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Modern physics for engineers




Band structures in crystals
5
A small lump of crystal material

could contain many more than 10%°
atoms

Directly calculating the properties of
such a large collection of atoms
would be impossible
Crystals, however
are naturally very reqgular
which can simplify the problem



Band structures in crystals
5
Two particular approaches

taken together
the one-electron approximation
and the Bloch theorem

give some very useful models,
including

band structures
and effective masses



.m..u.__u ﬂ hnﬂﬂ-&uw“..
.&—Hﬁ-ﬂmm | =X y
an :

E..

IoN

3
qV)
£
x
O
—
(OR
(OR
qV)
-
O
—
3=
O
Q
v
()
-
@)




One-electron approximation
N 1

As for many-electron atoms
In a crystal, we presume, as a first approximation

each electron sees an average potential from all
the other electrons and nucleli

In a crystal, because it is periodic
we presume that average potential V, (r)
Is therefore periodic in the same way also
For example, for a one-dimensional periodic structure
we presume, for a period a

V,(z+a)=V,(2)



One-electron approximation
N 1

We can keep on extending this relation V,(z+a)=V,(z)
for subsequent periods
V.(z+2a)=V,(z+a)=V,(a)
so we can write for our periodic potential
Vo (z+ma)=V,(z)
where m is an integer
We could also generalize this for

two-dimensional or three-dimensional periodic
structures

and corresponding periodic potentials



One-electron approximation
N 1

So we can write a Schrodinger equation
for just one electron
with a periodic potential V, (r)
and hence an effective equation
2

Vi (r)+V, (N (r)=Ey(r)

2m

0]

This is certainly an approximation
and many phenomena are not covered by it



One-electron approximation
I
Example effects we are not covering
completely include

scattering of electrons off one another

or from the nuclei (or vibrations of
them)

both of which cause electrical
resistance

Often, though, we can model these
starting with this one-electron model

and adding these other effects as
"perturbations”



One-electron approximation

5

One important consequence of this
one-electron approach

Is that it allows a simple way of
looking at crystals

through what is called the “Bloch
theorem”
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Periodic boundary conditions
5
We could generalize our “standing
wave"” solutions

to larger structures

choosing some simple
approximation to handle
the “end effects” at the edge of
finite structures



Periodic boundary conditions
5
An alternative approach

which leads to particularly useful
mathematics

Is pretending we are solving for a
chain of atoms

connected in a loop or ring
which is rigorously correct for,
e.qg.,
a benzene ring of 6 carbon
atoms



Periodic boundary conditions
B

In one dimension, we could
argue as follows

Suppose we have a long
chain of N equally spaced
atoms

spaced by some distance a

and that we join the two
ends of the chain
together

N =12



Periodic boundary conditions
B

With z as the distance along
this loop
then on this loop
the potential can be written
Vo (z+ma)=V,(z)
where m is any integer

even possibly an integer
much larger than N

N =12



Periodic boundary conditions
N
This expression V,(z+ma)=V,(z)
is just like the one for the infinite
crystal
If this chain is very long
Its internal properties will not be
substantially different from an
infinitely long chain
so this is a good model
that gives us a finite system

while keeping it periodic

N =12



Periodic boundary conditions
e
This loop gives a boundary condition
We do want the wavefunction to be
single-valued
otherwise how could we
differentiate it, evaluate its
squared modulus, etc.

So, going round the loop, we must
get back to where we started

w(z)=w(z+Na)
a "periodic boundary condition”

N =12



Periodic boundary conditions
N
In quantum mechanics
we also want any measurable
quantity
such as electron density

to be the same in every unit
cell of the crystal

so we also require

w (z+a) =|y(2)f

N =12



The Bloch theorem
N

We can satisfy both of these conditions
w(z) =w(z+Na) \w(z+a)\2 =\w(z)\2
if we require w(z)=u(z)exp(ikz)
where the “unit cell function” u(z)
is the same in every unit cell, i.e, u(z+a)=u(z)
and k takes on any of a set of N values that are
spaced by an amount 27/ Na
conventionally written as

k=2 ith n=0+142 .+
Na 2



Allowed values of k
N
Technically, the list
(=27 ith n=04+142 .+
Na 2

has one too many elements (i.e., N + 1)
and is written this way just for symmetry
We can take one element off one end if we like
Also, this list presumes N is even
which is not a necessary restriction
Neither of these would matter for large N



The Bloch theorem
N
The Bloch theorem (in one dimension)

can be viewed as the statement that

solutions for the quantum mechanical wavefunctions \
in a periodic potential of period a

can be written in the (Bloch) form
w(z)=u(z)exp(ikz)
where the unit cell function is the same in every unit

cell, i.e, u(z+a)=u(z)

and k:2n—7r with n:O,J_rl,J_rZ,...J_rE
Na 2




Difference between standing and "Bloch” waves
N

(i) the Bloch form corresponds to traveling wave “envelope
functions”exp(ikz), not standing wave envelopes

(i) standing wave “envelopes” correspond to fitting integer
numbers of half-waves between the ends

whereas these Bloch form solutions fit integer numbers of
whole waves round the ring

Propagating waves in opposite directions count as
different solutions

giving the same number of different solutions overall
(iii) solutions in the Bloch form will in general be complex
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Solving with periodic boundary conditions
B
For our potential wells
we can take
the left of the “unit cell” at
position z,
for example, in the middle
of the barrier on the left | |
and the right of the “unit L
cell” at position Zz =2, +a a
so, in the middle of the Z lp =1 +4a
barrier on the right

N
\ 4



Solving with periodic boundary conditions
N

Now, we have, with simple algebra
w(z+a)=u(z+a)explik(z+a)]
=u(z)exp(ikz) exp(ika)
=exp(ika)y (z)
This result y(z+a)=exp(ika)y (z)
IS an equivalent way of stating the Bloch theorem
It is saying that the wavefunction in one unit cell

Is the same as in the adjacent unit cell
just “phase shifted” by exp(ika)



Solving with periodic boundary conditions
N

With this result w(z+a)=exp(ika)y(z)
our boundary conditions for solving the Schrédinger
equation can be rewritten as

v, (2z)=explika)y, , (z,)
where our notation for the wavefunction ., (Z;)
indicates explicitly a specific “band” g
and a specific one of the allowed values of k
which will give solutions in the form

v, (2)=u,, (z)exp(ikz)



Example solution in Bloch form

Re|u,, (2)]
0

Re[exp(ikz)]
0

Rel:l/jl,k (Z):|
0

NN NNV NN NV N

. ]

2\ e N
\\/\/

“unit cell”

“propagating
wave envelope”

“overall wave in
Bloch form”

well width 1.2 nm, barrier width 0.15 nm (so a = 1.35 nm) barrier height 1 eV, for
the “second” level in band 1 and using a k value of 0.257/a=0.582 nm™



Bloch solutions
.
Effectively, for each k

we are solving for the unit cell function ug, (z)
and a set of associated eigenenergies E_,

The Bloch theorem has transformed a difficult
problem of

solving for all the states of a system of many atoms
into solving for the states of
just one “unit cell”



Bloch solutions
S 1
This is more complicated than the hydrogen atom
because

() we have to guess what the potential energy is

possibly iterating to get a form that gives results
that agree with experiments

(i) we have to solve the problem again for each k
though we can use the same potential

Such "band structure” calculations are a major branch
of solid-state physics
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