

Particles, atoms, and crystals

5

Band structures in crystals

Modern physics for engineers

David Miller

Band structures in crystals

A small lump of crystal material
could contain many more than 10^{20}
atoms

Directly calculating the properties of
such a large collection of atoms
would be impossible

Crystals, however
are naturally very regular
which can simplify the problem

Band structures in crystals

Two particular approaches
taken together
the one-electron approximation
and the Bloch theorem
give some very useful models,
including
band structures
and effective masses

One-electron approximation

One-electron approximation

As for many-electron atoms

in a crystal, we presume, as a first approximation
each electron sees an average potential from all
the other electrons and nuclei

In a crystal, because it is periodic

we presume that average potential $V_p(\mathbf{r})$
is therefore periodic in the same way also

For example, for a one-dimensional periodic structure
we presume, for a period a

$$V_p(z+a) = V_p(z)$$

One-electron approximation

We can keep on extending this relation $V_P(z+a) = V_P(z)$
for subsequent periods

$$V_P(z+2a) = V_P(z+a) = V_P(a)$$

so we can write for our periodic potential

$$V_P(z+ma) = V_P(z)$$

where m is an integer

We could also generalize this for
two-dimensional or three-dimensional periodic
structures
and corresponding periodic potentials

One-electron approximation

So we can write a Schrödinger equation

for just one electron

with a periodic potential $V_P(\mathbf{r})$

and hence an effective equation

$$-\frac{\hbar^2}{2m_o} \nabla^2 \psi(\mathbf{r}) + V_P(\mathbf{r}) \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

This is certainly an approximation

and many phenomena are not covered by it

One-electron approximation

Example effects we are not covering completely include

scattering of electrons off one another or from the nuclei (or vibrations of them)

both of which cause electrical resistance

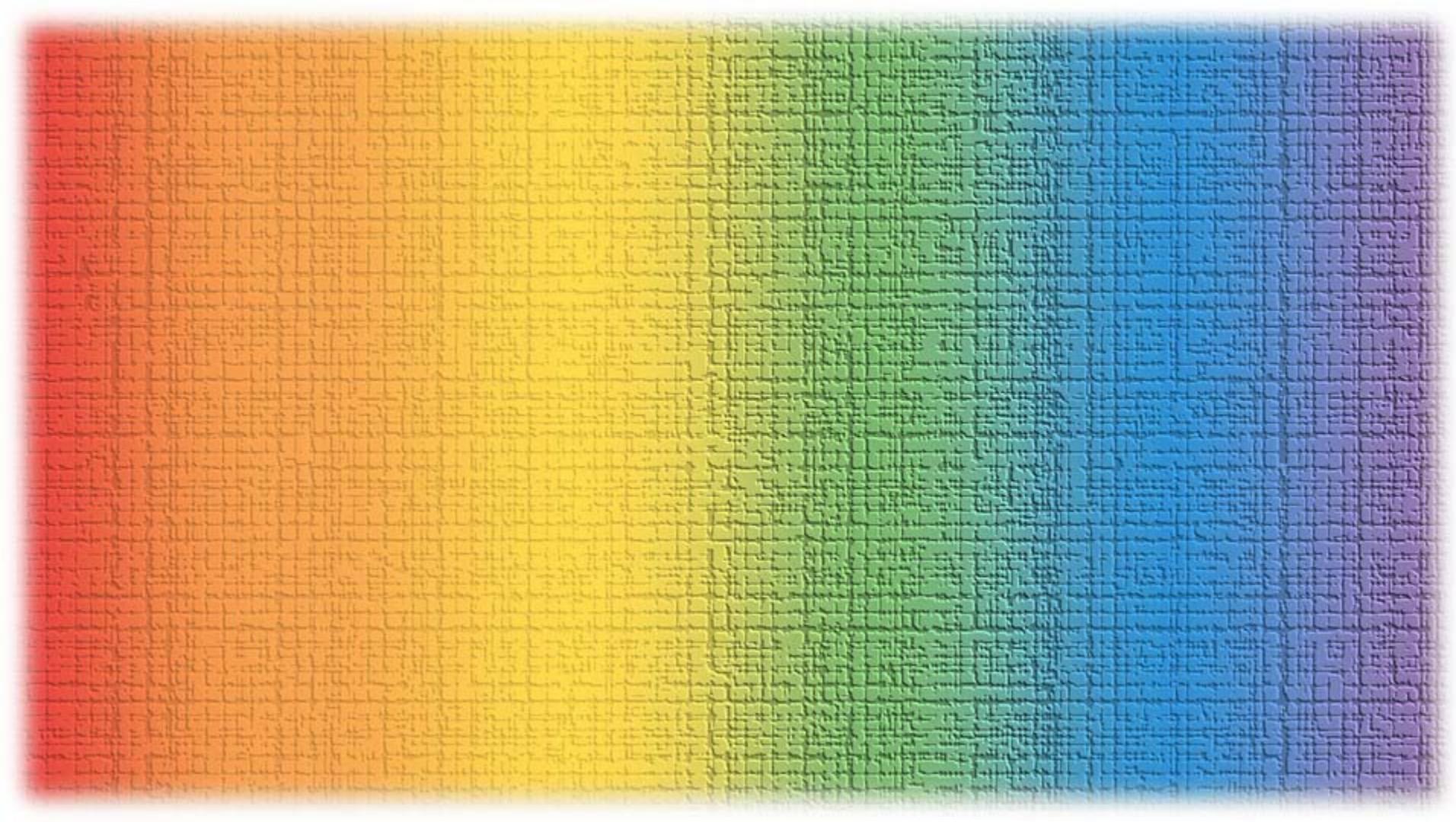
Often, though, we can model these starting with this one-electron model and adding these other effects as “perturbations”

One-electron approximation

One important consequence of this one-electron approach

is that it allows a simple way of looking at crystals

through what is called the “Bloch theorem”



Particles, atoms, and crystals

5

The Bloch theorem

Modern physics for engineers

David Miller

Periodic boundary conditions

We could generalize our “standing wave” solutions
to larger structures

choosing some simple
approximation to handle
the “end effects” at the edge of
finite structures

Periodic boundary conditions

An alternative approach

which leads to particularly useful
mathematics

is pretending we are solving for a
chain of atoms

connected in a loop or ring

which is rigorously correct for,
e.g.,

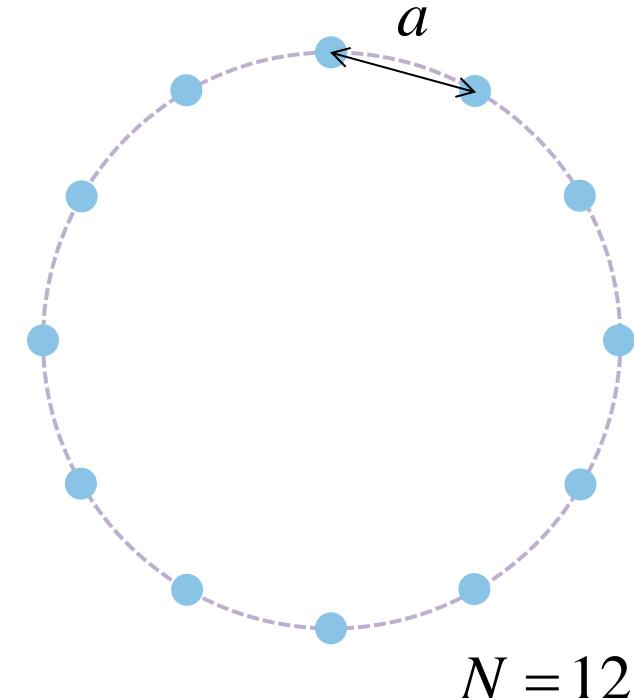
a benzene ring of 6 carbon
atoms

Periodic boundary conditions

In one dimension, we could argue as follows

Suppose we have a long chain of N equally spaced atoms

spaced by some distance a and that we join the two ends of the chain together



Periodic boundary conditions

With z as the distance along this loop

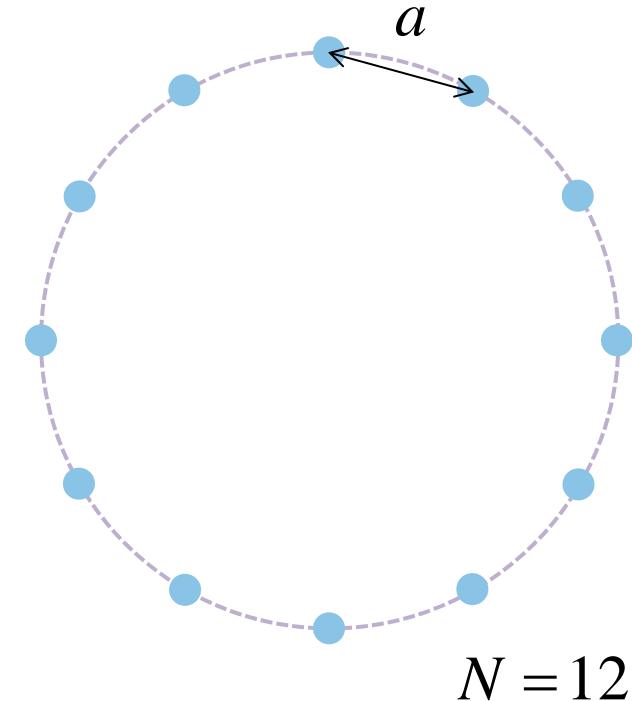
then on this loop

the potential can be written

$$V_P(z + ma) = V_P(z)$$

where m is any integer

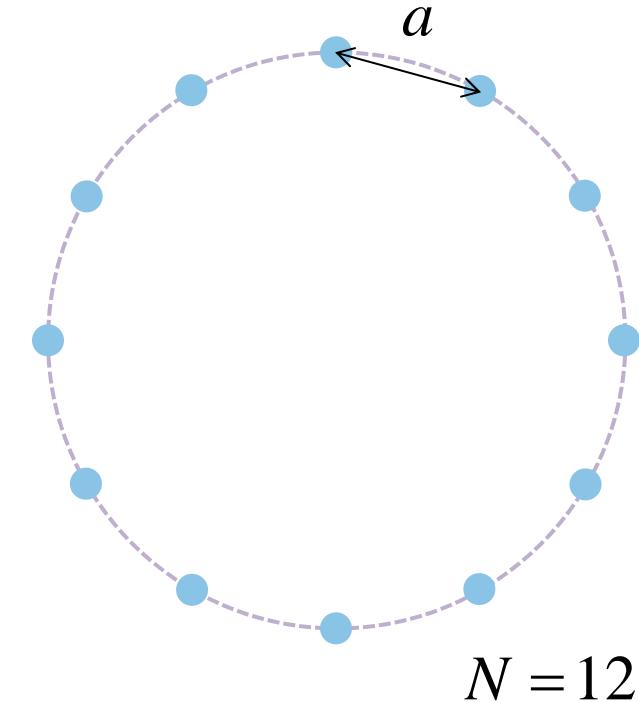
even possibly an integer much larger than N



Periodic boundary conditions

This expression $V_P(z + ma) = V_P(z)$
is just like the one for the infinite
crystal

If this chain is very long
its internal properties will not be
substantially different from an
infinitely long chain
so this is a good model
that gives us a finite system
while keeping it periodic



Periodic boundary conditions

This loop gives a boundary condition

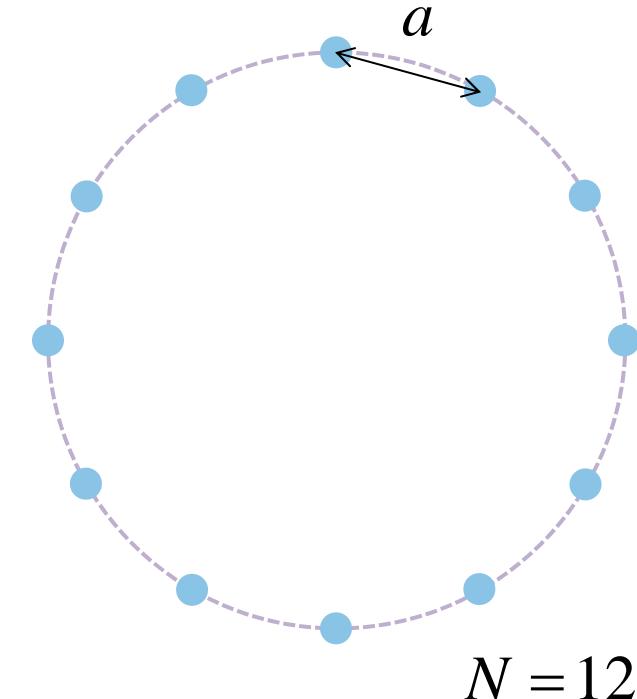
We do want the wavefunction to be single-valued

otherwise how could we differentiate it, evaluate its squared modulus, etc.

So, going round the loop, we must get back to where we started

$$\psi(z) = \psi(z + Na)$$

a “periodic boundary condition”



Periodic boundary conditions

In quantum mechanics

we also want any measurable

quantity

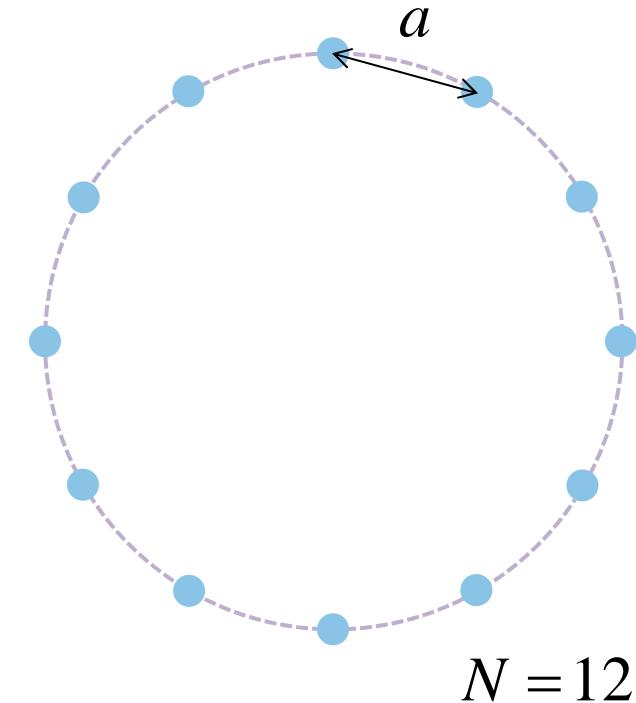
such as electron density

to be the same in every unit

cell of the crystal

so we also require

$$|\psi(z+a)|^2 = |\psi(z)|^2$$



The Bloch theorem

We can satisfy both of these conditions

$$\psi(z) = \psi(z + Na) \quad |\psi(z + a)|^2 = |\psi(z)|^2$$

if we require $\psi(z) = u(z) \exp(ikz)$

where the “unit cell function” $u(z)$

is the same in every unit cell, i.e., $u(z + a) = u(z)$

and k takes on any of a set of N values that are spaced by an amount $2\pi / Na$

conventionally written as

$$k = \frac{2n\pi}{Na} \quad \text{with } n = 0, \pm 1, \pm 2, \dots \pm \frac{N}{2}$$

Allowed values of k

Technically, the list

$$k = \frac{2n\pi}{Na} \text{ with } n = 0, \pm 1, \pm 2, \dots, \pm \frac{N}{2}$$

has one too many elements (i.e., $N + 1$)

and is written this way just for symmetry

We can take one element off one end if we like

Also, this list presumes N is even

which is not a necessary restriction

Neither of these would matter for large N

The Bloch theorem

The Bloch theorem (in one dimension)

can be viewed as the statement that

solutions for the quantum mechanical wavefunctions
in a periodic potential of period a

can be written in the (Bloch) form

$$\psi(z) = u(z) \exp(ikz)$$

where the unit cell function is the same in every unit
cell, i.e., $u(z+a) = u(z)$

and $k = \frac{2n\pi}{Na}$ with $n = 0, \pm 1, \pm 2, \dots \pm \frac{N}{2}$

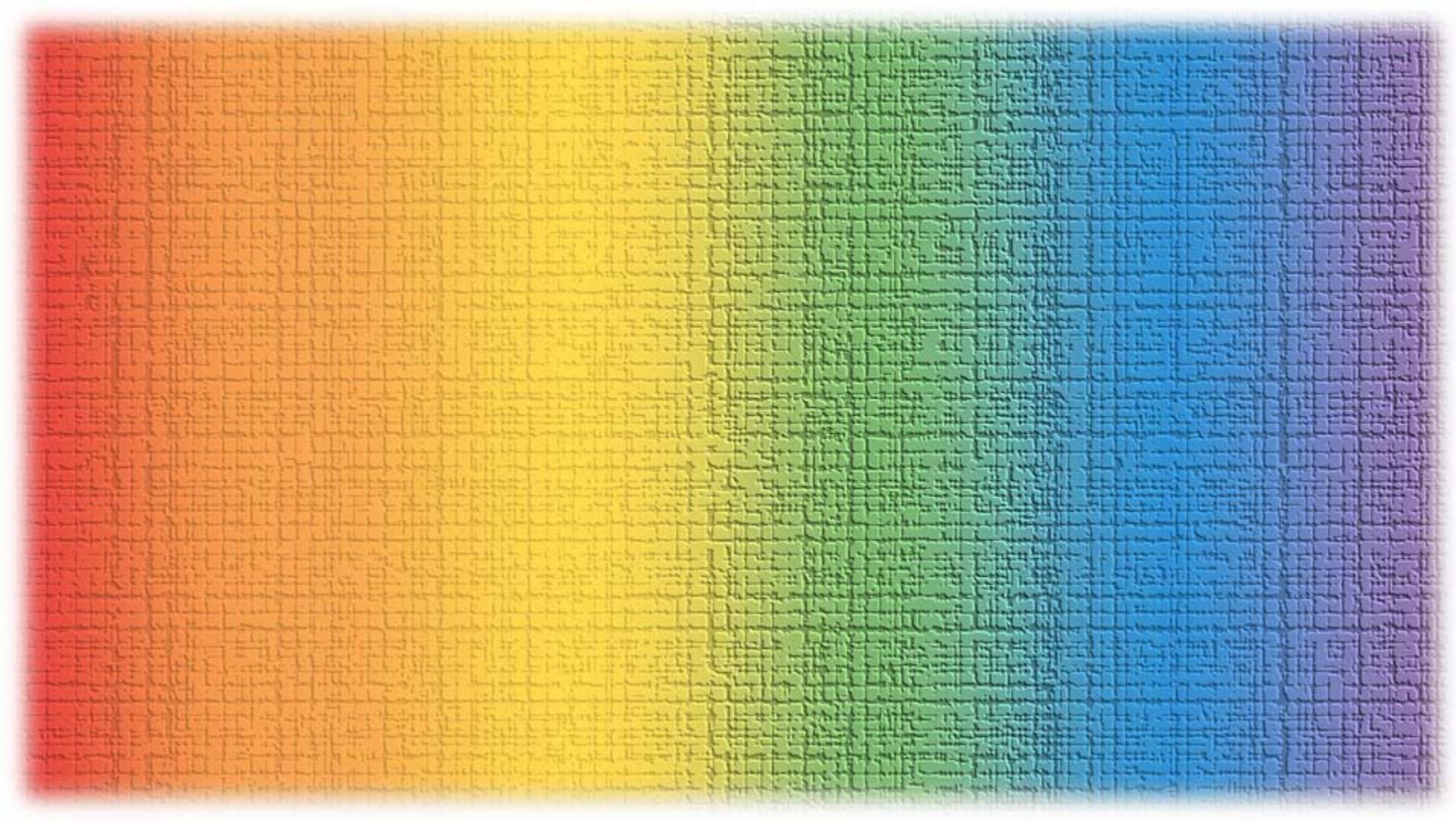
Difference between standing and “Bloch” waves

- (i) the Bloch form corresponds to traveling wave “envelope functions” $\exp(ikz)$, not standing wave envelopes
- (ii) standing wave “envelopes” correspond to fitting integer numbers of half-waves between the ends

whereas these Bloch form solutions fit integer numbers of whole waves round the ring

Propagating waves in opposite directions count as different solutions

giving the same number of different solutions overall
- (iii) solutions in the Bloch form will in general be complex



Particles, atoms, and crystals

5

Solving with periodic boundary conditions

Modern physics for engineers

David Miller

Solving with periodic boundary conditions

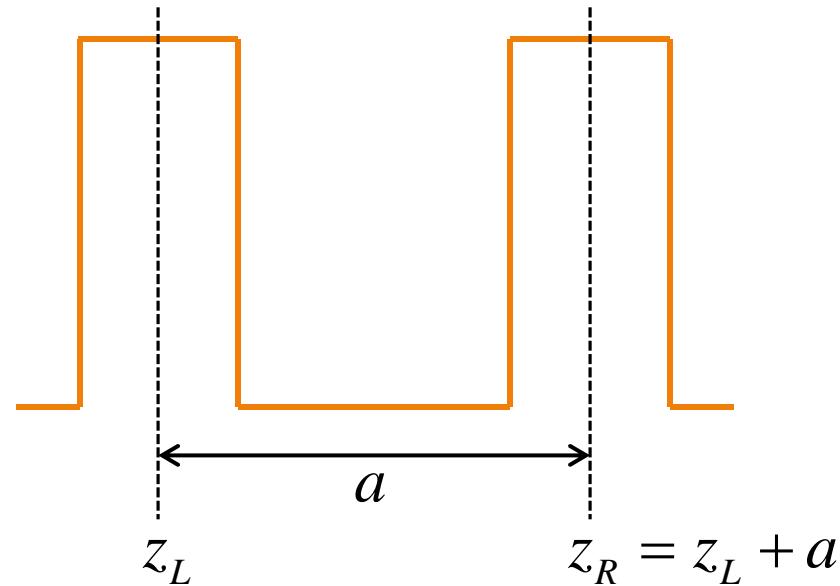
For our potential wells
we can take

the left of the “unit cell” at
position z_L

for example, in the middle
of the barrier on the left

and the right of the “unit
cell” at position $z_R = z_L + a$

so, in the middle of the
barrier on the right



Solving with periodic boundary conditions

Now, we have, with simple algebra

$$\begin{aligned}\psi(z+a) &= u(z+a)\exp[ik(z+a)] \\ &= u(z)\exp(ikz)\exp(ika) \\ &= \exp(ika)\psi(z)\end{aligned}$$

This result $\psi(z+a) = \exp(ika)\psi(z)$

is an equivalent way of stating the Bloch theorem

It is saying that the wavefunction in one unit cell
is the same as in the adjacent unit cell
just “phase shifted” by $\exp(ika)$

Solving with periodic boundary conditions

With this result $\psi(z+a) = \exp(ika)\psi(z)$

our boundary conditions for solving the Schrödinger equation can be rewritten as

$$\psi_{q,k}(z_R) = \exp(ika)\psi_{q,k}(z_L)$$

where our notation for the wavefunction $\psi_{q,k}(z_R)$

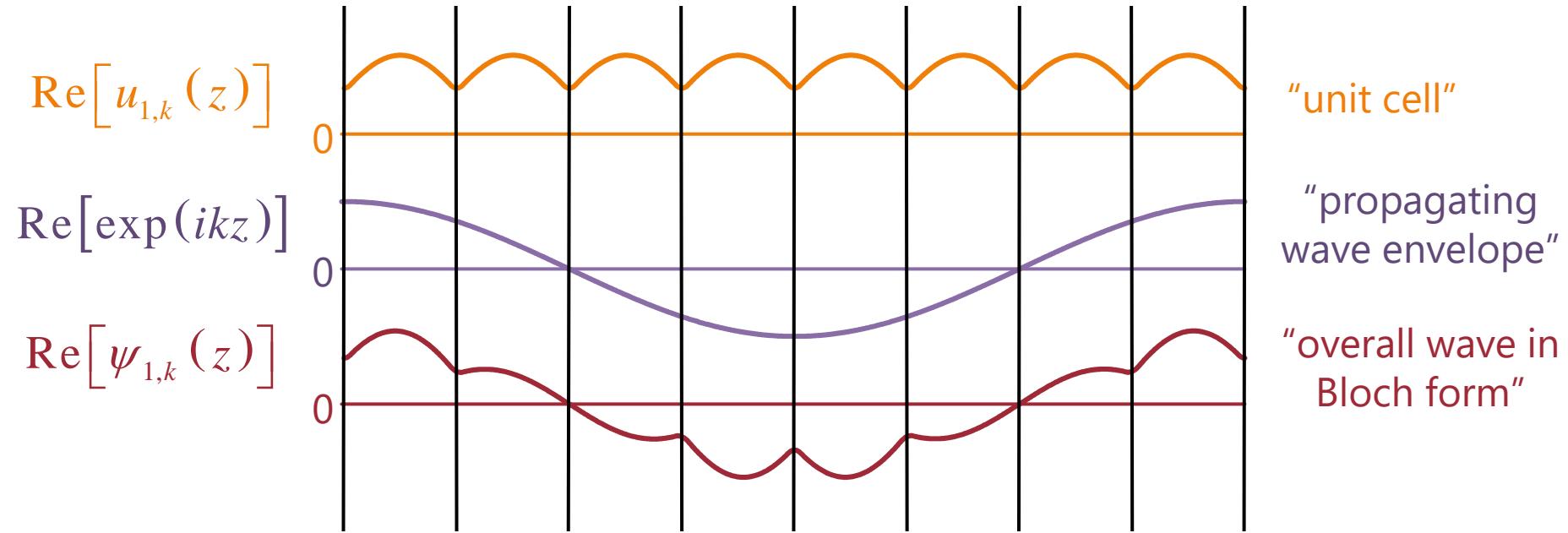
indicates explicitly a specific "band" q

and a specific one of the allowed values of k

which will give solutions in the form

$$\psi_{q,k}(z) = u_{q,k}(z)\exp(ikz)$$

Example solution in Bloch form



well width 1.2 nm, barrier width 0.15 nm (so $a = 1.35$ nm) barrier height 1 eV, for the "second" level in band 1 and using a k value of $0.25\pi / a \approx 0.582 \text{ nm}^{-1}$

Bloch solutions

Effectively, for each k

we are solving for the unit cell function $u_{q,k}(z)$

and a set of associated eigenenergies $E_{q,k}$

The Bloch theorem has transformed a difficult problem of

solving for all the states of a system of many atoms

into solving for the states of

just one “unit cell”

Bloch solutions

This is more complicated than the hydrogen atom because

- (i) we have to guess what the potential energy is possibly iterating to get a form that gives results that agree with experiments
- (ii) we have to solve the problem again for each k though we can use the same potential

Such “band structure” calculations are a major branch of solid-state physics

