv 1s^2$$

$$[\text{Ne}] \equiv 1s^2 2s^2 2p^6 \equiv [\text{He}] 2s^2 2p^6$$

$$[\text{Ar}] \equiv 1s^2 2s^2 2p^6 3s^2 3p^6 \equiv [\text{Ne}] 3s^2 3p^6$$

$$[\text{Kr}] \equiv 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 \equiv [\text{Ar}] 3d^{10} 4s^2 4p^6$$

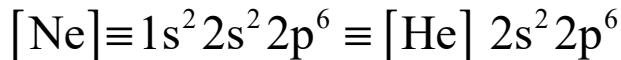
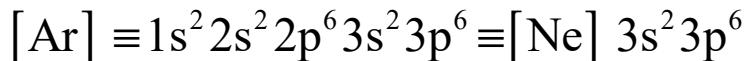
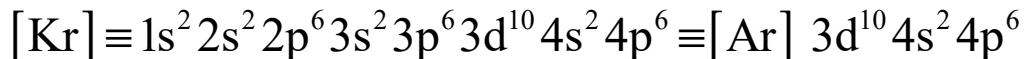
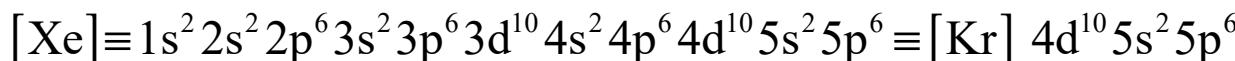
$$[\text{Xe}] \equiv 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 \equiv [\text{Kr}] 4d^{10} 5s^2 5p^6$$

Order of notation for atomic configurations

The order for the notation does not matter

The configuration $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$ for titanium is in "Madelung's rule" order

The noble gas configurations are in order of increasing n
and then in order of increasing l within each group
with the same n



Multi-electron atoms and chemistry

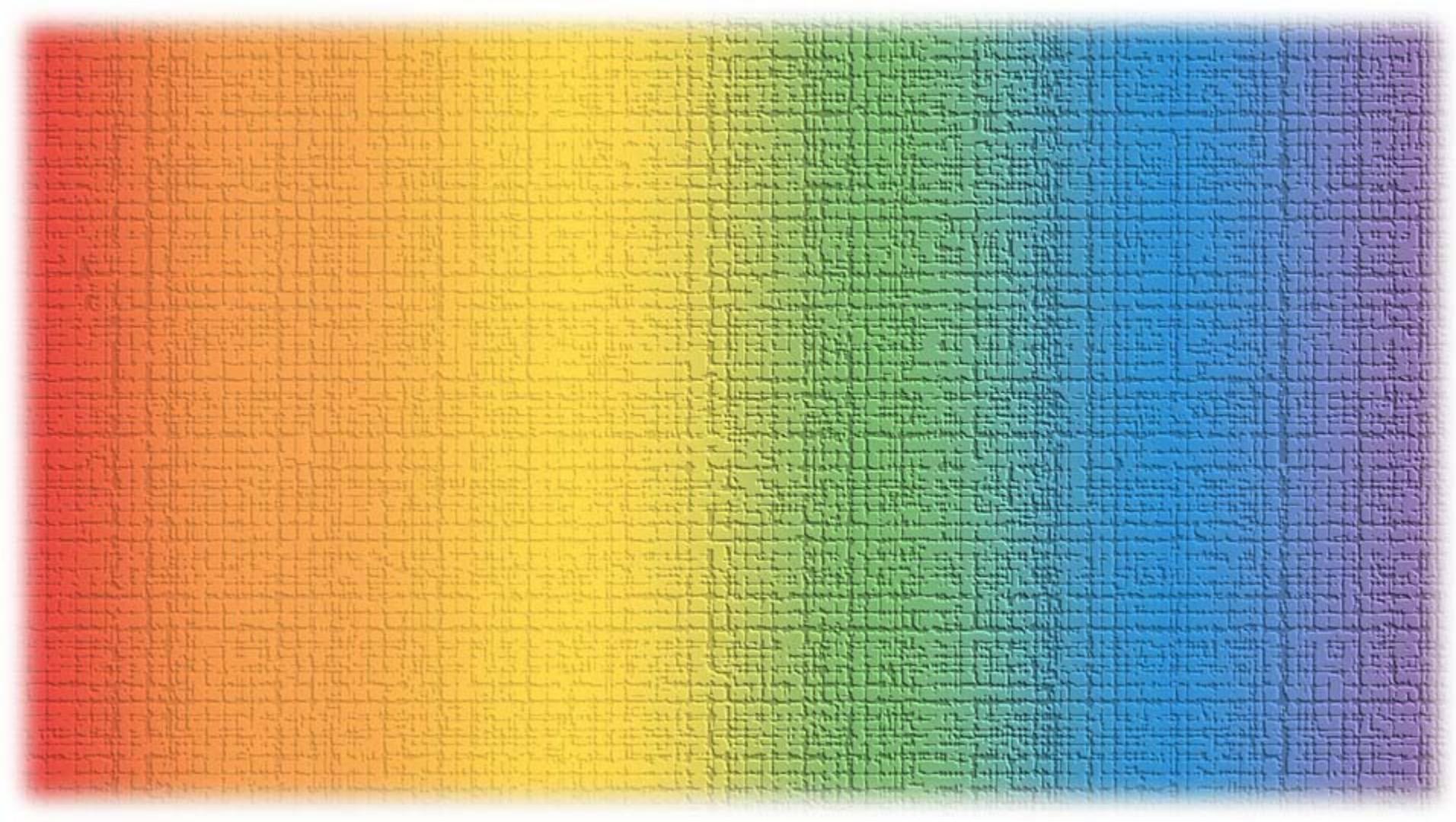
This approach to multi-electron atoms

largely explains the electronic configuration of atoms

and why it is the electrons in the last or “valence” “shell”

that participate in most of the chemical reactions

those being the least tightly bound electrons in the atom



Particles, atoms, and crystals

3

Fermions and bosons

Modern physics for engineers

David Miller

Spin and elementary particles

Spin and elementary particles

Spin is an intrinsic property of all
“elementary” particles

Its magnitude is fixed for each type
of particle

Particles divide into two categories

fermions

which have half-integer spin

bosons

which have integer spin

Spin and elementary particles

Of the various particles we come
across in daily life
electrons, protons, and neutrons

all have spin $1/2$

and are fermions

photons

have spin 1

and are bosons

Spin and elementary particles

All of the “elementary particles”
that is, ones that are not apparently
made up out of other particles
appear to have either spin $\frac{1}{2}$ or spin 1
with the exceptions of
the Higgs boson
which is thought to have spin 0
and the graviton
which is posited to have spin 2

Compound particles

Compound particles

We can have compound “particles”
whose spins are sums and/or differences
of their constituent particles

Protons and neutrons are not strictly
elementary particles

They are each made of three “quarks”
Quarks themselves are fermions

The helium-4 nucleus (the alpha particle)
is made of 4 spin $\frac{1}{2}$ particles
two protons and two neutrons
and is a boson

Fermions, bosons and Pauli exclusion

Fermions, bosons and Pauli exclusion

Fermions obey Pauli exclusion
but bosons do not

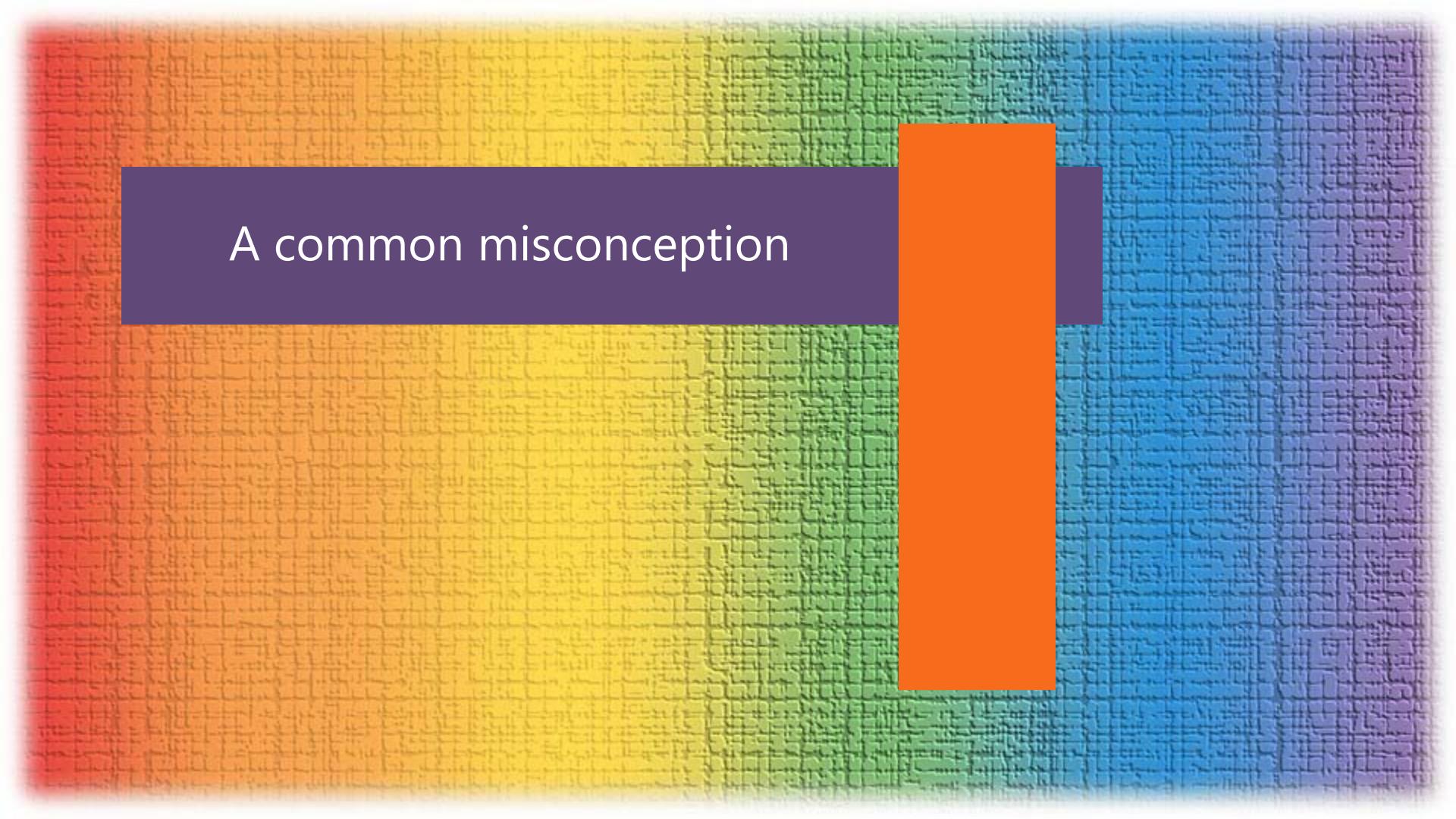
So, we can have any number of
bosons all in the same state

One important consequence
the laser

which can have very large
numbers of photons

all in the same “mode”

i.e., the same light beam



A common misconception

A common misconception

One common misconception is to think that

“electrons interact because they are fermions”

and

“photons do not interact because they are bosons”

A common misconception

In fact

electrons interact

because they are charged

photons have extremely weak
interactions

because they are not charged

Helium-4 nuclei

which are bosons

would interact very strongly

A common misconception

Part of the confusion is that we say
that

we can have multiple bosons in the
same state

For strongly interacting bosons like
helium-4 nuclei

that is indeed still true

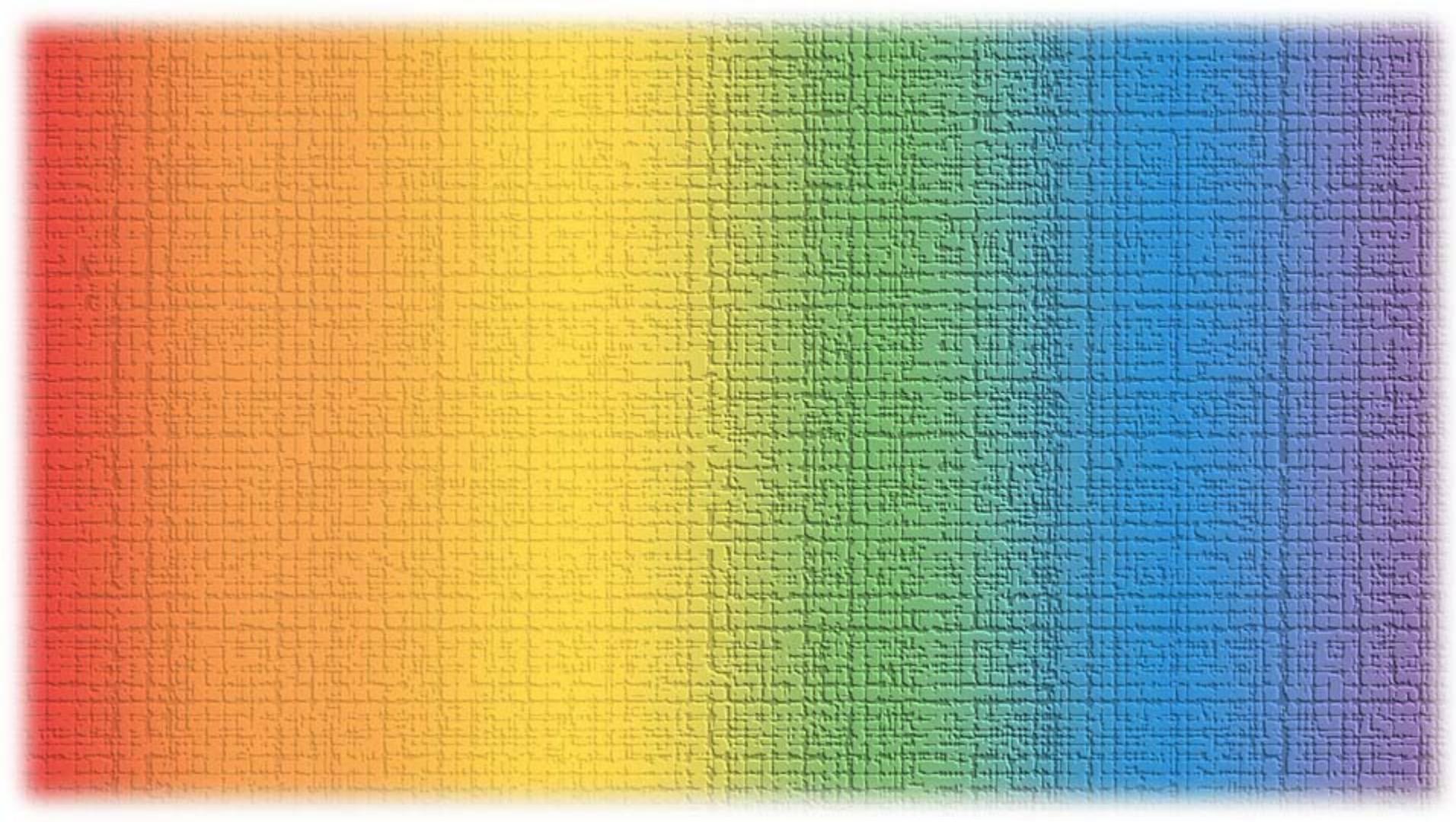
But ...

A common misconception

An eigenstate occupied by some large number of helium-4 nuclei would not necessarily be the same eigenstate that we would put one helium-4 nucleus in

The interaction between the bosons

would change the eigenstates of the system



Particles, atoms, and crystals

3

Identical particles

Modern physics for engineers

David Miller

Identical particles

We think of classical particles as
being
“non-identical”

One brick is slightly different from
another brick

Quantum mechanical particles of a
given type

are absolutely identical to one
another

with no way whatsoever of telling
them apart

An analogy for identical particles

This means that the counting of possible states of multiple identical quantum particles
is different from that of classical particles

This kind of perfectly “identical” entities

is actually known to us in our everyday world

An analogy will help!

Identical particles

Dollar bills are *not* identical

They each have different serial numbers

Dollars in bank accounts
are identical

It is not meaningful to ask which dollar is in which account

This is the sense that quantum mechanical particles of a given kind are identical

Bank account analogy

Suppose you have

an antique jar (*a*) in the kitchen for
your spending money

and a box (*b*) under the bed for
your savings money

You put your dollar bills
each labeled with a unique number
into either the antique jar (*a*) or
the box (*b*)

a

b

Bank account analogy

This is like the quantum mechanical situation of non-identical particles (the dollar bills) and

different single-particle states or modes (*a* or *b*)

into which they can be put – the jar or the box

a

b

Bank account analogy

If I have two dollar bills

then there are four possible situations

i.e., states of the entire system

of two dollar bills in the antique jar and/or the box

a

b

Bank account analogy

bill 1 in the box and bill 2 in the box

a

b

Bank account analogy

bill 1 in the box and bill 2 in the box

bill 1 in the box and bill 2 in the
antique jar

a

b

Bank account analogy

bill 1 in the box and bill 2 in the box

bill 1 in the box and bill 2 in the
antique jar

bill 1 in the antique jar and bill 2 in
the box

a

b

Bank account analogy

bill 1 in the box and bill 2 in the box

bill 1 in the box and bill 2 in the
antique jar

bill 1 in the antique jar and bill 2 in
the box

bill 1 in the antique jar and bill 2 in
the antique jar

a

b

Bank account analogy

bill 1 in the box and bill 2 in the box

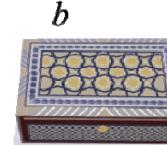
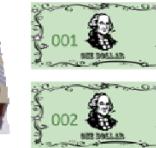
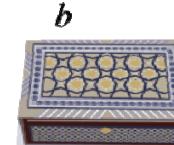
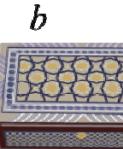
bill 1 in the box and bill 2 in the antique jar

bill 1 in the antique jar and bill 2 in the box

bill 1 in the antique jar and bill 2 in the antique jar

making four states altogether

This reproduces the counting for non-identical particles



Bank account analogy

Consider next that you have two bank accounts
a checking account (a), and a savings account (b)

You may still have the same amount of money

\$2

You may know how much money you have in each account
but the dollars are themselves identical in the accounts

So now there are only three possible states

Two dollars in savings

One dollar in savings and one in checking

Two dollars in checking

Bank account analogy

Note that, in these three possible states

Two dollars in savings

One dollar in savings and one in checking

Two dollars in checking

there are

2 states with both dollars in the same account

but only one in which they are in different
accounts

This bank account argument above gives the counting
for boson states

Bank account analogy

Consider now that you have two bank accounts
a checking account (*a*) and a savings account (*b*)
but you are living in the Protectorate of Pauliana
where you may have no more than one dollar in each
bank account

Then for your two dollars
there is only one possible state
one dollar in savings
one dollar in checking

This gives the counting for fermion states

Counting states with two “bank accounts”

For the case of identical fermions

there is only one possible state for our two dollars
with each dollar being in a different bank account

For identical bosons

there are three possible states for our two dollars
in two of which both are in the same bank account
and in one of which they are in different bank accounts

For non-identical (classical) particles

there are four possible states for our dollar bills
in two of which both are in the same bank account
and in two of which they are in different bank accounts

Identical particles

This “identicality” of quantum mechanical particles changes the way that they distribute themselves among available states when we think about thermal distributions which has major consequences for devices of many kinds

