
David MillerModern physics for engineers

Particles, atoms, and crystals 
5

Band structures in crystals



Band structures in crystals

A small lump of crystal material
could contain many more than 1020

atoms 
Directly calculating the properties of 

such a large collection of atoms 
would be impossible 

Crystals, however
are naturally very regular

which can simplify the problem



Band structures in crystals

Two particular approaches
taken together 

the one-electron approximation 
and the Bloch theorem 

give some very useful models, 
including
band structures 

and effective masses



One-electron approximation



One-electron approximation

As for many-electron atoms
in a crystal, we presume, as a first approximation

each electron sees an average potential from all 
the other electrons and nuclei

In a crystal, because it is periodic
we presume that average potential

is therefore periodic in the same way also
For example, for a one-dimensional periodic structure

we presume, for a period a
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One-electron approximation

We can keep on extending this relation 
for subsequent periods 

so we can write for our periodic potential

where m is an integer 
We could also generalize this for 

two-dimensional or three-dimensional periodic 
structures 

and corresponding periodic potentials
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One-electron approximation

So we can write a Schrödinger equation 
for just one electron

with a periodic potential
and hence an effective equation

This is certainly an approximation
and many phenomena are not covered by it
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One-electron approximation

Example effects we are not covering 
completely include
scattering of electrons off one another

or from the nuclei (or vibrations of 
them)
both of which cause electrical 

resistance 
Often, though, we can model these

starting with this one-electron model 
and adding these other effects as 

“perturbations” 



One-electron approximation

One important consequence of this 
one-electron approach 
is that it allows a simple way of 

looking at crystals
through what is called the “Bloch 
theorem” 
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The Bloch theorem



Periodic boundary conditions

We could generalize our “standing 
wave” solutions 
to larger structures

choosing some simple 
approximation to handle 
the “end effects” at the edge of 

finite structures



Periodic boundary conditions

An alternative approach
which leads to particularly useful 

mathematics
is pretending we are solving for a 
chain of atoms
connected in a loop or ring

which is rigorously correct for, 
e.g., 
a benzene ring of 6 carbon 

atoms



Periodic boundary conditions

In one dimension, we could 
argue as follows 
Suppose we have a long 

chain of N equally spaced 
atoms
spaced by some distance a

and that we join the two 
ends of the chain 
together 

a

12N 



Periodic boundary conditions

With z as the distance along 
this loop
then on this loop

the potential can be written 

where m is any integer 
even possibly an integer 

much larger than N

a
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Periodic boundary conditions

This expression 
is just like the one for the infinite 

crystal
If this chain is very long 

its internal properties will not be 
substantially different from an 
infinitely long chain
so this is a good model

that gives us a finite system
while keeping it periodic

a   P PV z ma V z 

12N 



Periodic boundary conditions

This loop gives a boundary condition
We do want the wavefunction to be 

single-valued
otherwise how could we 
differentiate it, evaluate its 
squared modulus, etc. 

So, going round the loop, we must 
get back to where we started

a “periodic boundary condition” 

a
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Periodic boundary conditions

In quantum mechanics
we also want any measurable 

quantity
such as electron density

to be the same in every unit 
cell of the crystal
so we also require

a
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The Bloch theorem

We can satisfy both of these conditions

if we require
where the “unit cell function”

is the same in every unit cell, i.e.,
and k takes on any of a set of N values that are 

spaced by an amount
conventionally written as

with  
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Allowed values of k

Technically, the list

with

has one too many elements (i.e., N + 1)
and is written this way just for symmetry

We can take one element off one end if we like
Also, this list presumes N is even

which is not a necessary restriction
Neither of these would matter for large N
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The Bloch theorem

The Bloch theorem (in one dimension) 
can be viewed as the statement that

solutions for the quantum mechanical wavefunctions 
in a periodic potential of period a

can be written in the (Bloch) form

where the unit cell function is the same in every unit 
cell, i.e., 

and                with 
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Difference between standing and “Bloch” waves

(i) the Bloch form corresponds to traveling wave “envelope 
functions”             , not standing wave envelopes

(ii) standing wave “envelopes” correspond to fitting integer 
numbers of half-waves between the ends
whereas these Bloch form solutions fit integer numbers of 

whole waves round the ring
Propagating waves in opposite directions count as 
different solutions

giving the same number of different solutions overall 
(iii) solutions in the Bloch form will in general be complex

 exp ikz
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Solving with periodic boundary conditions



Solving with periodic boundary conditions

For our potential wells
we can take

the left of the “unit cell” at 
position zL
for example, in the middle 
of the barrier on the left

and the right of the “unit 
cell” at position
so, in the middle of the 
barrier on the right

R Lz z a 
Lz R Lz z a 

a



Solving with periodic boundary conditions

Now, we have, with simple algebra

This result
is an equivalent way of stating the Bloch theorem

It is saying that the wavefunction in one unit cell
is the same as in the adjacent unit cell

just “phase shifted” by   
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Solving with periodic boundary conditions

With this result
our boundary conditions for solving the Schrödinger 
equation can be rewritten as

where our notation for the wavefunction    
indicates explicitly a specific “band” q

and a specific one of the allowed values of k
which will give solutions in the form

     expz a ika z  

     , ,expq k R q k Lz ika z 

 ,q k Rz

     
, , expq k q kz u z ikz 



Example solution in Bloch form

well width 1.2 nm, barrier width 0.15 nm (so a = 1.35 nm) barrier height 1 eV, for 
the “second” level in band 1 and using a k value of 10.25 / 0.582 nma 

 
1,Re ku z  

0
“unit cell”

  Re exp ikz
0

“propagating 
wave envelope”

 
1,Re k z  

0
“overall wave in 

Bloch form”



Bloch solutions

Effectively, for each k
we are solving for the unit cell function

and a set of associated eigenenergies
The Bloch theorem has transformed a difficult 

problem of 
solving for all the states of a system of many atoms

into solving for the states of 
just one “unit cell”

 
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Bloch solutions

This is more complicated than the hydrogen atom 
because 

(i) we have to guess what the potential energy is
possibly iterating to get a form that gives results 
that agree with experiments 

(ii) we have to solve the problem again for each k
though we can use the same potential

Such “band structure” calculations are a major branch 
of solid-state physics




