

Particles, atoms, and crystals

6

Band structures

Modern physics for engineers

David Miller

Calculating a band structure

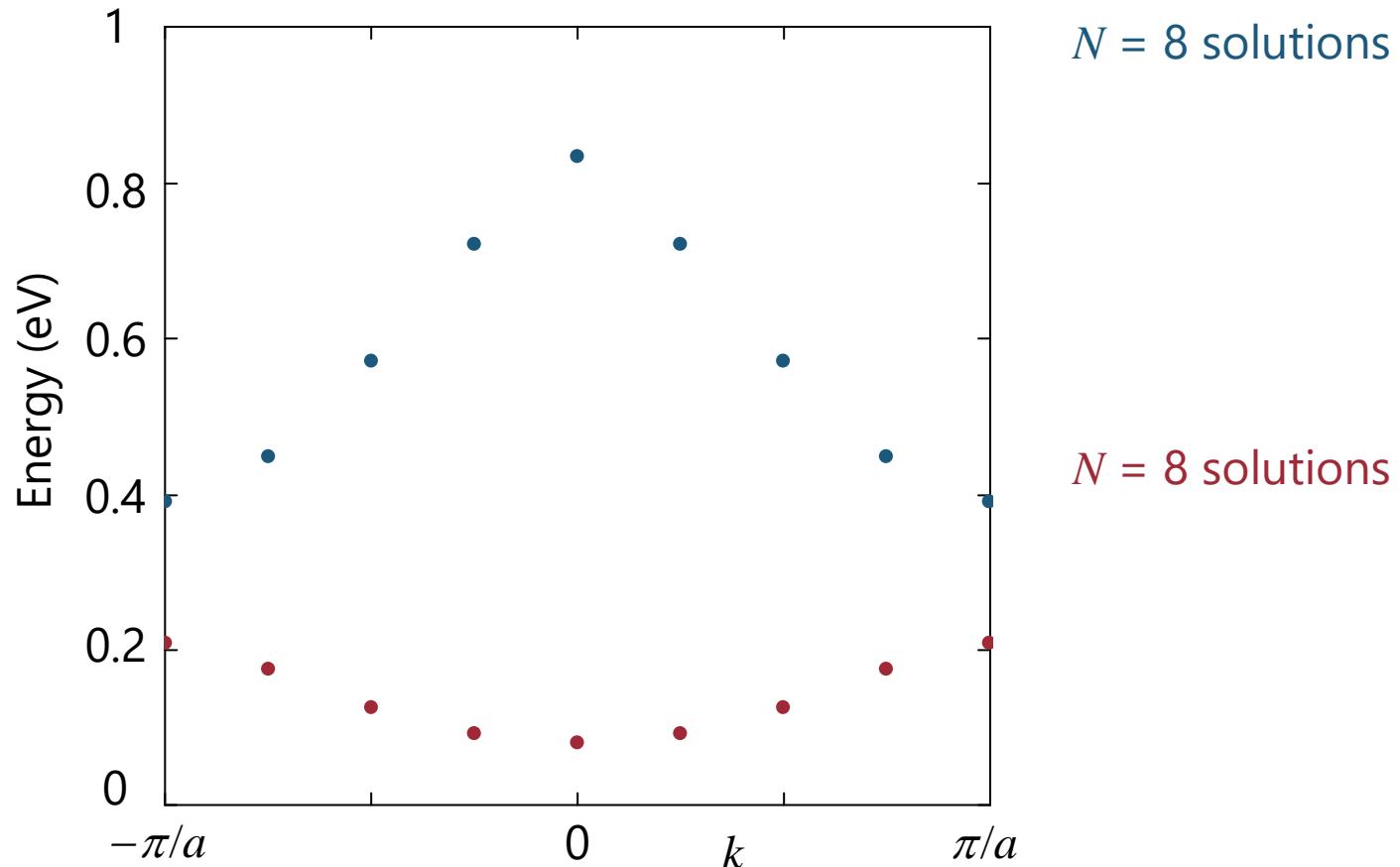
For a periodic structure of
“rectangular” potential wells
using the periodic boundary
conditions

we can calculate the energy
eigenvalues
for each allowed value of k

The resulting sets of energies
will allow us to plot
a “band structure”

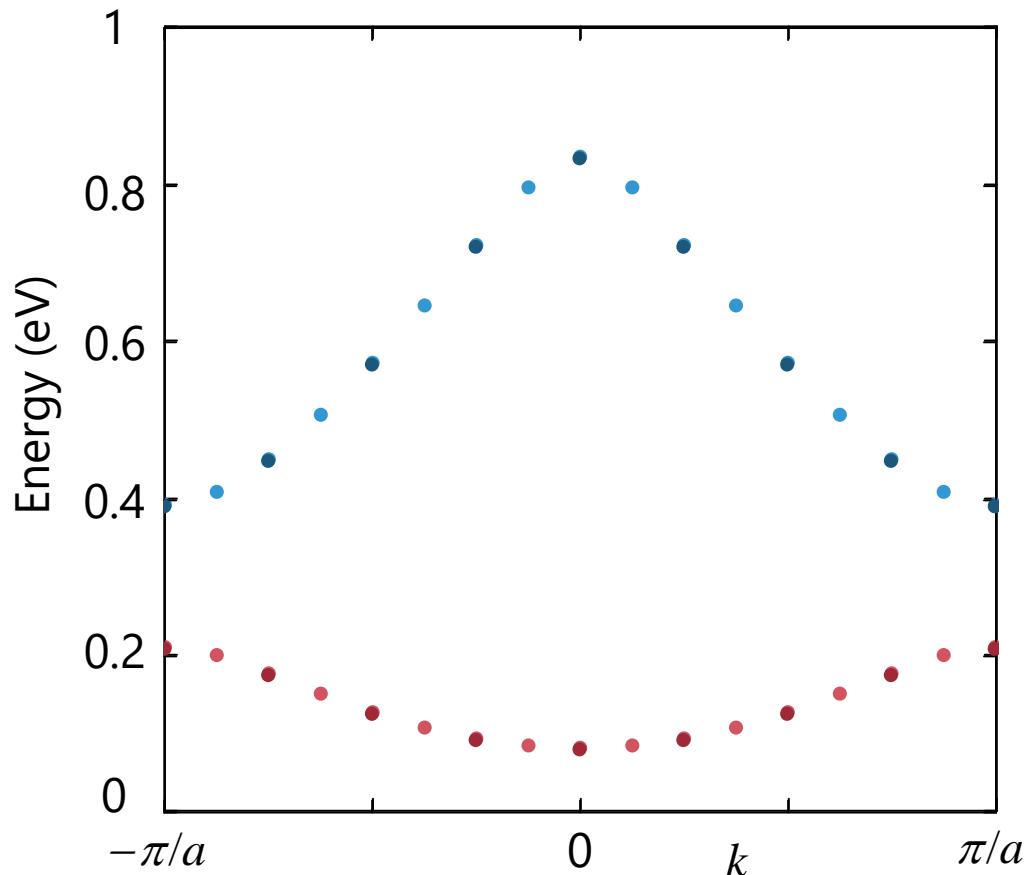
Calculating a band structure

well width
1.2 nm
barrier width
0.15 nm
barrier height
1 eV



Calculating a band structure

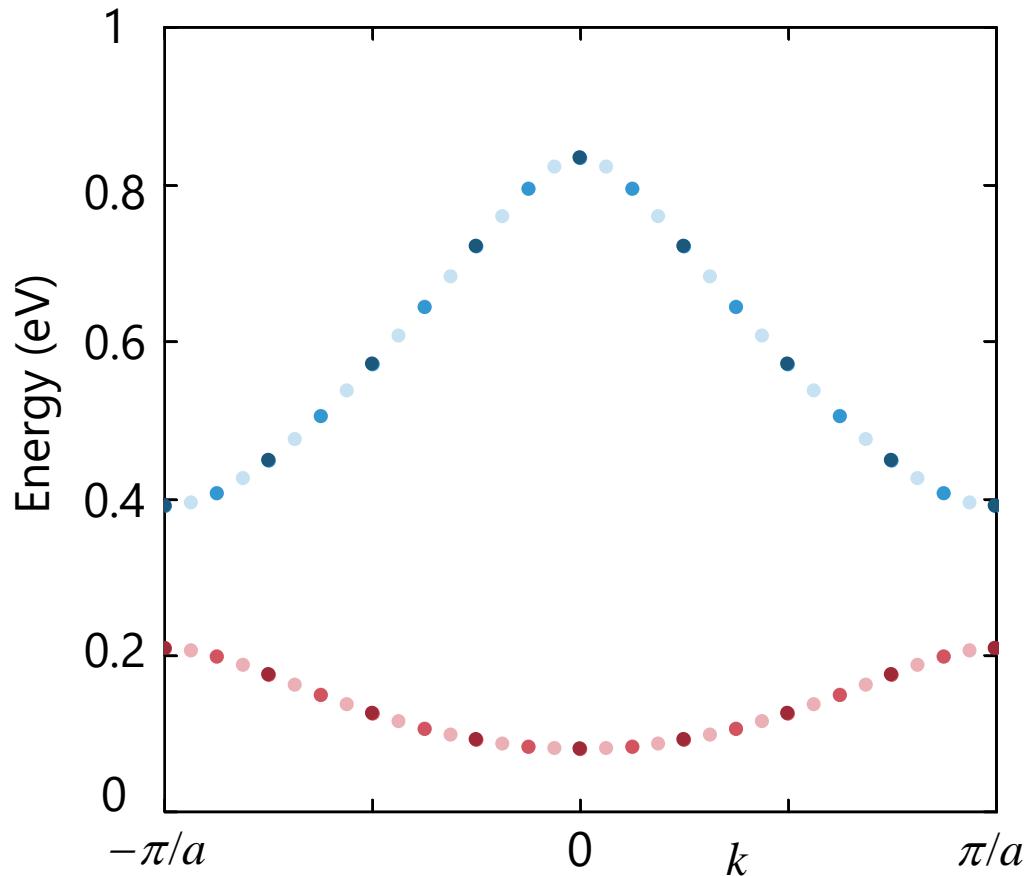
well width
1.2 nm
barrier width
0.15 nm
barrier height
1 eV



$N = 8$ solutions
 $N = 16$ additional solutions
 $N = 8$ solutions
 $N = 16$ additional solutions

Calculating a band structure

well width
1.2 nm
barrier width
0.15 nm
barrier height
1 eV

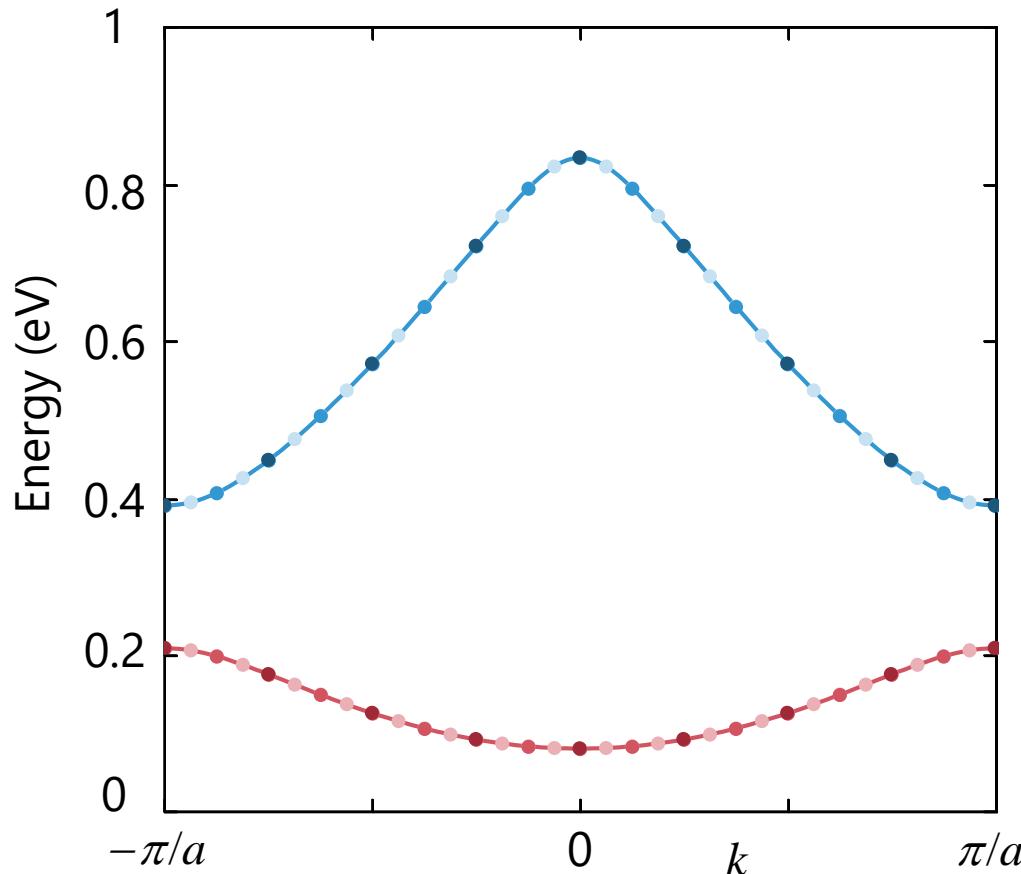


$N = 8$ solutions
 $N = 16$ additional solutions
 $N = 32$ additional solutions

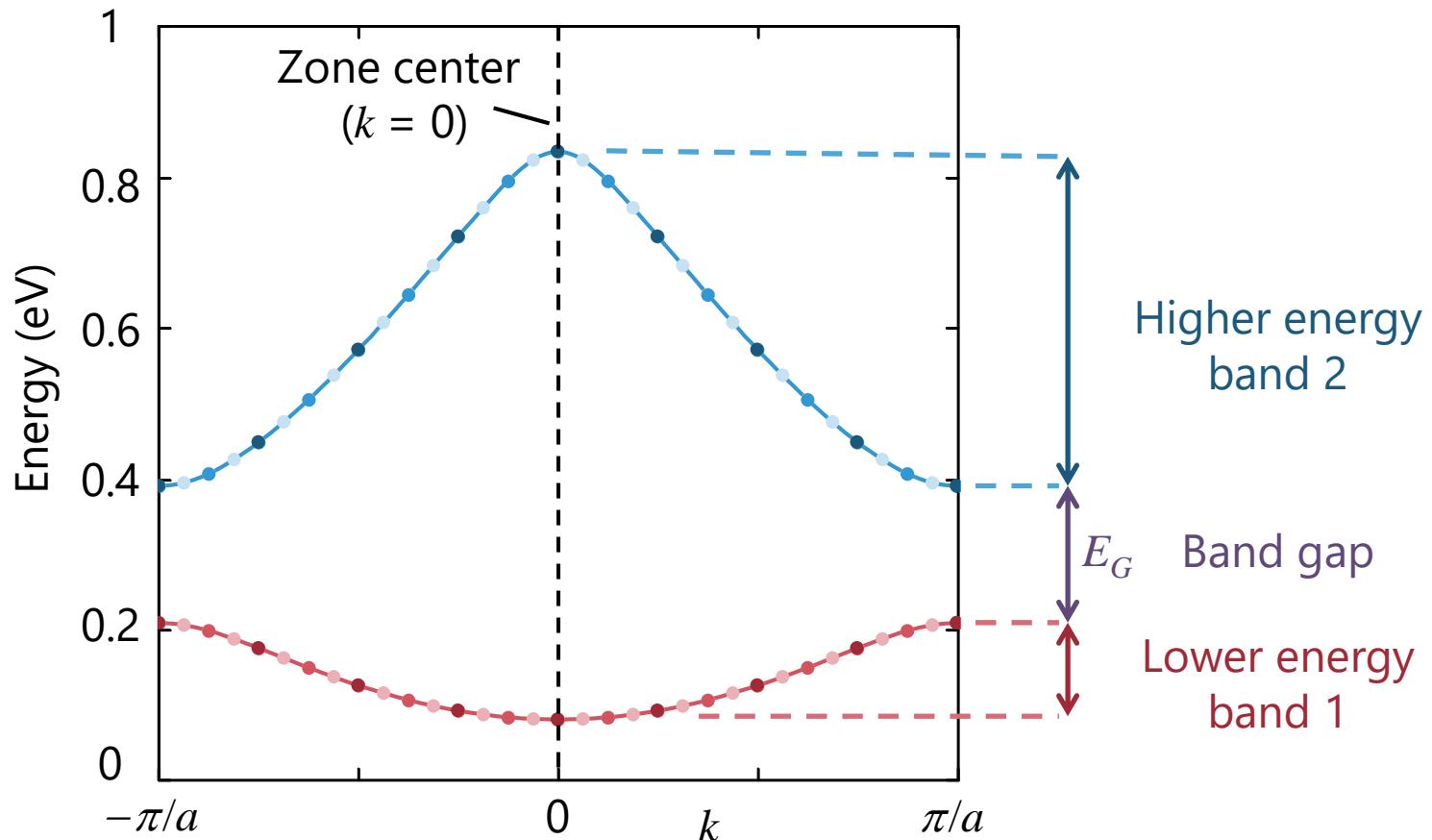
$N = 8$ solutions
 $N = 16$ additional solutions
 $N = 32$ additional solutions

Calculating a band structure

well width
1.2 nm
barrier width
0.15 nm
barrier height
1 eV



Calculating a band structure



Properties of the band structure

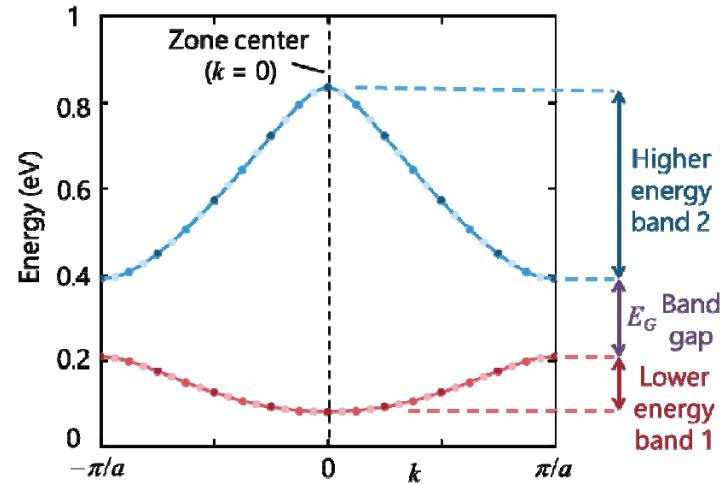
First

note the k values for each choice of N
are equally spaced, by $2\pi / Na$

As we have “pushed” the “atoms”
together to make this “crystal”
we can keep the same counting of
states

Some given atomic level in each of
 N atoms

has turned into N energy levels
in a band in the combined
system



Properties of the band structure

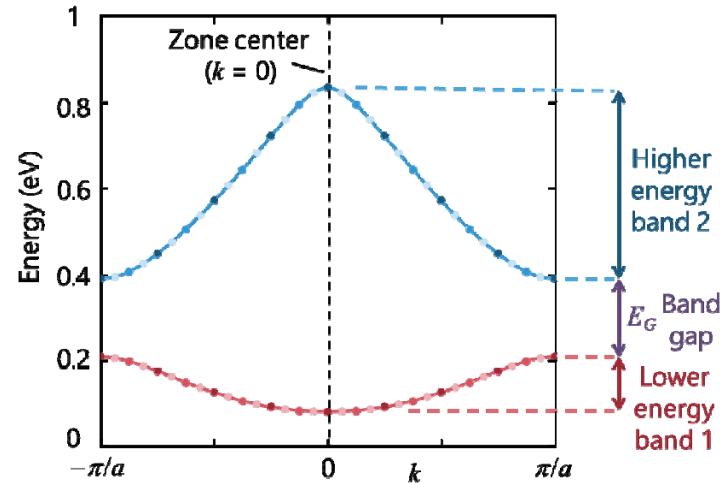
Second

note that, for each value of k within the energy range from 0 to 1 eV for which we performed calculations

there are two possible energy eigenvalues, as given by

the "red" dots for the lower band and

the "blue" dots for the upper band



Properties of the band structure

Third

as we increase N , first to 16, and then to 32

we fill in the spaces between the
existing "dots"

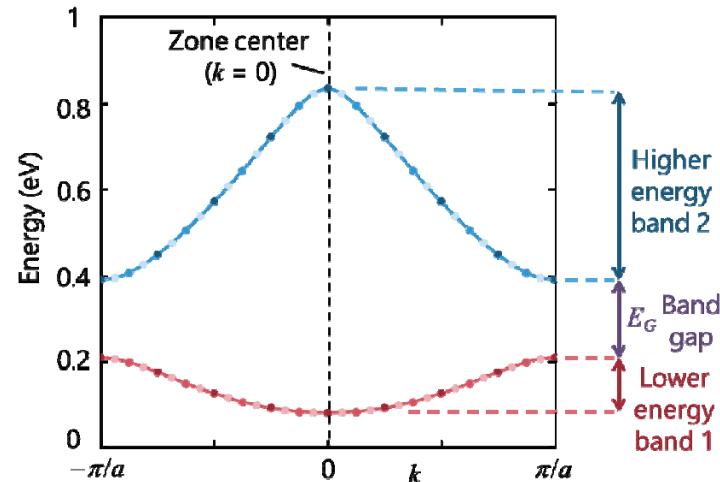
retaining all the previous solutions

Note that the energy width of the bands
does not increase

as we increase N arbitrarily

We end up with smooth continuous bands
of definite width

and all the energy solutions lie on these
curves



Properties of the band structure

Fourth

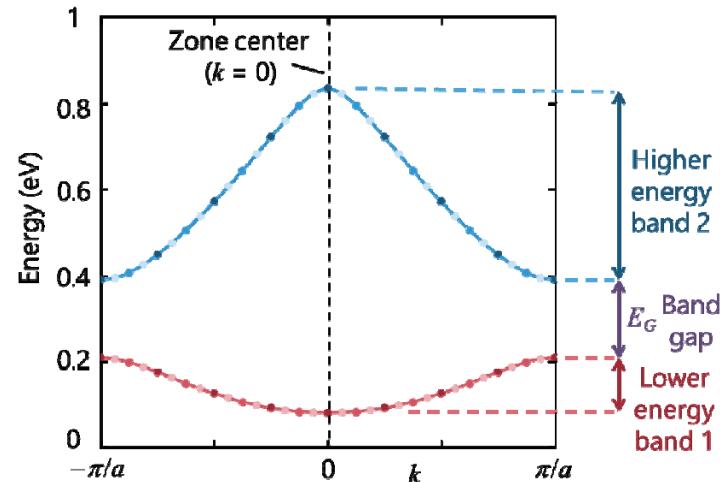
we see a range of energies between the two bands, for which

there are no energy eigenstates

Such energy ranges are “band gaps” with a band gap energy E_G

The existence or otherwise of band gaps in a band structure

is very important in influencing both the electrical and optical properties of a material



Brillouin zone

We calculated for the allowed set of N different k values

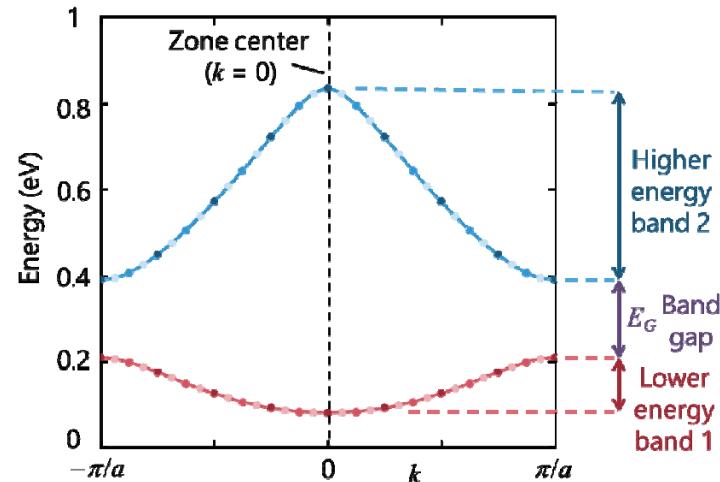
We could keep on calculating for further values of k spaced by the same amount

We would just repeat ourselves, however finding the same solutions again

We would just repeat the same band structure

copying the curves and moving them sideways by $2\pi/a$

creating an “extended” zone scheme



Brillouin zone

Any one such $2\pi/a$ range of k values can be called a "Brillouin zone"

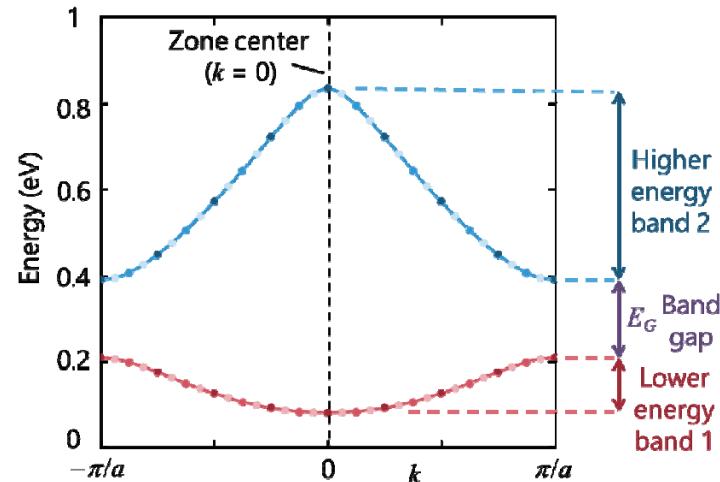
The version centered round $k = 0$

is called the first Brillouin zone and the point $k = 0$

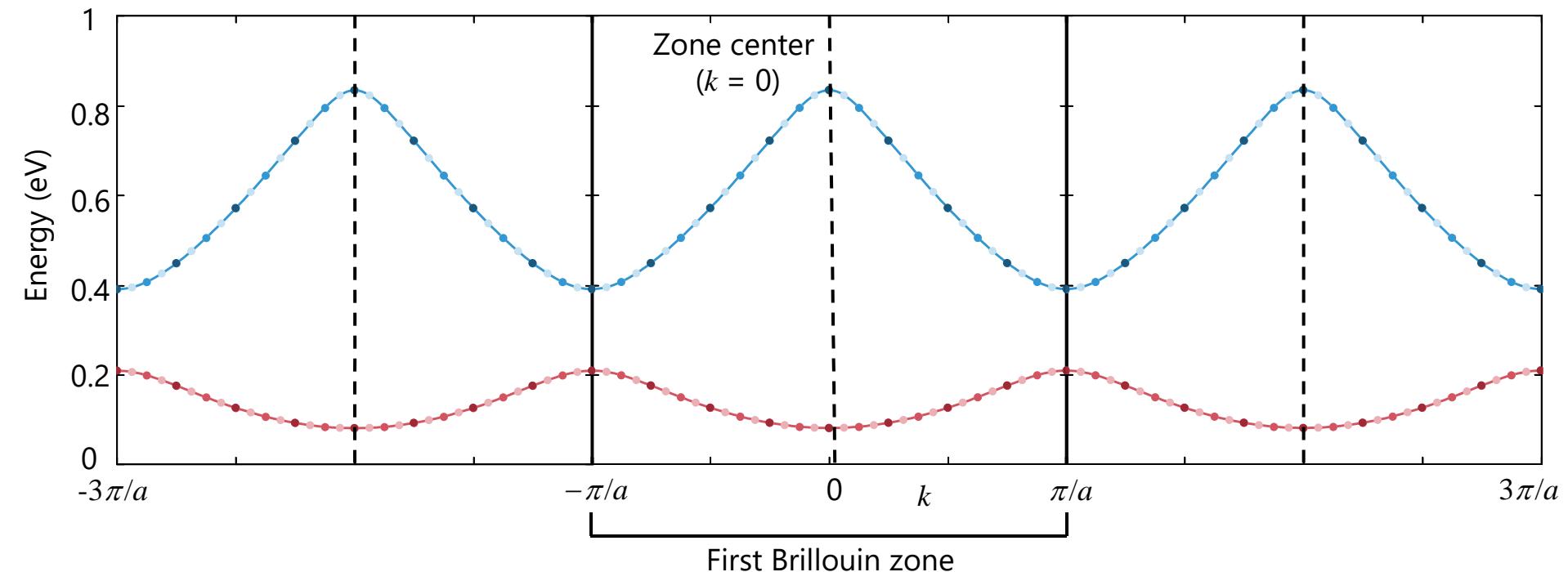
is referred to as "zone center"

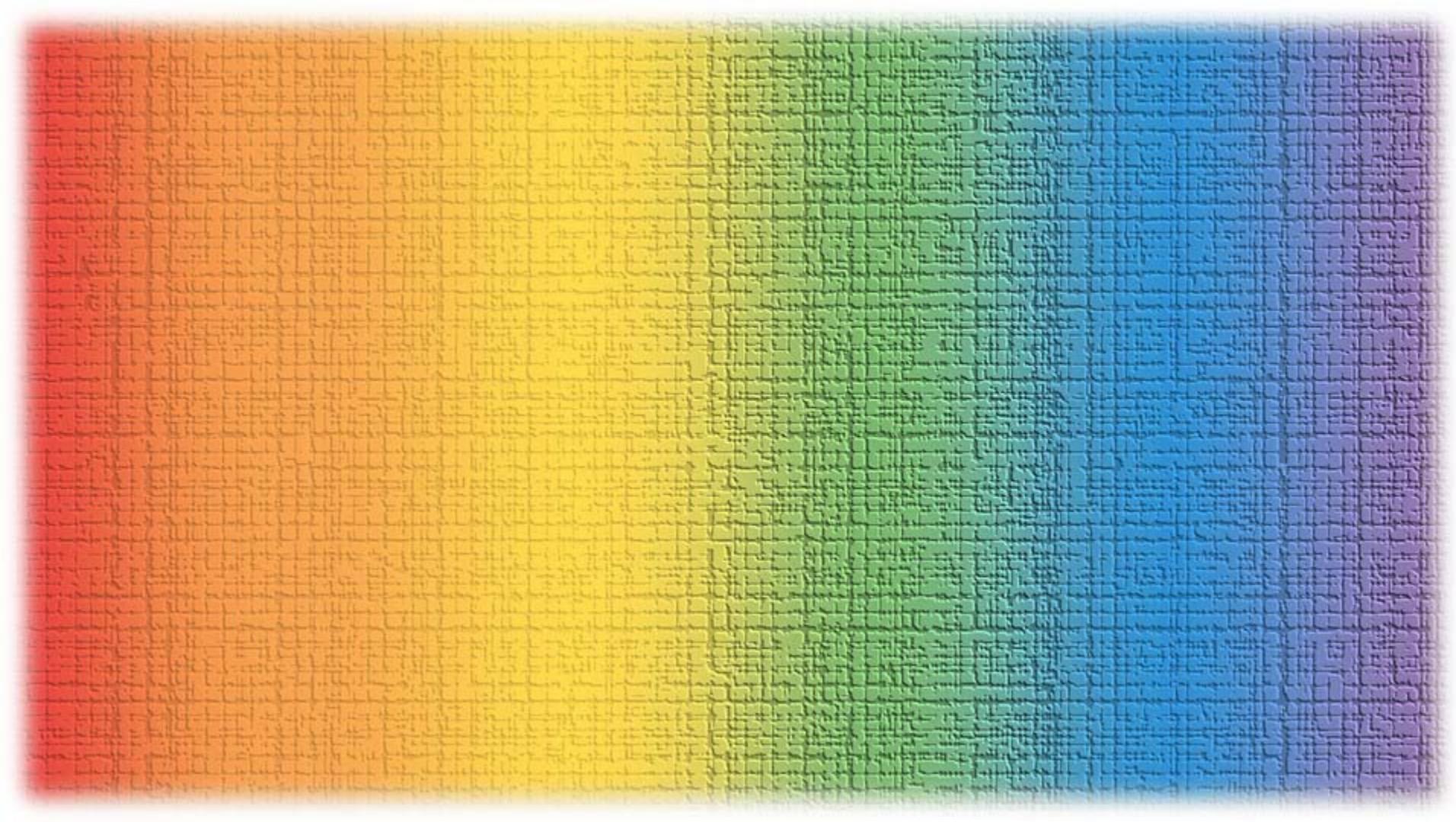
We only ever need to calculate the results for the first Brillouin zone

because it contains all the distinct solutions



Brillouin zones – “extended” scheme





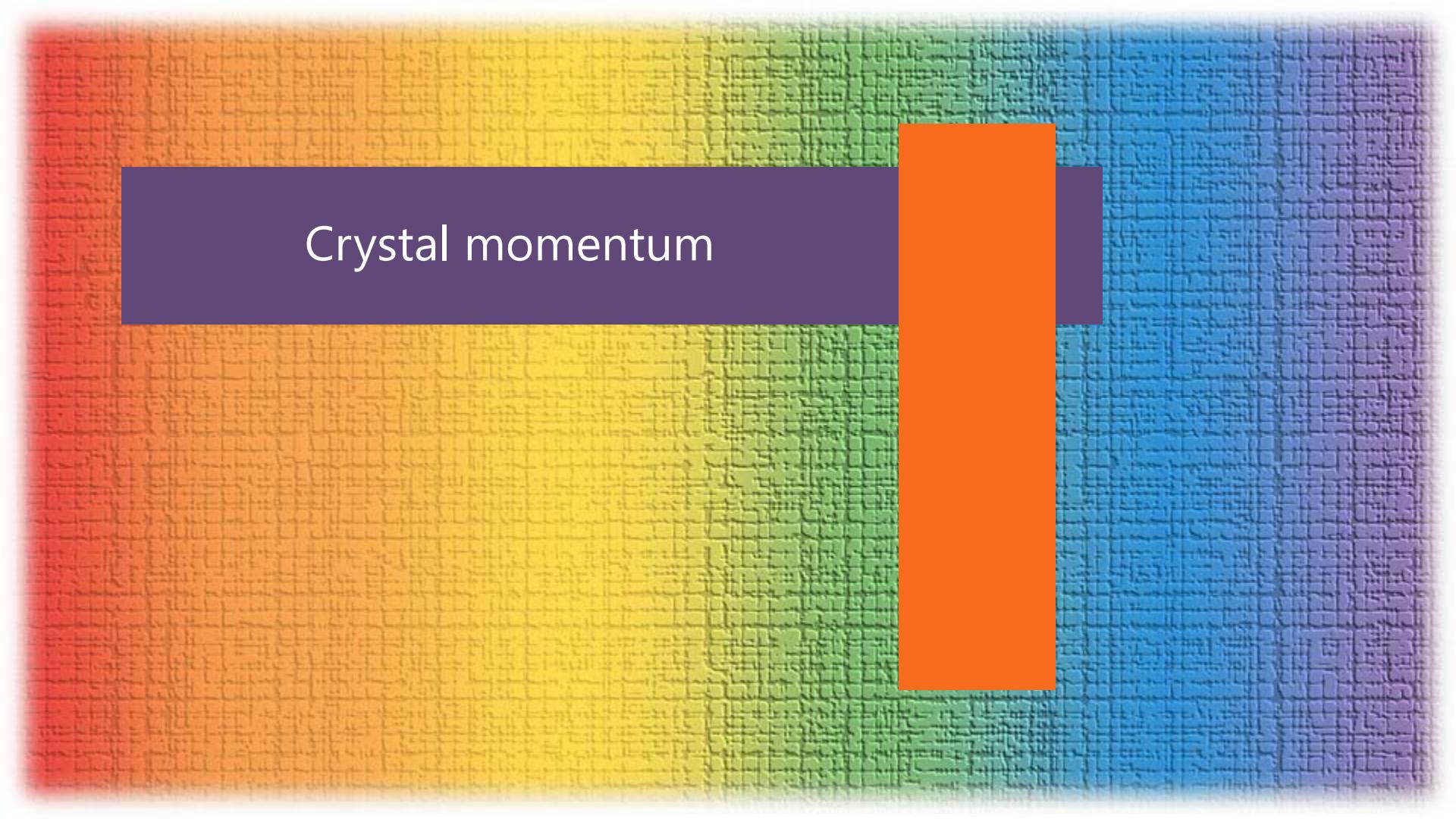
Particles, atoms, and crystals

6

Crystal momentum and effective mass

Modern physics for engineers

David Miller



Crystal momentum

Crystal momentum

For a particle in a uniform potential

we know the eigen solutions are plane waves

In one dimension, for a particle of mass m_b

with a given energy E

solving Schrödinger's equation for a "forward-going" wave

gives a wavefunction $\propto \exp(ikz)$

with eigen energy $E = \frac{\hbar^2 k^2}{2m_b}$

Crystal momentum

We also know from de Broglie's hypothesis that
the magnitude of the momentum is then $p = \hbar k$

For solutions in Bloch form

the "envelope" part of the solution is
a propagating wave of the form $\exp(ikz)$

We can define a similar concept here

the "crystal momentum" p_C
which we write with a similar formula

$$p_C = \hbar k$$

using the k in the propagating "envelope" function

Crystal momentum

This crystal momentum shows many effective properties that behave like actual momentum for an electron in a crystal though this is not actually the electron momentum and we can call it a “pseudo-momentum”

Crystal momentum

An electron accelerated by a force in
the crystal
acquires such an effective
momentum

In optical absorption, it can appear
that

“momentum” overall is conserved
when we use this pseudo-
momentum

Crystal momentum

In all these cases

we deduce the effective
conservation of this pseudo-
momentum from deeper analysis

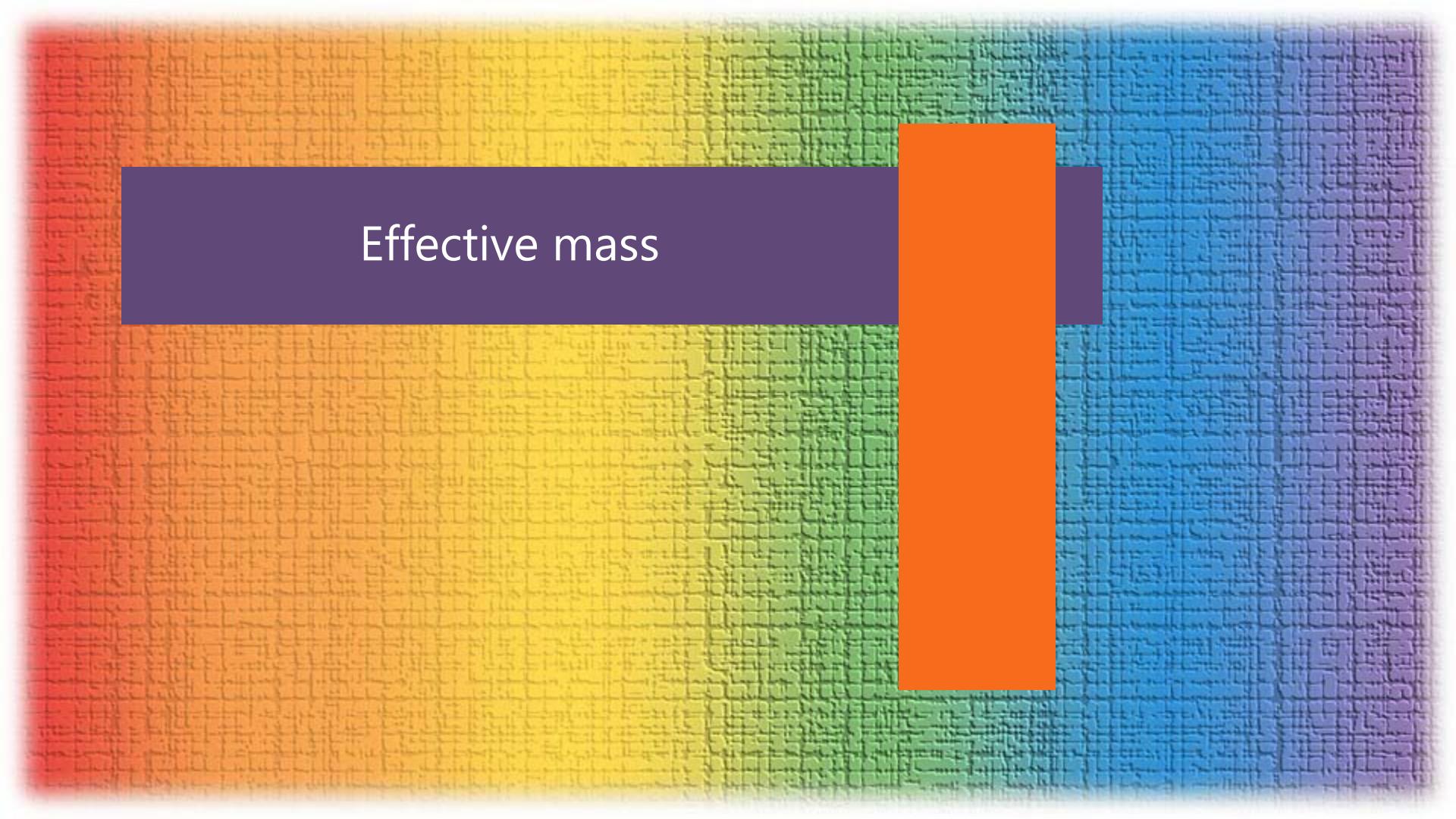
The effective “conservation” of
this pseudo-momentum comes
out of that analysis

It is not a principle we put into
the analysis

Crystal momentum

Nonetheless, it is a useful idea for electrons in crystals and is often loosely just called the “momentum”

One useful example is associated with the idea of effective mass

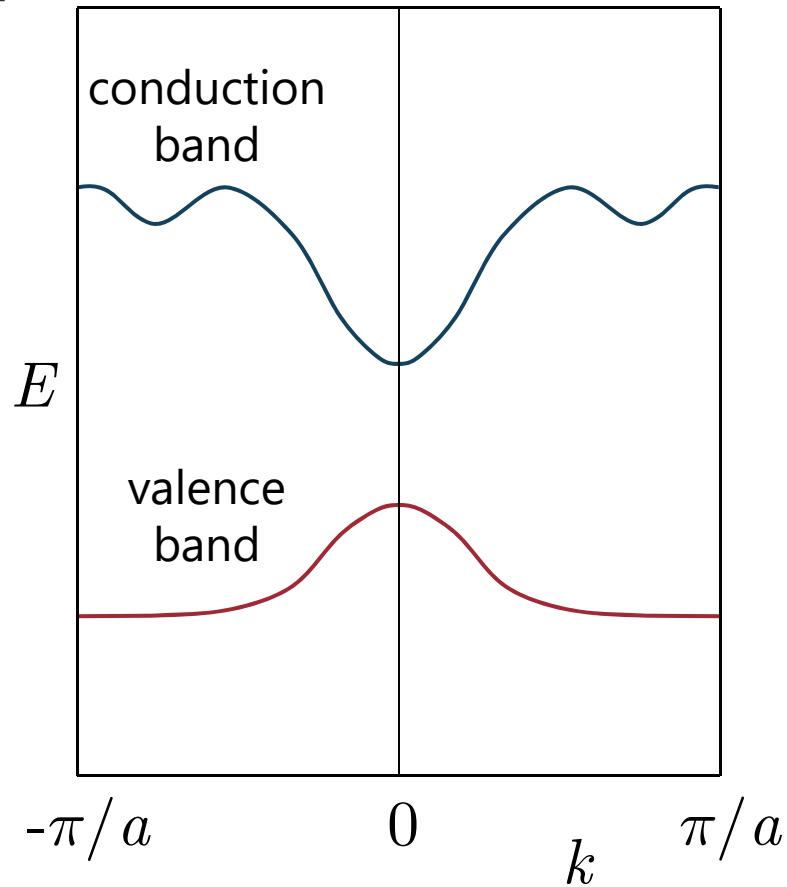


Effective mass

Effective mass approximation

Consider a hypothetical band structure

with a higher band called
the “conduction band”
and a lower band called
the “valence band”



Effective mass approximation

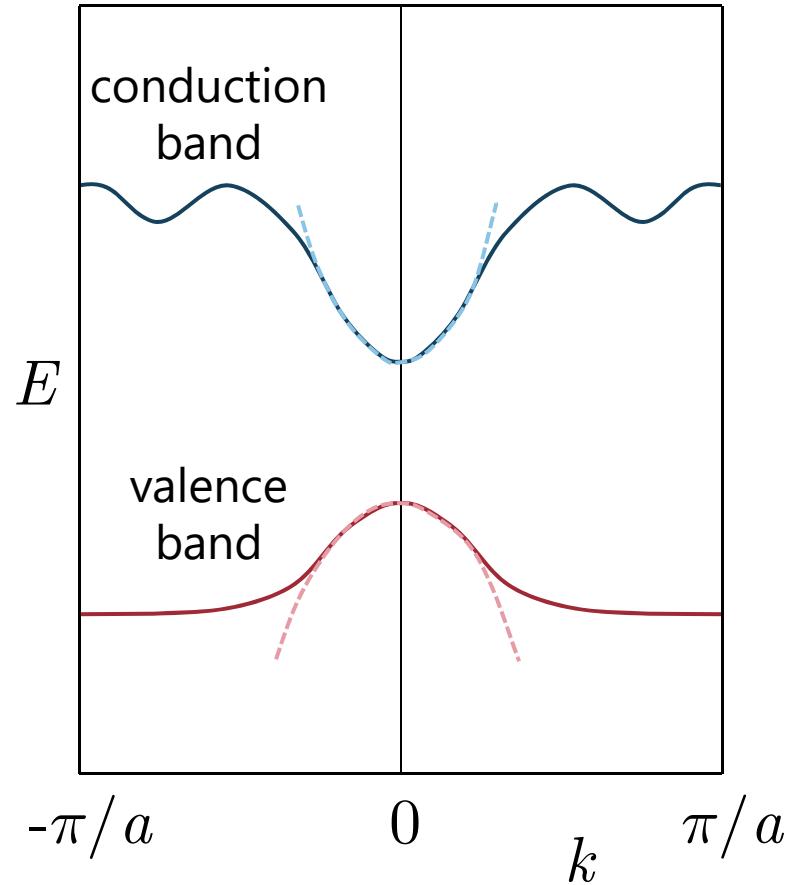
Near a minimum or maximum
in either band

we could fit the energy as a
function of k with a
parabola

For such a parabola centered
round $k = 0$

relative to the energy E_o at the
minimum or maximum

we would have $E - E_o \propto k^2$



Effective mass approximation

We could choose to write such

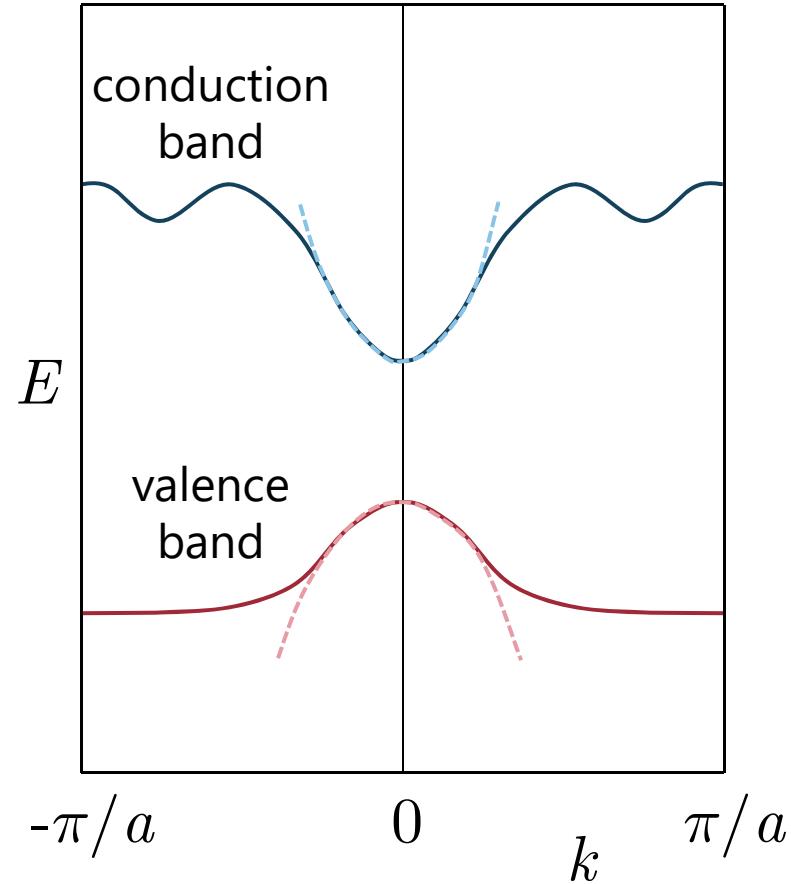
a relation $E - E_o \propto k^2$

in the form $E - E_o = \frac{\hbar^2 k^2}{2m_{eff}}$

where m_{eff} is what we call an
"effective mass"

It is a "fitting parameter"

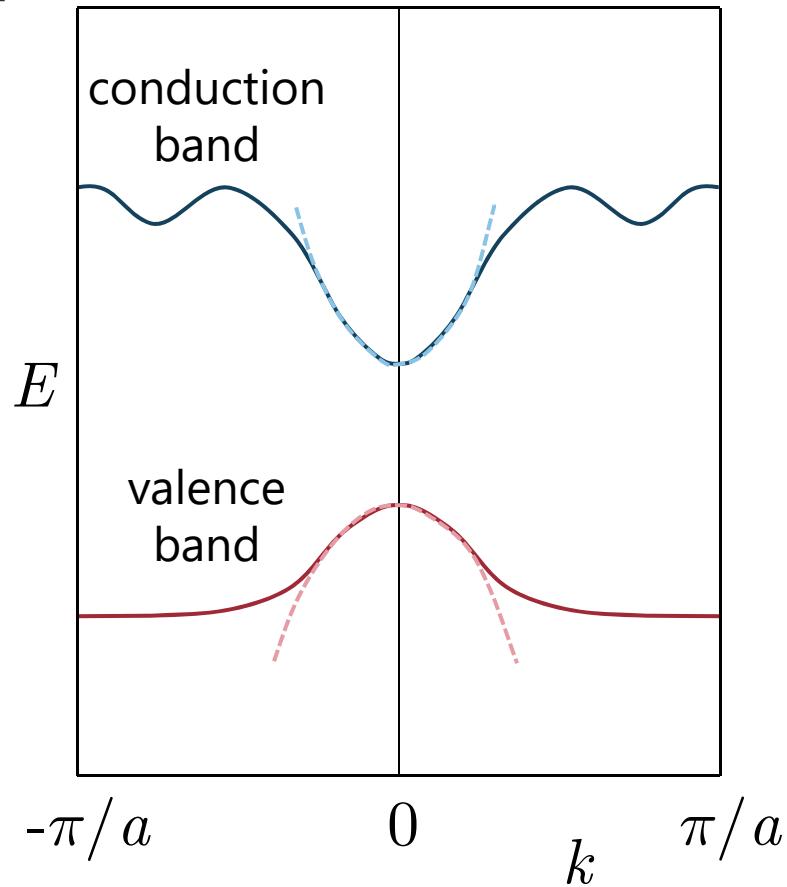
which we choose to get
the right curvature on
the parabola



Effective mass approximation

In the relation $E - E_o = \frac{\hbar^2 k^2}{2m_{eff}}$
note that

- a large effective mass gives a shallow parabola
- a small effective mass gives a steep parabola

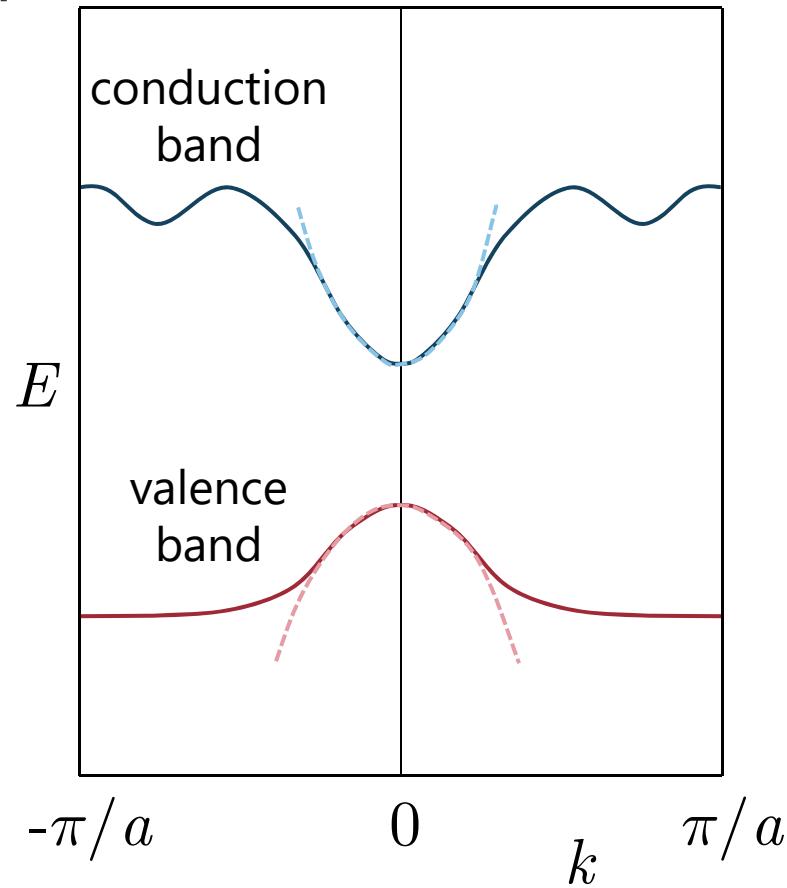


Effective mass approximation

If we then treat p_C as an effective momentum then we can write

$$E - E_o = \frac{\hbar^2 k^2}{2m_{eff}} = \frac{p_C^2}{2m_{eff}}$$

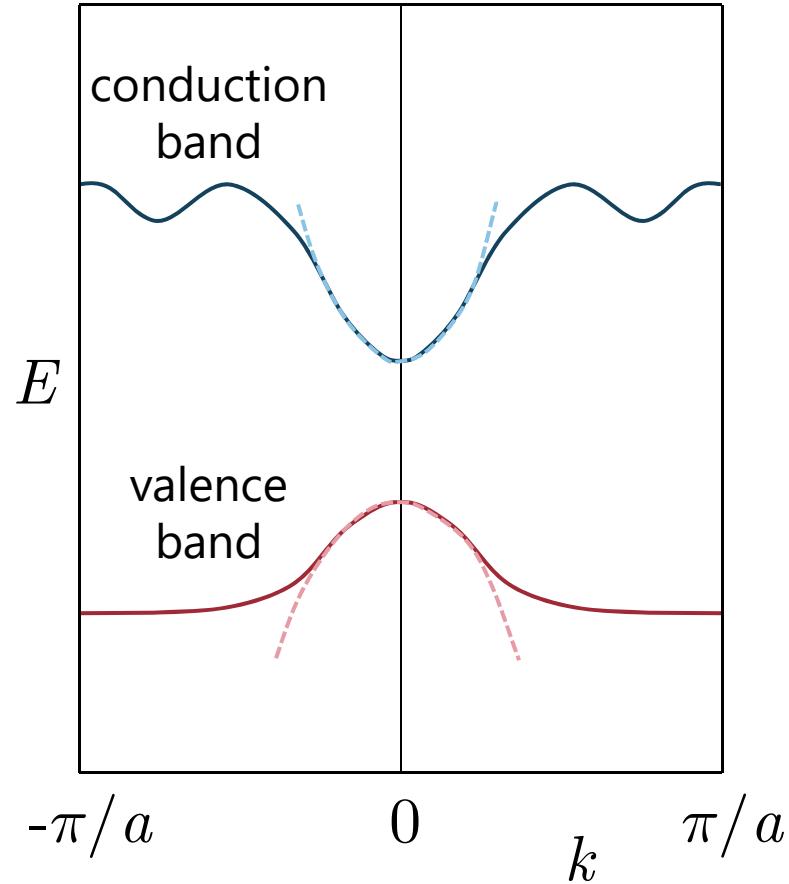
which is consistent with p_C behaving like momentum for a particle of an effective mass m_{eff}



Effective mass approximation

This idea of effective mass is very useful especially for electronic and optoelectronic devices

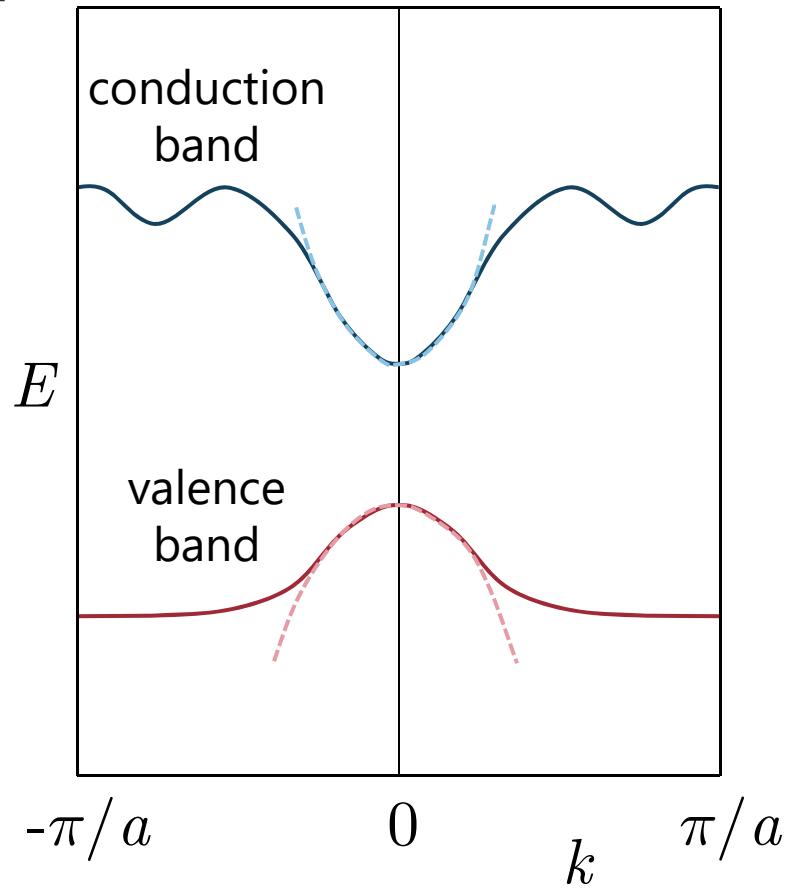
Note effective mass
is only an effective concept
We have not changed the electron mass
but band structures can make it appear we have



Effective mass approximation

A band structure

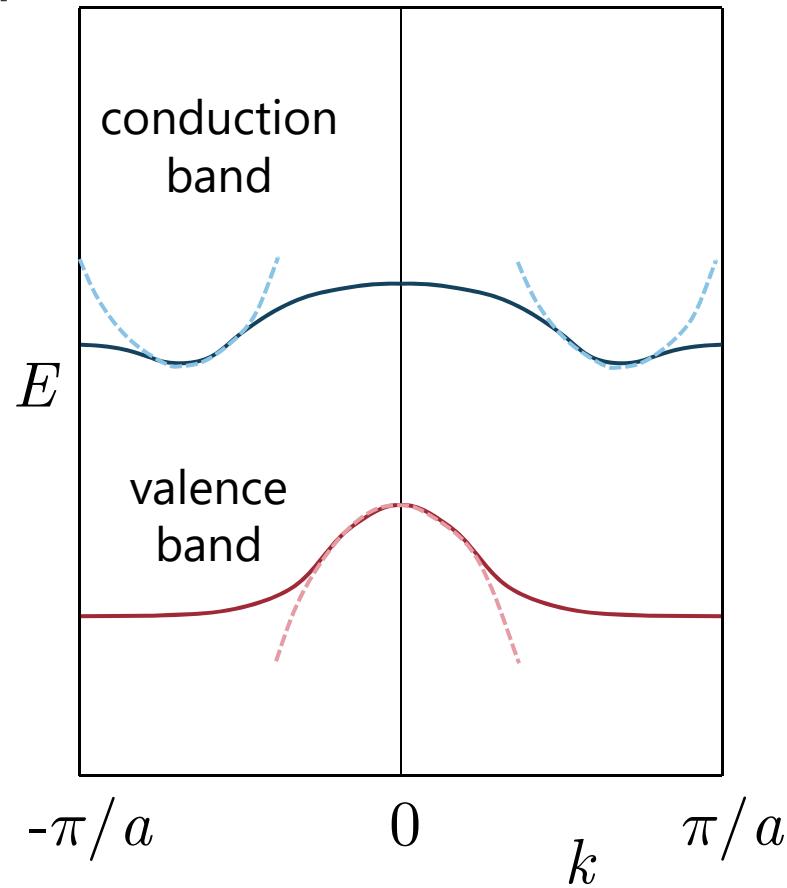
in which the lowest minimum
in the conduction band
lies at the same k as
the highest maximum in
the valence band
is said to show a
direct bandgap

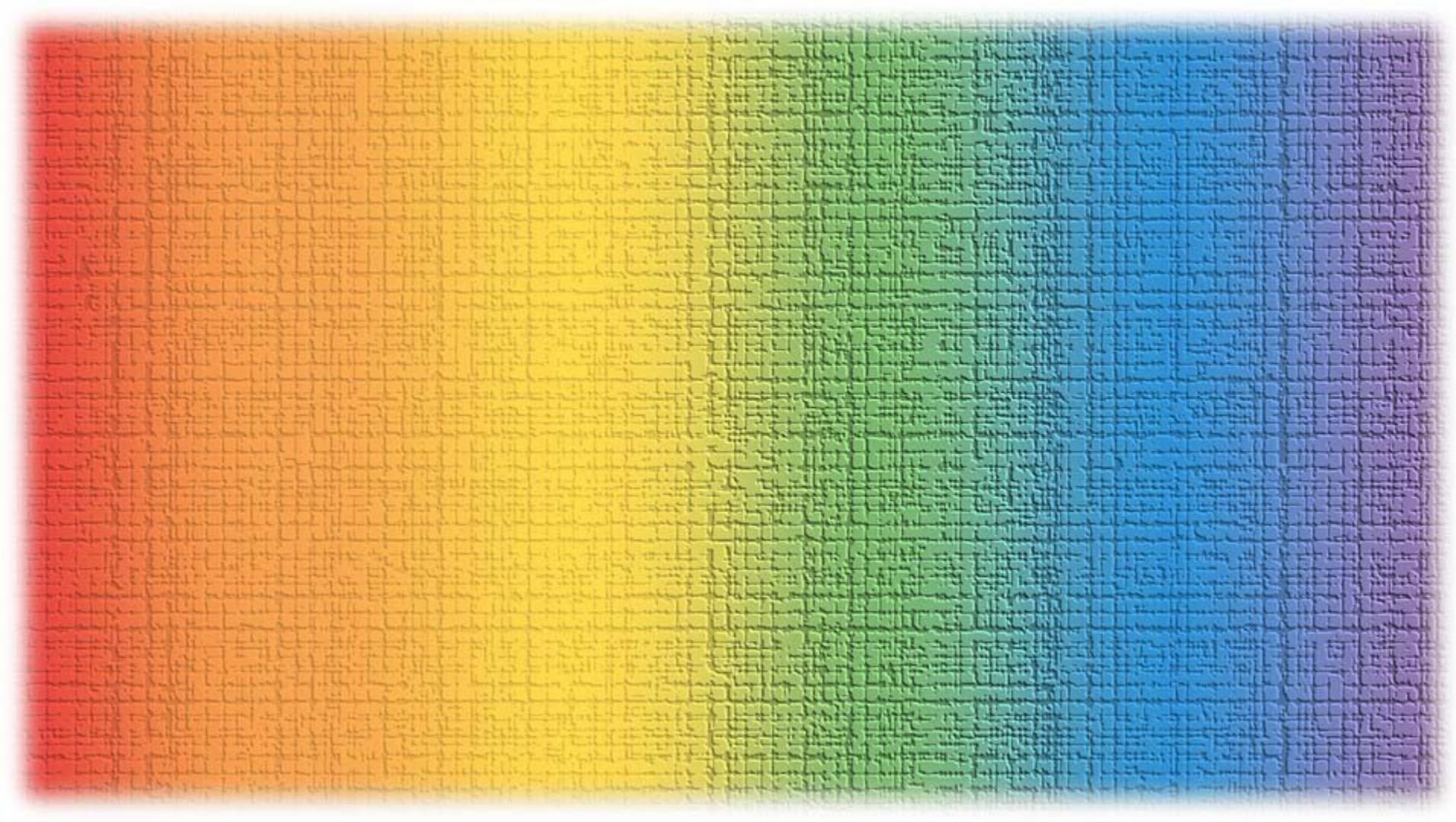


Effective mass approximation

A band structure

in which the lowest minimum in the conduction band is *not* at the same k as the highest maximum in the valence band is said to show an indirect band gap





Particles, atoms, and crystals

6

Band structures in three dimensions

Modern physics for engineers

David Miller

Bloch theorem in two and three dimensions

For two-dimensional or three-dimensional crystals
we presume that we can extend the ideas by writing

$$\psi(\mathbf{r}) = u(\mathbf{r}) \exp(i\mathbf{k} \cdot \mathbf{r})$$

where the unit cell function $u(\mathbf{r})$
is the same in every unit cell of the crystal

in all two or three directions

and the components of the wavevector \mathbf{k}

each obey relations similar to $k = \frac{2n\pi}{Na}$, $n = 0, \pm 1, \pm 2, \dots \pm \frac{N}{2}$

but with (possibly different) “repeat lengths” a for
each direction

Band structures in 2D and 3D

We can construct band structures for two- and three-dimensional (2D and 3D) crystals

in similar ways to those for one dimension (1D)

Such crystals can be more complicated than those for 1D with potentially more complicated forms of unit cells

Band structures in 2D and 3D

To plot a band structure for a 3D crystal
we would need a four-dimensional diagram
three dimensions for the components of a vector \mathbf{k}
and a fourth dimension to indicate the corresponding energies

Brillouin zone in 3D

Before plotting band structures
we need to understand
what form the Brillouin zone takes
in higher dimensional crystals

The Brillouin zone itself for a three-dimensional crystal
will be a three-dimensional shape
as a function of the components
of \mathbf{k}
and that shape depends on the
form of the crystal lattice

Brillouin zone in 3D

The Brillouin zone for the diamond or zinc-blende lattice can take this shape

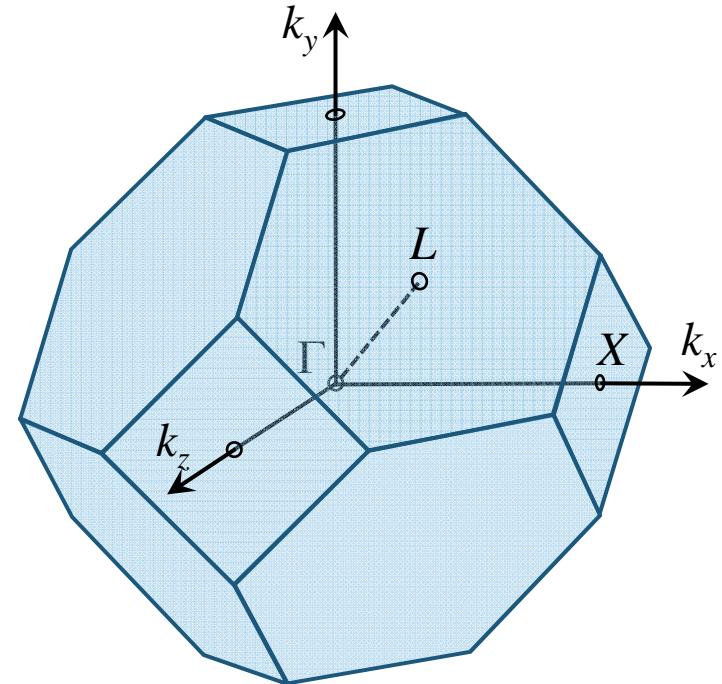
when we plot as a function of \mathbf{k}

Two important directions are

X – along one of the x , y , or z coordinate directions

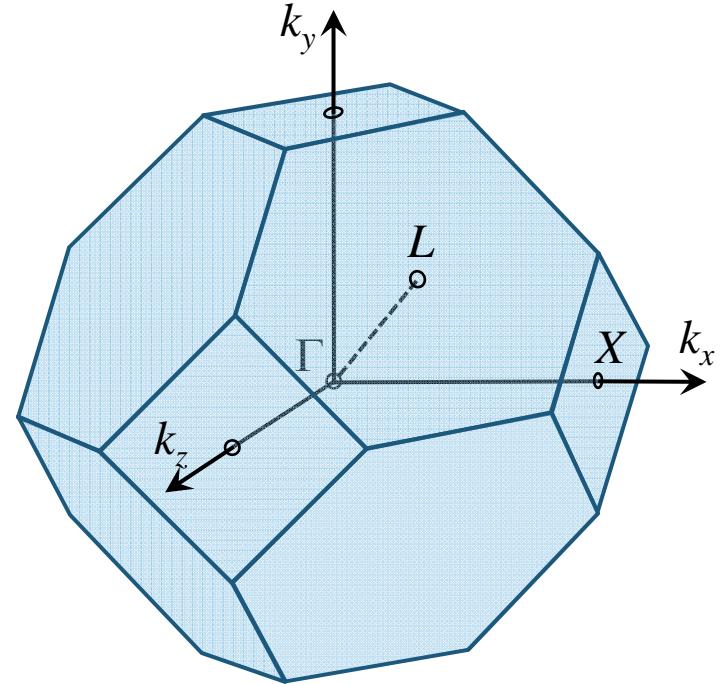
L – along one of the cube space diagonals

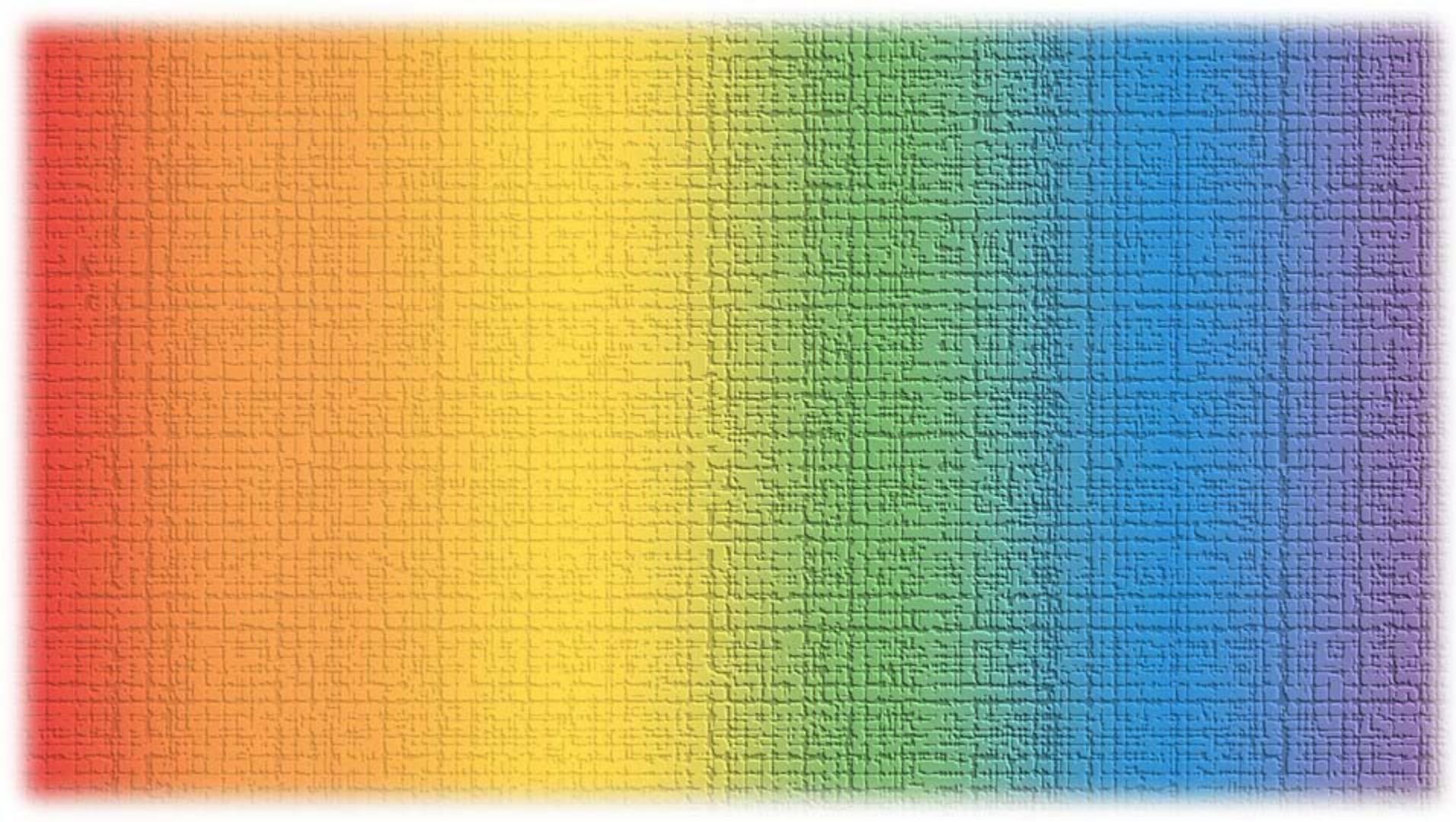
The center is the Γ (gamma) point



Band structures for 3D crystals

At least as a first useful representation of band structure typically the band structure is calculated only along a few directions such as along the lines from the Γ point (at the center of the Brillouin zone) to the X point and the L point





Particles, atoms, and crystals

6

Plotting actual band structures

Modern physics for engineers

David Miller

Plotting band structures

We typically only plot
the last few “full” bands and the
first few “empty” bands
and/or any partially full bands

These are the ones of most
technological interest

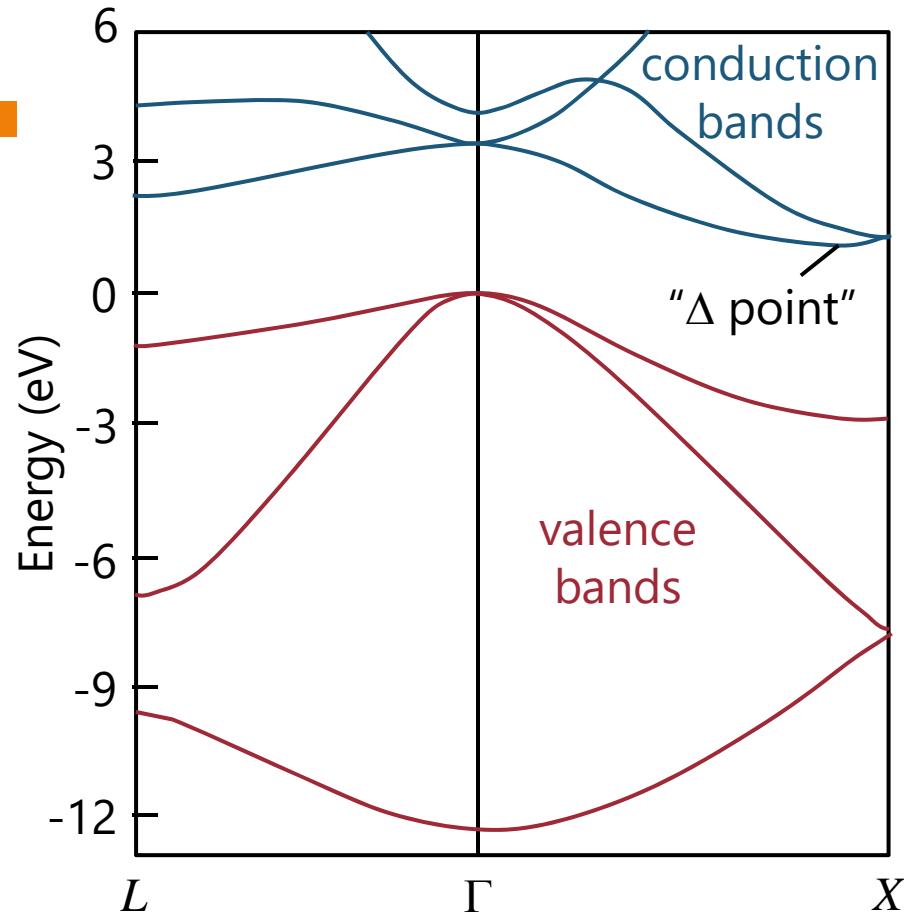
Bands associated with deeper,
“core” atomic levels
typically do not participate in
operation of devices

Plotting band structures

One useful simplification is that
band structures are essentially
always symmetric about $k = 0$,
which simplifies plotting
This is called Kramers degeneracy

Si band structure

Because band structures are symmetric around $k = 0$
by "Kramers degeneracy"
we need only show one half
of the band structure
so we can use the other
half of the figure
for the band structure in
another direction

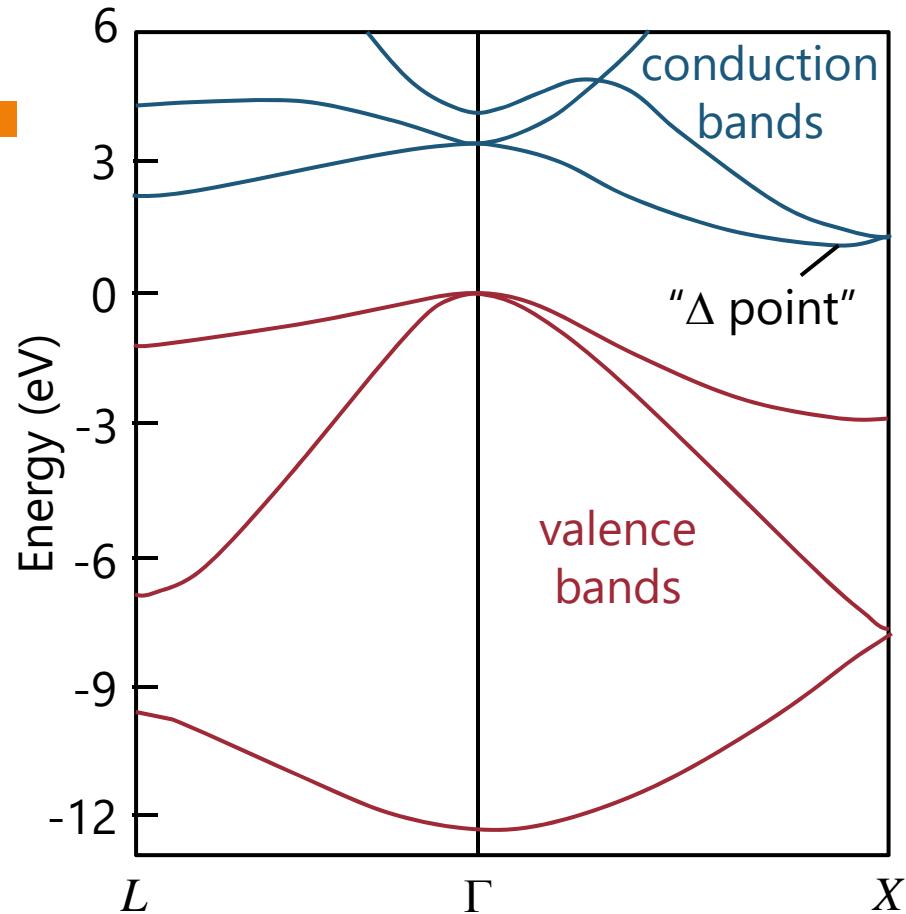


after K. S. Sieh and P. V. Smith, Phys.
Status Solidi (b) **129**, 259 (1985)

Si band structure

In contrast to our one-dimensional coupled well cases

we have multiple bands here
some of which do overlap
in energy
and bands sometimes
coincide with one
another at specific
points



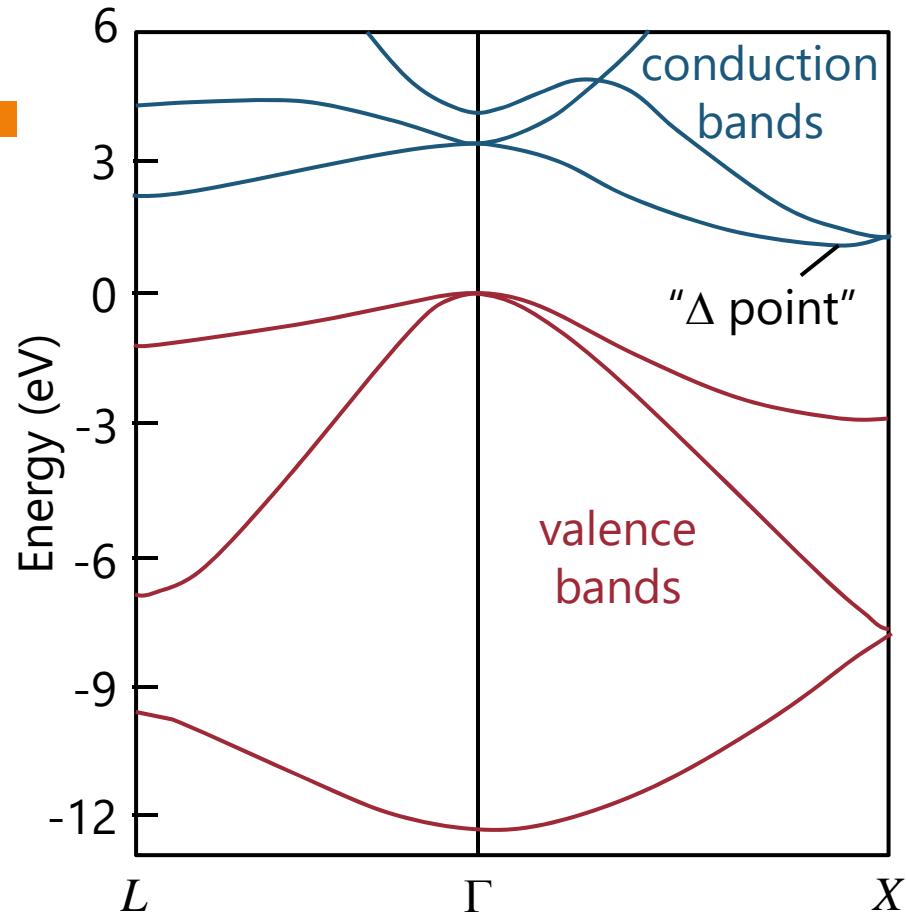
after K. S. Sieh and P. V. Smith, Phys.
Status Solidi (b) **129**, 259 (1985)

Si band structure

Sometimes, such as the lowest conduction band in silicon

the lowest energy in the band is neither at the center nor an edge of the Brillouin zone

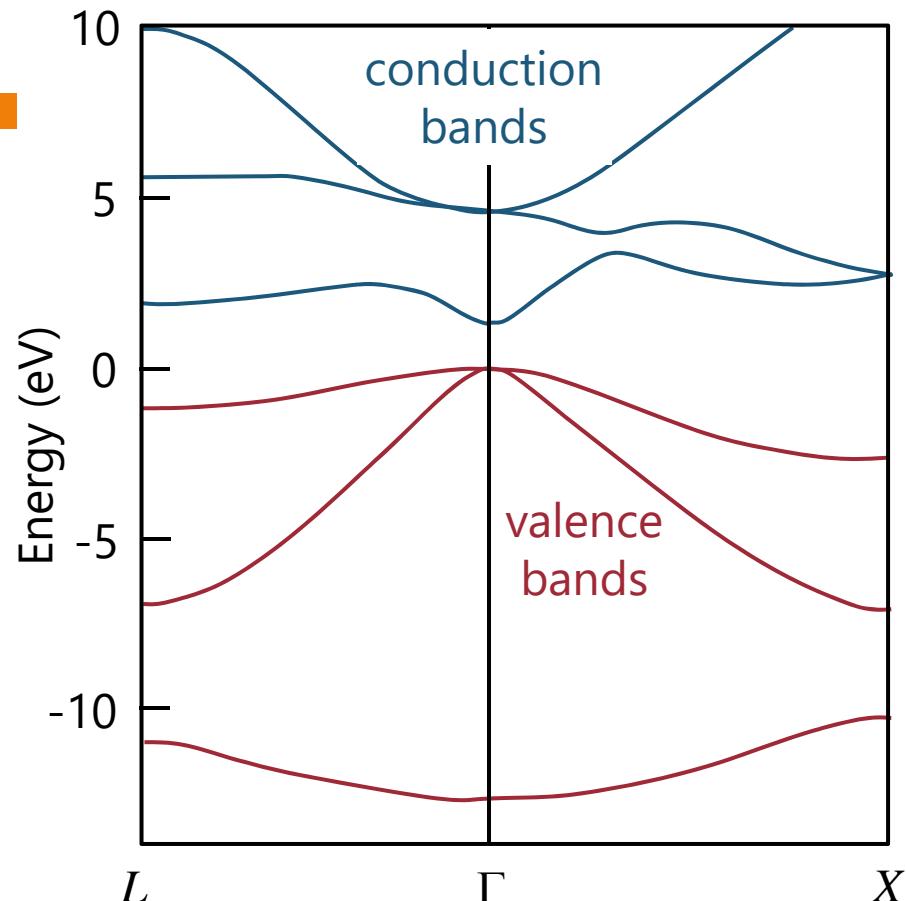
For silicon, the position of this minimum energy is referred to as the Δ (delta) point



after K. S. Sieh and P. V. Smith, Phys. Status Solidi (b) **129**, 259 (1985)

GaAs band structure

The upper valence bands of GaAs are similar to silicon but the conduction band minimum is at the Γ point So GaAs is a direct gap semiconductor unlike Si which is indirect



after M. Röhlffing, P. Krüger and J. Pollmann, Phys. Rev. B **48**, 17791 (1993)

Real band structures

For all such band structures

for N atoms in the crystal

each band has N states in it

(multiplied by 2 if electrons of
different spins also have the
same energy)

and all bands have the same
set of equally spaced \mathbf{k} values
associated with them

Band structures

For Group IV materials like carbon, silicon and germanium in the outer, highest energy orbitals we are dealing with the combination of 2 "s" orbitals and 6 "p" orbitals where we include both spin states which gives 8 orbitals that together hold 4 electrons

Band structures

Putting atoms of one such type together to form a crystal

leads to the formation of two sets of bands

Loosely, one of these sets of bands is based on

“bonding” versions of the combined orbitals

and the other is based on

“antibonding” versions of those same orbitals

The bonding versions can have lower energy than the antibonding versions

Band structures

If those “bonding” and “antibonding” sets of bands do not overlap in energy for these Group IV materials

the bonding versions will be essentially fully occupied to give what are called the “valence” bands

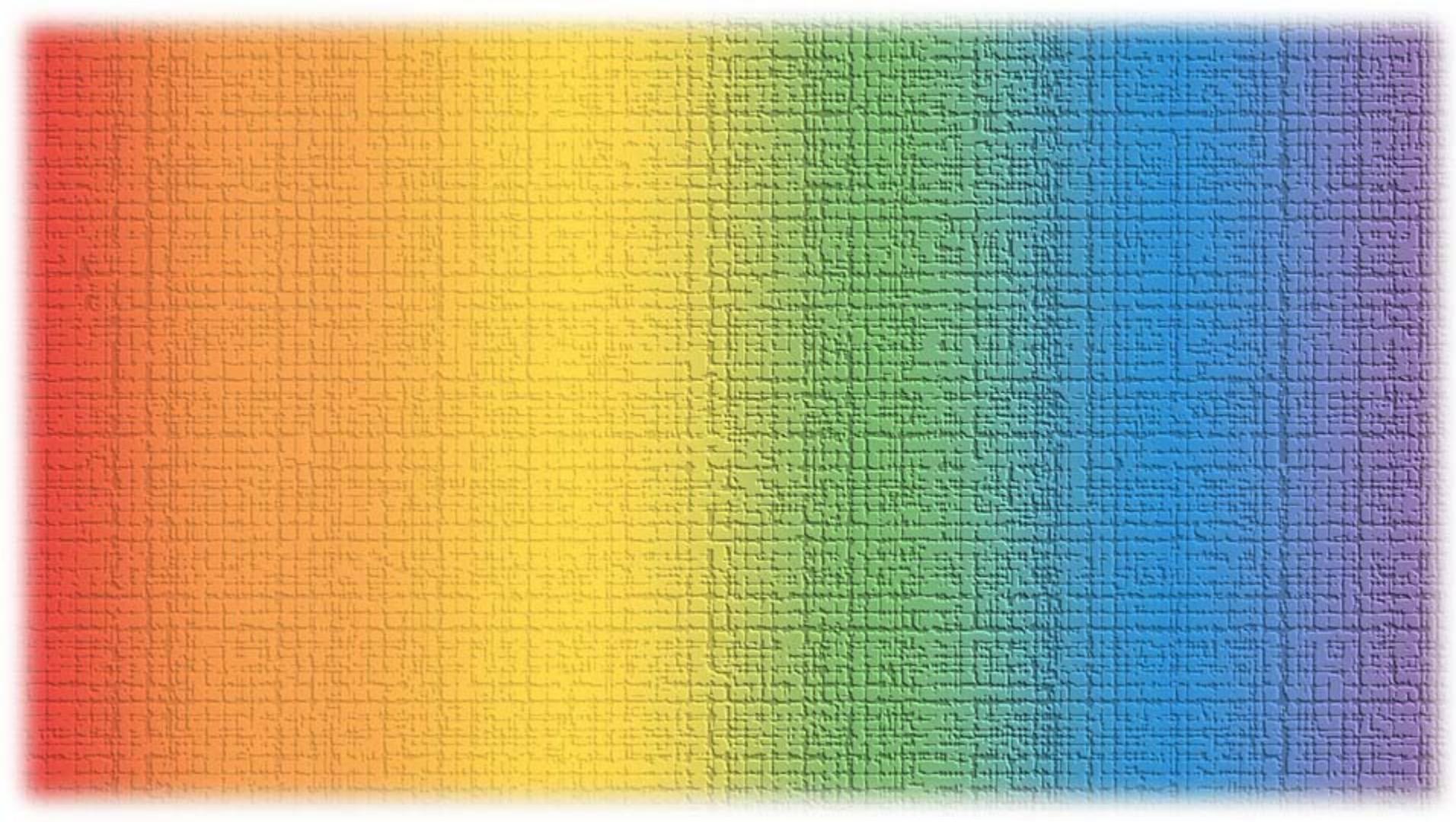
and the antibonding versions will be essentially unoccupied

to give what are called the “conduction” bands

Band structures

Such non-overlapping band behavior
with a band gap energy between them
is characteristic of a semiconductor
or an insulator

In practical terms
the GaAs material
and its various other III-V cousins
behave like effective Group IV
materials
with similar forms of band
structures



Particles, atoms, and crystals

6

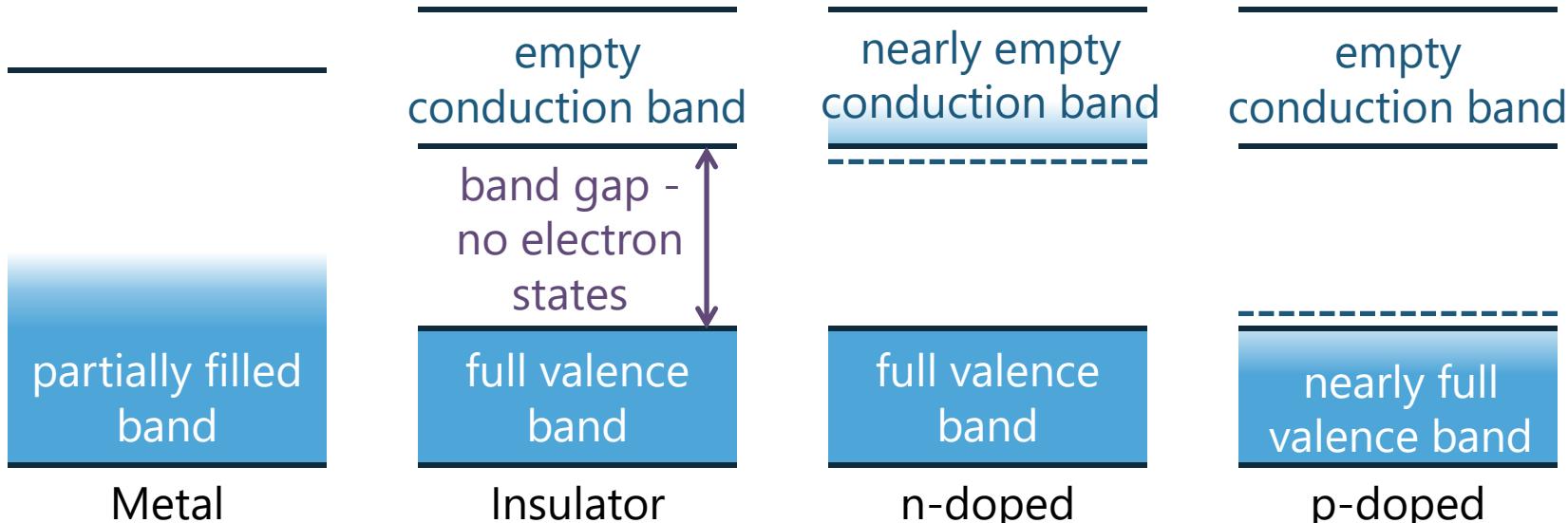
Metals, semiconductors and insulators

Modern physics for engineers

David Miller

Metals, insulators and semiconductors

Electron energy



Metal

electrons can move to new states
hence conducts electricity

Insulator

electrons in full bands cannot move to new states
does not conduct

n-doped semiconductor

added free electrons in conduction band
conduct

p-doped semiconductor

missing free electrons in valence band
allow conduction

Semiconductors and insulators

Semiconductors and insulators

have an (almost) completely
full band

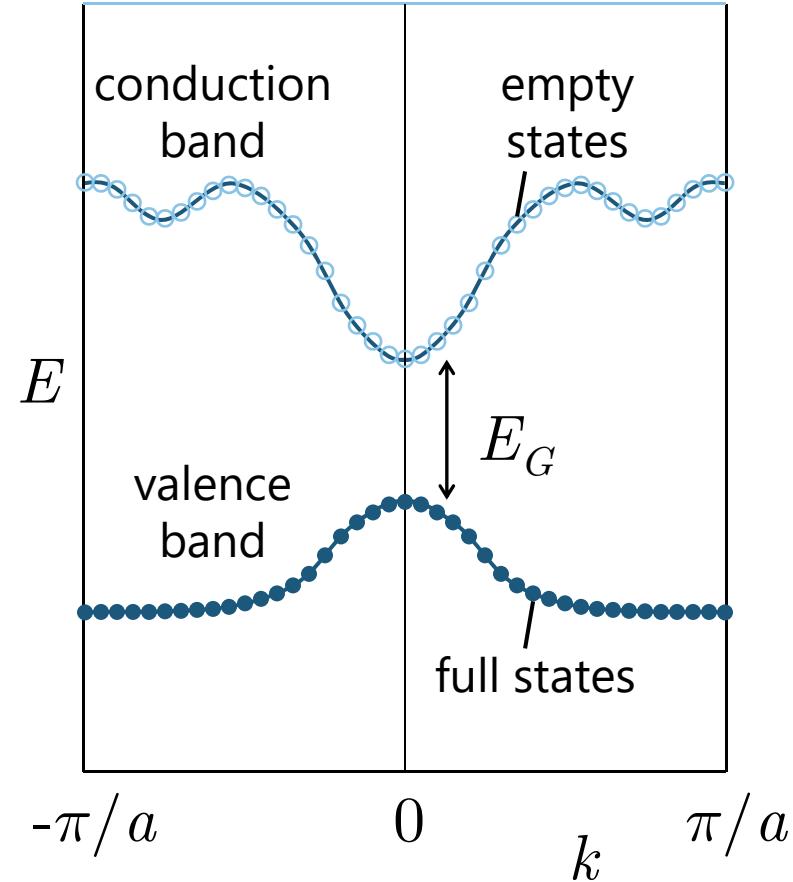
the valence band

separated by a “bandgap”

energy E_G

from an (almost) completely
empty band

the conduction band

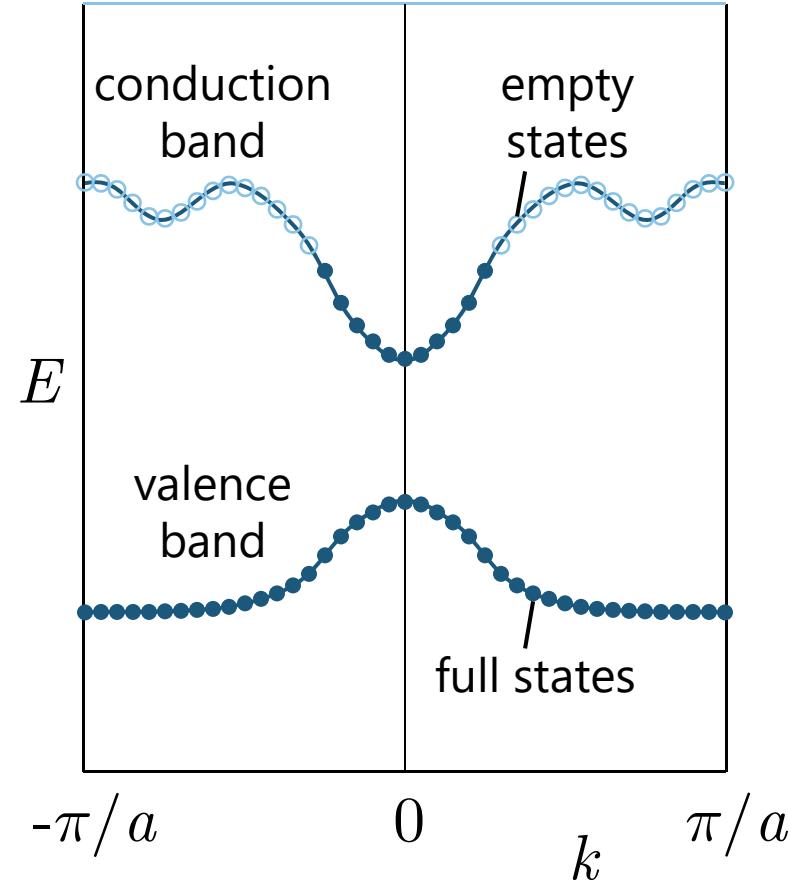


Metals

Because of the number of electrons in the metal atoms the highest band is partially full of electrons e.g., half-full even at zero temperature

Metals may or may not have band gaps

Applying a field “skews” the electron distribution allowing metals to conduct electricity well



Semiconductors and insulators

Note that

an empty band does not conduct electricity

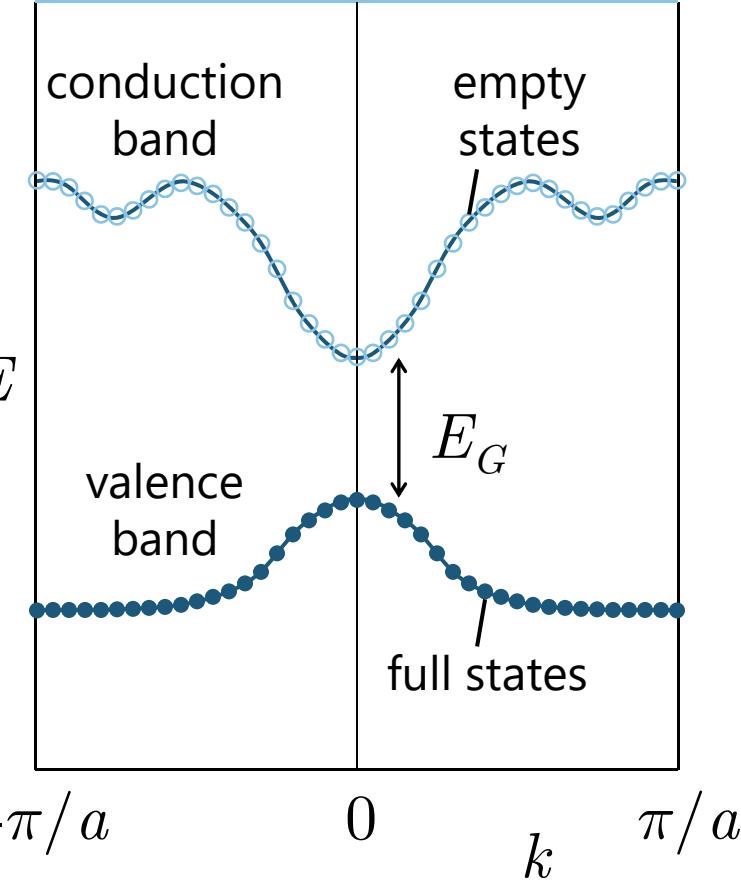
There are no mobile electrons E

Also

a full band does not conduct electricity

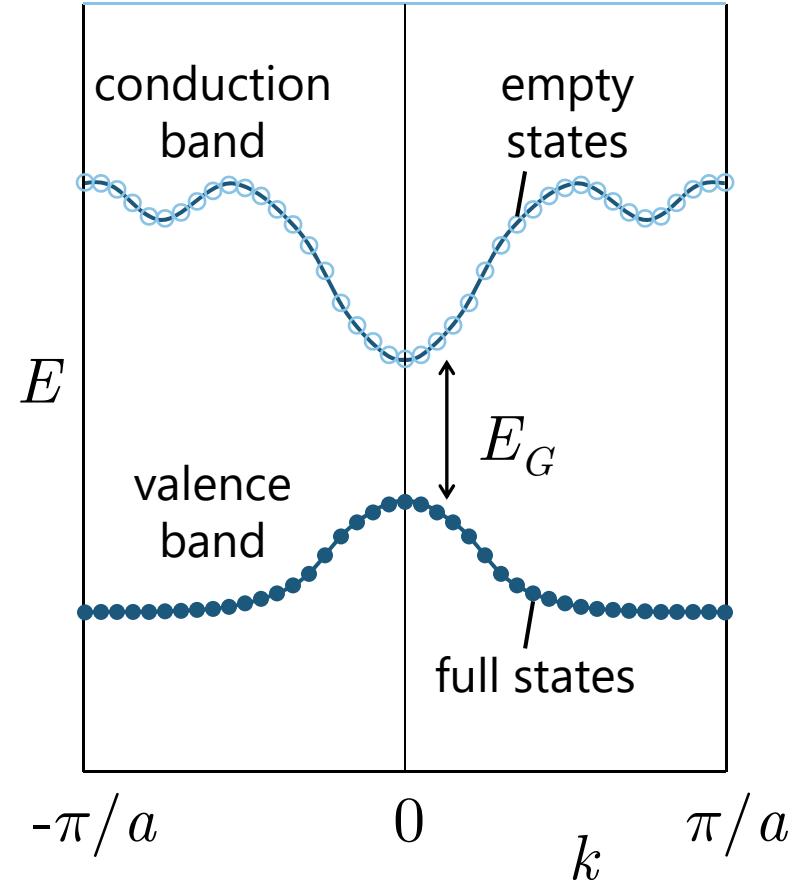
The electrons cannot change states within the band

because all the states are full



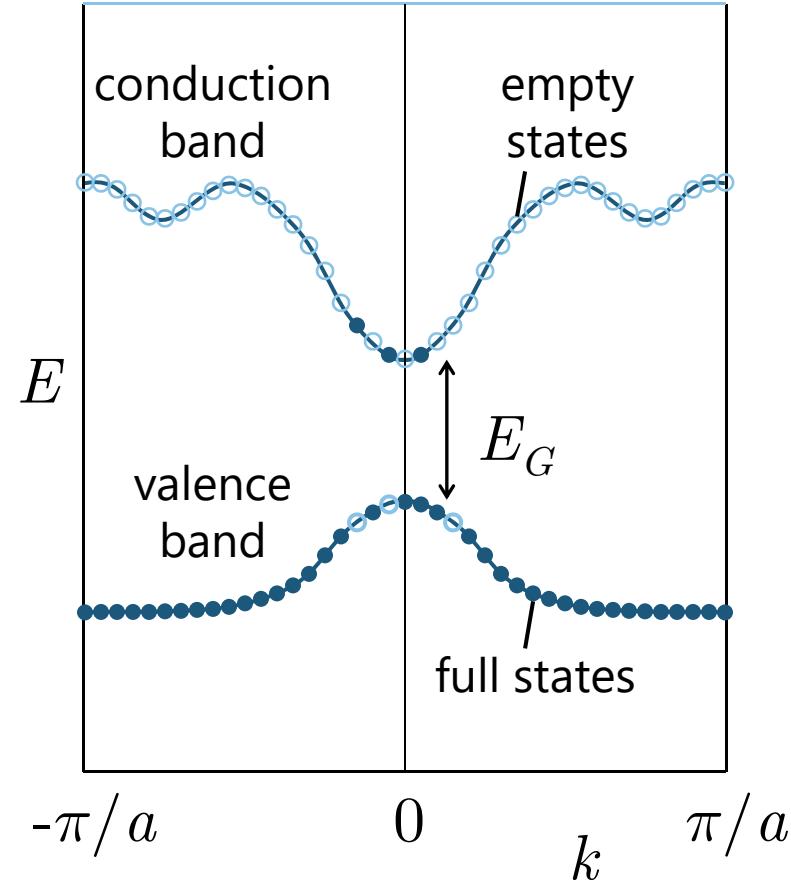
Semiconductors and insulators

The difference between semiconductors and insulators is primarily that insulators have such a large bandgap energy that there is negligible thermal excitation of electrons from the valence band to the conduction band



Semiconductors

At finite temperatures in a semiconductor
a small number of electrons
are excited
from the valence band
to the conduction band



Semiconductors

These electrons in the conduction band and absences of electrons or “holes” in the valence band can conduct electricity within their bands

So semiconductor materials conduct electricity weakly hence the name

