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Band structures



Calculating a band structure

For a periodic structure of 
“rectangular” potential wells
using the periodic boundary 

conditions
we can calculate the energy 
eigenvalues
for each allowed value of k

The resulting sets of energies
will allow us to plot

a “band structure” 
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Properties of the band structure

First
note the k values for each choice of N

are equally spaced, by
As we have “pushed” the “atoms” 

together to make this “crystal”
we can keep the same counting of 

states
Some given atomic level in each of 

N atoms 
has turned into N energy levels 

in a band in the combined 
system

2 / Na



Properties of the band structure

Second
note that, for each value of k

within the energy range from 0 to 
1 eV for which we performed 
calculations 

there are two possible energy 
eigenvalues, as given by
the “red” dots for the lower 

band and 
the “blue” dots for the upper 

band



Properties of the band structure

Third
as we increase N, first to 16, and then to 32

we fill in the spaces between the 
existing “dots”
retaining all the previous solutions

Note that the energy width of the bands 
does not increase 

as we increase N arbitrarily
We end up with smooth continuous bands 

of definite width
and all the energy solutions lie on these 

curves



Properties of the band structure

Fourth
we see a range of energies between the 

two bands, for which 
there are no energy eigenstates

Such energy ranges are “band gaps”
with a band gap energy EG

The existence or otherwise of band gaps in 
a band structure 
is very important in influencing both 

the electrical and optical properties of 
a material



Brillouin zone

We calculated for the allowed set of N
different k values
We could keep on calculating 

for further values of k spaced by the 
same amount

We would just repeat ourselves, however 
finding the same solutions again

We would just repeat the same band 
structure
copying the curves and moving them 

sideways by
creating an “extended” zone scheme 

2 / a



Brillouin zone

Any one such           range of k values can be 
called 
a “Brillouin zone”

The version centered round
is called the first Brillouin zone

and the point 
is referred to as “zone center”

We only ever need to calculate the results 
for the first Brillouin zone 

because it contains all the distinct 
solutions

2 / a
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Brillouin zones – “extended” scheme
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Crystal momentum and effective mass



Crystal momentum



Crystal momentum

For a particle in a uniform potential
we know the eigen solutions are plane waves

In one dimension, for a particle of mass mb
with a given energy E

solving Schrödinger’s equation for a “forward-
going” wave

gives a wavefunction

with eigen energy

 exp ikz

2 2

2 b

kE
m






Crystal momentum

We also know from de Broglie’s hypothesis that 
the magnitude of the momentum is then

For solutions in Bloch form
the “envelope” part of the solution is 

a propagating wave of the form  
We can define a similar concept here 

the “crystal momentum” pC
which we write with a similar formula

using the k in the propagating “envelope” function 

p k 

 exp ikz

Cp k 



Crystal momentum

This crystal momentum shows many 
effective properties
that behave like actual momentum 

for an electron in a crystal
though this is not actually the 
electron momentum
and we can call it a “pseudo-

momentum” 



Crystal momentum

An electron accelerated by a force in 
the crystal 
acquires such an effective 

momentum
In optical absorption, it can appear 

that 
“momentum” overall is conserved 

when we use this pseudo-
momentum 



Crystal momentum

In all these cases 
we deduce the effective 

conservation of this pseudo-
momentum from deeper analysis
The effective “conservation” of 
this pseudo-momentum comes 
out of that analysis
It is not a principle we put into 

the analysis



Crystal momentum

Nonetheless, it is a useful idea for 
electrons in crystals 
and is often loosely just called the 

“momentum”
One useful example is associated 
with the idea of effective mass 



Effective mass



Effective mass approximation

Consider a hypothetical band 
structure
with a higher band called

the “conduction band”
and a lower band called 

the “valence band”

0 p/a-p/a
k

E

valence 
band

conduction 
band



Effective mass approximation

Near a minimum or maximum
in either band 

we could fit the energy as a 
function of k with a 
parabola

For such a parabola centered 
round k = 0
relative to the energy Eo at the 

minimum or maximum
we would have 

0 p/a-p/a
k

E

valence 
band

conduction 
band

2
oE E k 



Effective mass approximation

We could choose to write such 
a relation

in the form

where meff is what we call an 
“effective mass”
It is a “fitting parameter”

which we choose to get 
the right curvature on 
the parabola

0 p/a-p/a
k

E

valence 
band

conduction 
band

2
oE E k 

2 2

2o
eff

kE E
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 
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Effective mass approximation

In the relation 
note that 

a large effective mass
gives a shallow parabola 

a small effective mass 
gives a steep parabola

0 p/a-p/a
k

E

valence 
band

conduction 
band2 2
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Effective mass approximation

If we then treat pC as an 
effective momentum
then we can write 

which is consistent with pC
behaving like momentum 

for a particle of an effective 
mass meff 0 p/a-p/a

k

E

valence 
band

conduction 
band
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Effective mass approximation

This idea of effective mass is 
very useful
especially for electronic and 

optoelectronic devices
Note effective mass 

is only an effective concept
We have not changed the 
electron mass
but band structures can 

make it appear we have
0 p/a-p/a

k

E

valence 
band

conduction 
band



Effective mass approximation

A band structure
in which the lowest minimum 

in the conduction band
lies at the same k as

the highest maximum in 
the valence band
is said to show a 

direct bandgap
0 p/a-p/a

k

E

valence 
band

conduction 
band



Effective mass approximation

A band structure
in which the lowest minimum 

in the conduction band
is not at the same k as as

the highest maximum in 
the valence band
is said to show an 

indirect band gap

conduction 
band

0 p/a-p/a
k

E

valence 
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Band structures in three dimensions



Bloch theorem in two and three dimensions

For two-dimensional or three-dimensional crystals
we presume that we can extend the ideas by writing

where the unit cell function
is the same in every unit cell of the crystal 

in all two or three directions
and the components of the wavevector k

each obey relations similar to             , 

but with (possibly different) “repeat lengths” a for 
each direction 

     expu i  r r k r
 u r

2nk
Na


 0, 1, 2,
2
Nn    



Band structures in 2D and 3D

We can construct band structures for 
two- and three-dimensional (2D and 
3D) crystals 
in similar ways to those for one 

dimension (1D)
Such crystals can be more 

complicated than those for 1D 
with potentially more complicated 

forms of unit cells



Band structures in 2D and 3D

To plot a band structure for a 3D 
crystal
we would need a four-dimensional 

diagram
three dimensions for the 
components of a vector k
and a fourth dimension to 

indicate the corresponding 
energies



Brillouin zone in 3D

Before plotting band structures
we need to understand

what form the Brillouin zone takes 
in higher dimensional crystals

The Brillouin zone itself for a three 
dimensional crystal
will be a three-dimensional shape 

as a function of the components 
of k
and that shape depends on the 
form of the crystal lattice



 kx

ky

kz

Brillouin zone in 3D

The Brillouin zone for the diamond 
or zinc-blende lattice
can take this shape

when we plot as a function of k
Two important directions are

X – along one of the x, y, or z
coordinate directions

L – along one of the cube space 
diagonals

The center is the  (gamma) point

X

L





Band structures for 3D crystals

At least as a first useful 
representation of band structure
typically the band structure is 

calculated only along a few 
directions
such as along the lines from 
the  point (at the center of 
the Brillouin zone)
to the X point and the L

point

X

L

kx

ky

kz
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Plotting band structures

We typically only plot 
the last few “full” bands and the 

first few “empty” bands 
and/or any partially full bands

These are the ones of most 
technological interest
Bands associated with deeper, 

“core” atomic levels
typically do not participate in 
operation of devices



Plotting band structures

One useful simplification is that
band structures are essentially 

always symmetric about k = 0, 
which simplifies plotting
This is called Kramers degeneracy 



Si band structure

Because band structures are 
symmetric around k = 0
by “Kramers degeneracy”

we need only show one half 
of the band structure
so we can use the other 

half of the figure 
for the band structure in 

another direction

after K. S. Sieh and P. V. Smith, Phys. 
Status Solidi (b) 129, 259 (1985)
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Si band structure

In contrast to our one-
dimensional coupled well 
cases
we have multiple bands here 

some of which do overlap 
in energy
and bands sometimes 

coincide with one 
another at specific 
points 

after K. S. Sieh and P. V. Smith, Phys. 
Status Solidi (b) 129, 259 (1985)
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Si band structure

Sometimes, such as the lowest 
conduction band in silicon
the lowest energy in the band 

is neither at the center nor 
an edge of the Brillouin 
zone
For silicon, the position of 
this minimum energy is 
referred to as 
the  (delta) point

after K. S. Sieh and P. V. Smith, Phys. 
Status Solidi (b) 129, 259 (1985)
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GaAs band structure

The upper valence bands of 
GaAs
are similar to silicon

but the conduction band 
minimum is at the  point

So GaAs is a direct gap 
semiconductor
unlike Si

which is indirect
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after M. Rohlfing, P. Krüger and J. 
Pollmann, Phys. Rev. B 48, 17791 (1993)



Real band structures

For all such band structures
for N atoms in the crystal

each band has N states in it 
(multiplied by 2 if electrons of 

different spins also have the 
same energy)
and all bands have the same 

set of equally spaced k values 
associated with them



Band structures

For Group IV materials like carbon, 
silicon and germanium
in the outer, highest energy orbitals

we are dealing with the 
combination of 2 “s” orbitals and 
6 “p” orbitals 
where we include both spin 

states
which gives 8 orbitals that 

together hold 4 electrons



Band structures

Putting atoms of one such type together 
to form a crystal 
leads to the formation of two sets of 
bands

Loosely, one of these sets of bands is 
based on 
“bonding” versions of the combined 
orbitals 
and the other is based on 
“antibonding” versions of those 
same orbitals

The bonding versions can have lower 
energy than the antibonding versions



Band structures

If those “bonding” and “antibonding” 
sets of bands do not overlap in energy
for these Group IV materials

the bonding versions will be 
essentially fully occupied
to give what are called the 

“valence” bands
and the antibonding versions will 

be essentially unoccupied
to give what are called the 

“conduction” bands



Band structures

Such non-overlapping band behavior
with a band gap energy between them

is characteristic of a semiconductor 
or an insulator

In practical terms
the GaAs material 

and its various other III-V cousins 
behave like effective Group IV 

materials
with similar forms of band 

structures
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Metals, semiconductors and insulators



Metals, insulators and semiconductors

partially filled 
band
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Semiconductors and insulators

Semiconductors and insulators 
have an (almost) completely 

full band
the valence band

separated by a “bandgap” 
energy EG
from an (almost) completely 

empty band
the conduction band 0 p/a-p/a

k

E
EGvalence 

band

conduction 
band

empty 
states

full states



Metals

Because of the number of 
electrons in the metal atoms
the highest band is partially 

full of electrons e.g., half-full
even at zero temperature

Metals may or may not have 
band gaps

Applying a field “skews” the 
electron distribution
allowing metals to conduct 

electricity well

conduction 
band
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k
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valence 
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Semiconductors and insulators

Note that
an empty band does not 

conduct electricity
There are no mobile electrons

Also
a full band does not conduct 

electricity
The electrons cannot change 
states within the band
because all the states are full

0 p/a-p/a
k
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EGvalence 

band
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Semiconductors and insulators

The difference between 
semiconductors and 
insulators is primarily that
insulators have such a large 

bandgap energy
that there is negligible 
thermal excitation of 
electrons 
from the valence band 

to the conduction band
0 p/a-p/a

k

E
EGvalence 
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full states



Semiconductors

At finite temperatures in a 
semiconductor
a small number of electrons 

are excited
from the valence band

to the conduction band
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Semiconductors

These electrons in the 
conduction band
and

absences of electrons or “holes”
in the valence band

can conduct electricity within 
their bands

So semiconductor materials 
conduct electricity weakly
hence the name
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