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Calculating a band structure
5
For a periodic structure of

“rectangular” potential wells

using the periodic boundary
conditions

we can calculate the energy
eigenvalues

for each allowed value of k
The resulting sets of energies
will allow us to plot
a "band structure”



Calculating a band structure

1 | ' ' N = 8 solutions
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Calculating a band structure
N

1 ' ' ' N = 8 solutions
N = 16 additional
08l . ] solutions
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) o o :
well width S 04k ¢ ] N=38 solutions
1.2 nm N = 16 additional
barrier width solutions
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Calculating a band structure
N

1 ' ' ' N = 8 solutions
N = 16 additional
08t A ] solutions
. o N = 32 additional
S . . solutions
L 06¢F . . .
>
o) . .
] o . )
well width S 04k ..{ N=28solutions
1.2 nm N = 16 additional
barrier width solutions
O 2 P09 R | ..
0.15 nm ' °.. . N = 32 additional
barrier height IR TP solutions
1 eV O | I 1

—rla 0 k wla



Calculating a band structure

well width
1.2 nm
barrier width
0.15 nm
barrier height
1eV

Energy (eV)
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N = 8 solutions

N = 16 additional
solutions

N = 32 additional
solutions

N large

N = 8 solutions

N = 16 additional
solutions

N = 32 additional
solutions

N large



Calculating a band structure
N

Energy (eV)

T

08

o
o
I

o

D
b4
\

0.2

Zonle center |
(k=0) ~|

Vs
P

A
/ 1

1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
~o-_.__+__._-o—

0

Higher energy
band 2

Band gap

Lower energy
band 1



Properties of the band structure
B
First
note the k values for each choice of N

are equally spaced, by 27/ Na
As we have “pushed” the “atoms”
together to make this “crystal”

we can keep the same counting of
states

Energy (eV)

o

Some given atomic level in each of
N atoms
has turned into N energy levels

in a band in the combined
system

o
o

—

o
(%]

Zone center

i
1
k=0~ __ o
Vs /T\\
4 i N Higher
! § energy
// : \\ band 2
i -
ak 1 )
1 Band
i E
i P
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B L Ly - - ¥ energy
. ] ) band 1
0 k #la




Properties of the band structure
B

Second
note that, for each value of k
within the energy range from 0 to

—

Zone center ':

1 eV for which we performed NI L I S -
calculations = AR AN Higher
206 P4 : . 1 energy
th t bl 5 Vg : u band 2

ere are two possible energy § | | | .

eigenvalues, as given by = i "3, san
17 " 02 be. i Ay e
the “red” dots for the lower A B Lower
Ranas oo saaE DL LD - =¥ energy
band and ol b

the “blue” dots for the upper
band



Properties of the band structure
B

Third

as we increase N, first to 16, and then to 32
we fill in the spaces between the

M M 1 n 1
existing “dots
retaining all the previous solutions 08|

Note that the energy width of the bands
does not increase

as we increase N arbitrarily

Energy (eV)

o
=

We end up with smooth continuous bands %}

of definite width

and all the energy solutions lie on these o

Ccurves

T L]
Zone center |

—— e

o
o

Higher
energy
band 2

E. Band
L gap
Lower

-------- - = =¥ energy

band 1
#la



Properties of the band structure
B

Fourth

we see a range of energies between the
two bands, for which

—

there are no energy eigenstates
Such energy ranges are “band gaps”
with a band gap energy Eg

The existence or otherwise of band gaps in
a band structure

is very important in influencing both

oS
(%]

o
o

Energy (eV)

o
=

Zone center

T
h"-‘».._

N\ Higher
. energy
\\ band 2

E. Band
L gap
o Lower

et e o - - - - ¥ energy

the electrical and optical properties of
a material

band 1
k nla



Brillouin zone

We calculated for the allowed set of N
different k values

We could keep on calculating

—

for further values of k spaced by the
same amount

We would just repeat ourselves, however
finding the same solutions again

We would just repeat the same band
structure

oS
(%]

o
o

Energy (eV)

o
=

02

copying the curves and moving them
sideways by 27/ a

creating an “extended” zone scheme

Zon'e center ':
k=0~ __ o
x/T\\
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: energy
// : \\ band 2
s i RN
. A : I N
1 Band
i E,
., i ¥ o Bl ’ gap
. ! T Lower
R PSS o gy - - ¥ energy
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mla 0 k #la



Brillouin zone

T
Any one such 27 /a range of k values can be

called
a "Brillouin zone"
The version centered round k=0
is called the first Brillouin zone
and the point k=0
is referred to as “zone center”
We only ever need to calculate the results
for the first Brillouin zone

because it contains all the distinct
solutions

—

Zon'e center ':
k=0~ __ o
08 ’// T\\
< 4 i N Higher
L 06} Pl I N\ energy
= 1
& Y , \ band 2
g s i .
& o4~ | i R
02 - | 1 Lower
' . ! T Lower
B L Ly - - ¥ energy
0 ] band 1
—rla 0 k #la



Brillouin zones — “extended” scheme
e

1 T ' T T
: Zonecenter: :
(k = 0)
08/ A TN T RN A TN
- AN TN AN
2 /0N | SN | AN
>, 0-6 e ! N ~ ! ~ e ! ~
S Ve ! N ~ ! N # ! N
< x/ ! \\ x/ ! \\ x/ ! \\
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I 1 I
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Crystal momentum
N 1

For a particle in a uniform potential
we know the eigen solutions are plane waves
In one dimension, for a particle of mass m,
with a given energy E
solving Schrédinger’s equation for a “forward-
going” wave
gives a wavefunction o exp(ikz)

n°k*
2m,

with eigen energy E =



Crystal momentum
N 1

We also know from de Broglie’s hypothesis that
the magnitude of the momentum is then p =7k
For solutions in Bloch form
the “envelope” part of the solution is
a propagating wave of the form exp(ikz)
We can define a similar concept here
the “crystal momentum” p.
which we write with a similar formula
P. = 7K
using the k in the propagating “envelope” function



Crystal momentum

5

This crystal momentum shows many
effective properties

that behave like actual momentum
for an electron in a crystal
though this is not actually the
electron momentum

and we can call it a “pseudo-
momentum”



Crystal momentum

5

An electron accelerated by a force in
the crystal

acquires such an effective
momentum

In optical absorption, it can appear
that

"momentum” overall is conserved
when we use this pseudo-
momentum



Crystal momentum
e
In all these cases

we deduce the effective
conservation of this pseudo-
momentum from deeper analysis

The effective “conservation” of
this pseudo-momentum comes
out of that analysis

It is not a principle we put into
the analysis



Crystal momentum

5

Nonetheless, it is a useful idea for
electrons in crystals

and is often loosely just called the
‘momentum”

One useful example is associated
with the idea of effective mass
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Effective mass approximation
N

Consider a hypothetical band
structure
with a higher band called
the “conduction band”
and a lower band called
the "valence band”

conduction
band
E
valence
band L
-m/a 0 T/a



Effective mass approximation
B
Near a minimum or maximum
In either band

we could fit the energy as a
function of k with a
parabola

For such a parabola centered
round k=0
relative to the energy E, at the
minimum or maximum

we would have E-E_ o« k?

conduction
band

E

valence

\/\k

N

M

-/ a



Effective mass approximation
B
We could choose to write such
a relation E - E_ ock’
h2k2
2meff

where m; 1s what we call an
"effective mass”

It is a "fitting parameter”

which we choose to get
the right curvature on
the parabola

in the form E—E, =

conduction
band

E

valence

\/\K

N

M

-/ a



Effective mass approximation
N

hok?
2meff

In the relation E-E, =
note that
a large effective mass
gives a shallow parabola
a small effective mass
gives a steep parabola

conduction
band

E

valence

\/\\

N

M

-/ a



Effective mass approximation
I
If we then treat p. as an
effective momentum

then we can write
kP pe

2 meff 2 meff

E-E

0]

which is consistent with p.
behaving like momentum

for a particle of an effective
mass M

conduction
band

valence

\/\K

N

M

-/ a



Effective mass approximation
N

This idea of effective mass is
very useful

especially for electronic and
optoelectronic devices

Note effective mass
Is only an effective concept

We have not changed the
electron mass

but band structures can
make it appear we have

conduction
band

valence

\/\K

N

M

-/ a



Effective mass approximation
N

A band structure

in which the lowest minimum
in the conduction band

lies at the same k as

the highest maximum in
the valence band

Is said to show a
direct bandgap

conduction
band

valence

\/\\

N

M

-/ a



Effective mass approximation
N

A band structure

in which the lowest minimum
in the conduction band

Is not at the same k as as

the highest maximum in
the valence band

Is said to show an
Indirect band gap

conduction
band

\/—

E

valence

M

-m/a 0 T/a
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Bloch theorem in two and three dimensions

5
For two-dimensional or three-dimensional crystals

we presume that we can extend the ideas by writing
w(r)=u(r)exp(ik-r)
where the unit cell function u(r)
Is the same in every unit cell of the crystal
in all two or three directions
and the components of the wavevector k
each obey relations similar to k :ZI\T—Z, n=0,%1, J_r2,...i%

but with (possibly different) “repeat lengths” a for
each direction



Band structures in 2D and 3D

B

We can construct band structures for
two- and three-dimensional (2D and
3D) crystals
in similar ways to those for one

dimension (1D)

Such crystals can be more

complicated than those for 1D

with potentially more complicated
forms of unit cells



Band structures in 2D and 3D
5
To plot a band structure for a 3D
crystal
we would need a four-dimensional
diagram
three dimensions for the
components of a vector k
and a fourth dimension to
Indicate the corresponding
energies



Brillouin zone in 3D

5
Before plotting band structures

we need to understand
what form the Brillouin zone takes
In higher dimensional crystals

The Brillouin zone itself for a three
dimensional crystal
will be a three-dimensional shape
as a function of the components
of k

and that shape depends on the
form of the crystal lattice



Brillouin zone in 3D
B

The Brillouin zone for the diamond
or zinc-blende lattice
can take this shape
when we plot as a function of k
Two important directions are

X —along one of the x, y, or z
coordinate directions

L — along one of the cube space
diagonals

The center is the I' (gamma) point




Band structures for 3D crystals
B

At least as a first useful
representation of band structure

typically the band structure is
calculated only along a few
directions

such as along the lines from
the I point (at the center of
the Brillouin zone)

to the X point and the L
point
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Plotting band structures
I

We typically only plot

the last few “full” bands and the
first few "empty” bands

and/or any partially full bands

These are the ones of most
technological interest

Bands associated with deeper,
‘core” atomic levels
typically do not participate in
operation of devices



Plotting band structures
I

One useful simplification is that

band structures are essentially
always symmetric about k = 0,
which simplifies plotting
This is called Kramers degeneracy



Si band structure

B
Because band structures are

symmetric around k = 0
by “Kramers degeneracy”

we need only show one half
of the band structure

SO we can use the other
half of the figure

for the band structure in
another direction

Energy (eV)
UU

conduction

valence
bands

after K. S. Sieh and P. V. Smith, Phys.
Status Solidi (b) 129, 259 (1985)



Si band structure

I
In contrast to our one-

dimensional coupled well
cases
we have multiple bands here
some of which do overlap
In energy
and bands sometimes
coincide with one
another at specific
points

Energy (eV)
w O

I
(@)

N

-12

conduction

“A point”

valence
bands

after K. S. Sieh and P. V. Smith, Phys.
Status Solidi (b) 129, 259 (1985)



Si band structure 6

B
Sometimes, such as the lowest

conduction band in silicon

the lowest energy in the band
IS neither at the center nor
an edge of the Brillouin
zone -6
For silicon, the position of
this minimum energy is
referred to as 12

the A (delta) point

Energy (eV)
w

conduction

“A point”

valence
bands

after K. S. Sieh and P. V. Smith, Phys.
Status Solidi (b) 129, 259 (1985)



GaAs band structure
B

The upper valence bands of
GaAs
are similar to silicon

but the conduction band
minimum is at the I" point

So GaAs is a direct gap
semiconductor

unlike Si
which is indirect

o

-5

Energy (eV)

.
o

conduction
bands
/\
N valence
bands
L r X

after M. Rohlfing, P. Kriiger and J.
Pollmann, Phys. Rev. B 48, 17791 (1993)



Real band structures
e
For all such band structures

for N atoms in the crystal
each band has N states in it

(multiplied by 2 if electrons of
different spins also have the
same energy)
and all bands have the same

set of equally spaced k values
associated with them



Band structures
5
For Group IV materials like carbon,
silicon and germanium

In the outer, highest energy orbitals

we are dealing with the
combination of 2 “s” orbitals and
6 “p" orbitals

where we include both spin
states

which gives 8 orbitals that
together hold 4 electrons



Band structures

I
Putting atoms of one such type together
to form a crystal

leads to the formation of two sets of
bands

Loosely, one of these sets of bands is
based on

“bonding” versions of the combined
orbitals
and the other is based on
“antibonding” versions of those
same orbitals

The bonding versions can have lower
energy than the antibonding versions



Band structures
I
If those "bonding” and “antibonding”
sets of bands do not overlap in energy

for these Group IV materials

the bonding versions will be
essentially fully occupied
to give what are called the
“valence” bands
and the antibonding versions will
be essentially unoccupied
to give what are called the
‘conduction” bands



Band structures
I
Such non-overlapping band behavior

with a band gap energy between them

Is characteristic of a semiconductor
or an insulator

In practical terms
the GaAs material
and its various other IlI-V cousins

behave like effective Group IV
materials

with similar forms of band
structures
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Electron energy I

Metals, insulators and semiconductors

partially filled

band
Metal

electrons can
move to new
states

hence conducts

Kelectricity

empty
conduction band

band gap -
no electron
states

full valence

band

Insulator

' electrons in full

bands cannot
move to new
states

does not conduct

nearly empty
conduction band

full valence
band

empty
conduction band

n-doped
semiconductor

added free

electrons in
conduction band
conduct

nearly full
valence band

p-doped
semiconductor

missing free
electrons in
valence band
allow conduction

\




Semiconductors and insulators
B

Semiconductors and insulators

have an (almost) completely
full band

the valence band

separated by a "bandgap”
energy Eg

from an (almost) completely
empty band
the conduction band

E

conduction
band

a
S, 5SS,
N>

o=~

valence

"

band b Y

empty
states

AR
LS
|

full states

-/ a

T/a



Metals

B
Because of the number of

electrons in the metal atoms

the highest band is partially
full of electrons e.g., half-full

even at zero temperature
Metals may or may not have
band gaps
Applying a field “skews” the
electron distribution

allowing metals to conduct
electricity well

o=~

band

S

E

valence

conduction empty

states

full states

(N Vi
/ 777 TS 2
/o SO
V4

\,\

band b Y

-/ a

k

T/a



Semiconductors and insulators

Note that

an empty band does not
conduct electricity

There are no mobile electrons £

Also

a full band does not conduct
electricity

The electrons cannot change
states within the band

because all the states are full

conduction
band

=
S, oSS,

o=~

valence

empty
states

lEG

band b Y

full states

=~
/ A7 7

7z

-/ a

T/a



Semiconductors and insulators

The difference between
semiconductors and
insulators is primarily that

Insulators have such a large
bandgap energy

that there is negligible
thermal excitation of
electrons

from the valence band
to the conduction band

conduction empty
band states

\\ /l

\\ //

/"

valence l G

band b Y

full states
-/ a

T/a



Semiconductors
B

At finite temperatures in a
semiconductor

a small number of electrons
are excited

from the valence band
to the conduction band

E

-/ a

conduction
band

S, oS,
e, f N
S A i

valence

band {'.

empty
states

™ N e
L#7ss, w
/o




Semiconductors
B

conduction empty
These electrons in the band states
conduction band I
and N | A
. . electrons” Sele”
absences of electrons or “holes” £ l b
in the valence band valence LV @
can conduct electricity within band
their bands
. . full states
So semiconductor materials
conduct electricity weakly 7/ a 0 ] /a

hence the name
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