

Thermal distributions 1

Tossing coins, microstates, and macrostates

Modern physics for engineers

David Miller

Tossing coins

We toss a coin 4 times

There are 16 possibilities
shown using \uparrow for heads
and \downarrow for tails

We call each possible set of 4
outcomes
a microstate

Microstate

$\uparrow\uparrow\uparrow\uparrow$

$\uparrow\uparrow\uparrow\downarrow$

$\uparrow\uparrow\downarrow\uparrow$

$\uparrow\downarrow\uparrow\uparrow$

$\downarrow\uparrow\uparrow\uparrow$

$\uparrow\uparrow\downarrow\downarrow$

$\uparrow\downarrow\uparrow\downarrow$

$\downarrow\uparrow\uparrow\downarrow$

$\uparrow\downarrow\downarrow\uparrow$

$\downarrow\uparrow\downarrow\uparrow$

$\downarrow\downarrow\uparrow\uparrow$

$\downarrow\downarrow\downarrow\uparrow$

$\downarrow\downarrow\uparrow\downarrow$

$\downarrow\uparrow\downarrow\downarrow$

$\uparrow\downarrow\downarrow\downarrow$

$\downarrow\downarrow\downarrow\downarrow$

Tossing coins

We can group these microstates into macrostates

each containing all microstates corresponding to a particular number of heads and tails

Microstate	Macrostate
$\uparrow\uparrow\uparrow\uparrow$	4 up ("heads")
$\uparrow\uparrow\uparrow\downarrow$ $\uparrow\uparrow\downarrow\uparrow$ $\uparrow\downarrow\uparrow\uparrow$ $\downarrow\uparrow\uparrow\uparrow$	3 up ("heads") 1 down ("tails")
$\uparrow\uparrow\downarrow\downarrow$ $\uparrow\downarrow\uparrow\downarrow$ $\downarrow\uparrow\uparrow\downarrow$ $\uparrow\downarrow\downarrow\uparrow$ $\downarrow\uparrow\downarrow\uparrow$ $\downarrow\downarrow\uparrow\uparrow$	2 up ("heads") 2 down ("tails")
$\downarrow\downarrow\downarrow\uparrow$ $\downarrow\downarrow\uparrow\downarrow$ $\downarrow\uparrow\downarrow\downarrow$ $\uparrow\downarrow\downarrow\downarrow$	1 up ("heads") 3 down ("tails")
$\downarrow\downarrow\downarrow\downarrow$	4 down ("tails")

Tossing coins

The number of microstates
in each macrostate
is called the
multiplicity
of the macrostate

Microstate	Macrostate	Multiplicity
$\uparrow\uparrow\uparrow\uparrow$	4 up ("heads")	1
$\uparrow\uparrow\uparrow\downarrow$ $\uparrow\uparrow\downarrow\uparrow$ $\uparrow\downarrow\uparrow\uparrow$ $\downarrow\uparrow\uparrow\uparrow$	3 up ("heads") 1 down ("tails")	4
$\uparrow\uparrow\downarrow\downarrow$ $\uparrow\downarrow\uparrow\downarrow$ $\downarrow\uparrow\uparrow\downarrow$ $\uparrow\downarrow\downarrow\uparrow$ $\downarrow\uparrow\downarrow\uparrow$ $\downarrow\downarrow\uparrow\uparrow$	2 up ("heads") 2 down ("tails")	6
$\downarrow\downarrow\downarrow\uparrow$ $\downarrow\downarrow\uparrow\downarrow$ $\downarrow\uparrow\downarrow\downarrow$ $\uparrow\downarrow\downarrow\downarrow$	1 up ("heads") 3 down ("tails")	4
$\downarrow\downarrow\downarrow\downarrow$	4 down ("tails")	1

Tossing coins

For each macrostate
we can also write an
excess

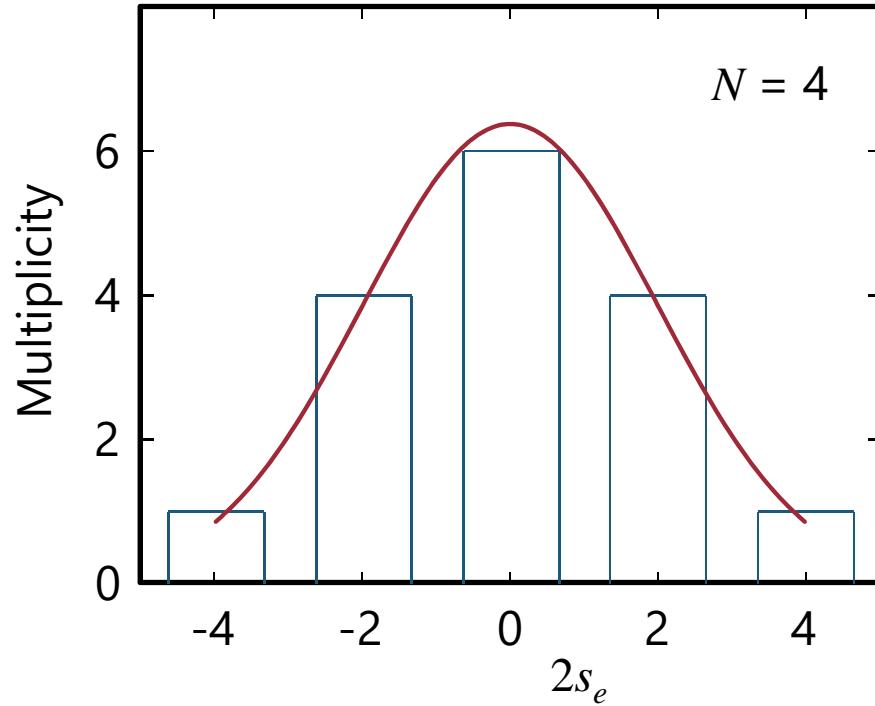
which is the “excess”
number of heads
compared to tails

We can write the excess as $2s_e$
where s_e is the difference in
the number of heads
compared to the average

Microstate	Macrostate	Multiplicity	Excess, $2s_e$
↑↑↑↑↑	4 up (“heads”)	1	4
↑↑↑↓↑ ↑↑↓↑↑ ↑↓↑↑↑ ↓↑↑↑↑	3 up (“heads”) 1 down (“tails”)	4	2
↑↑↓↓↑ ↑↓↑↓↑ ↓↑↑↓↓ ↑↓↓↑↑ ↓↑↓↑↑ ↓↓↑↑↑	2 up (“heads”) 2 down (“tails”)	6	0
↓↓↓↑↑ ↓↓↑↓↑ ↓↑↓↓↓ ↑↓↓↓↓	1 up (“heads”) 3 down (“tails”)	4	-2
↓↓↓↓↓	4 down (“tails”)	1	-4

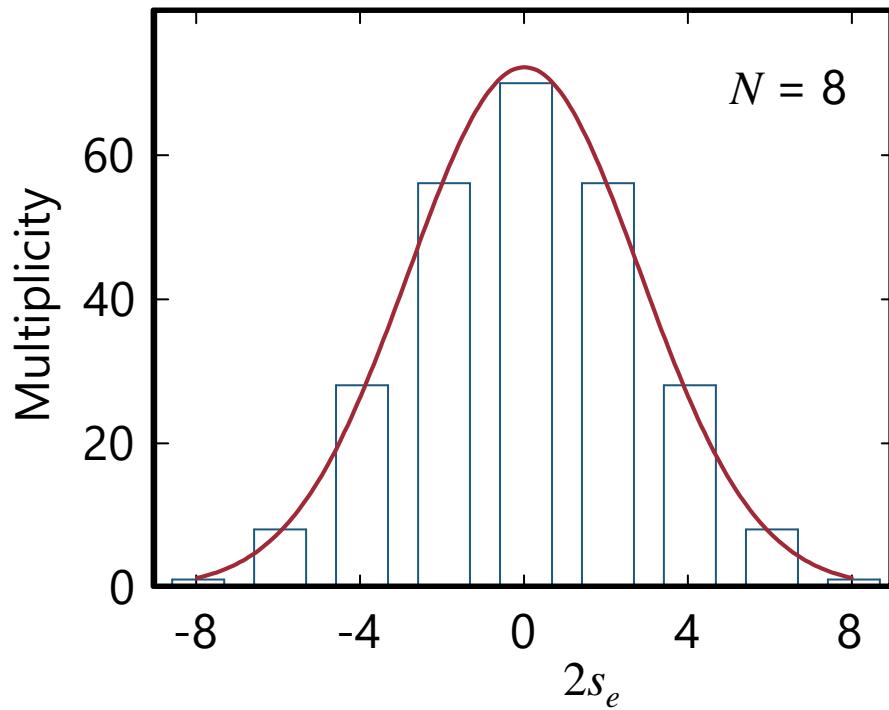
Tossing coins

We can plot the multiplicity here for $N = 4$ coin tosses as a function of the "excess" also showing a curve of a Gaussian approximation



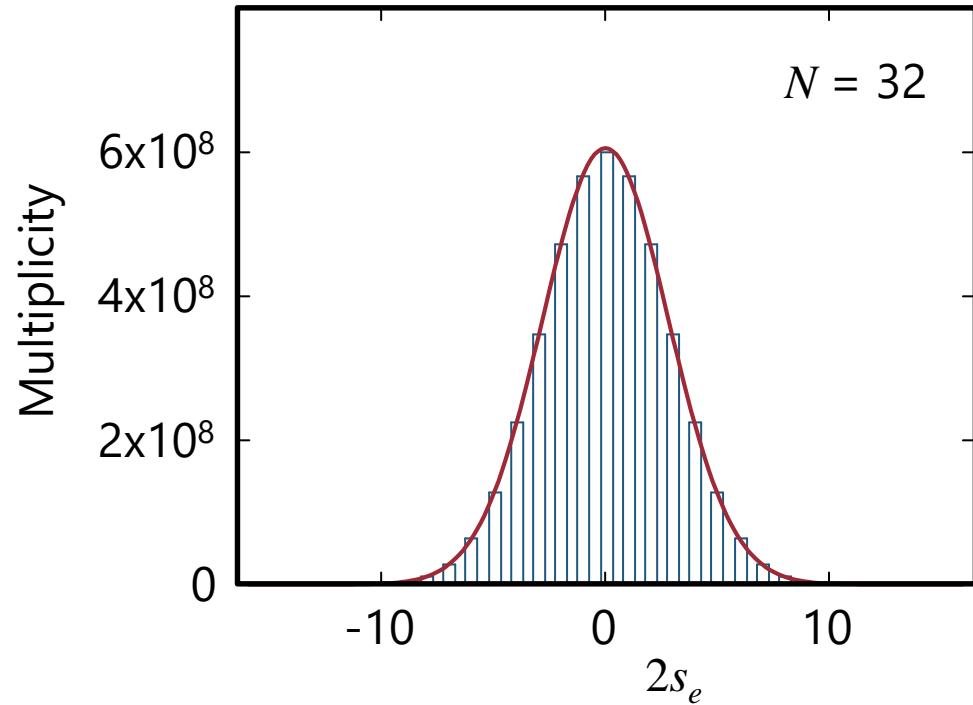
Tossing coins

Increasing N gives
much larger peak
multiplicity
and
a wider curve
though narrower
relative to N



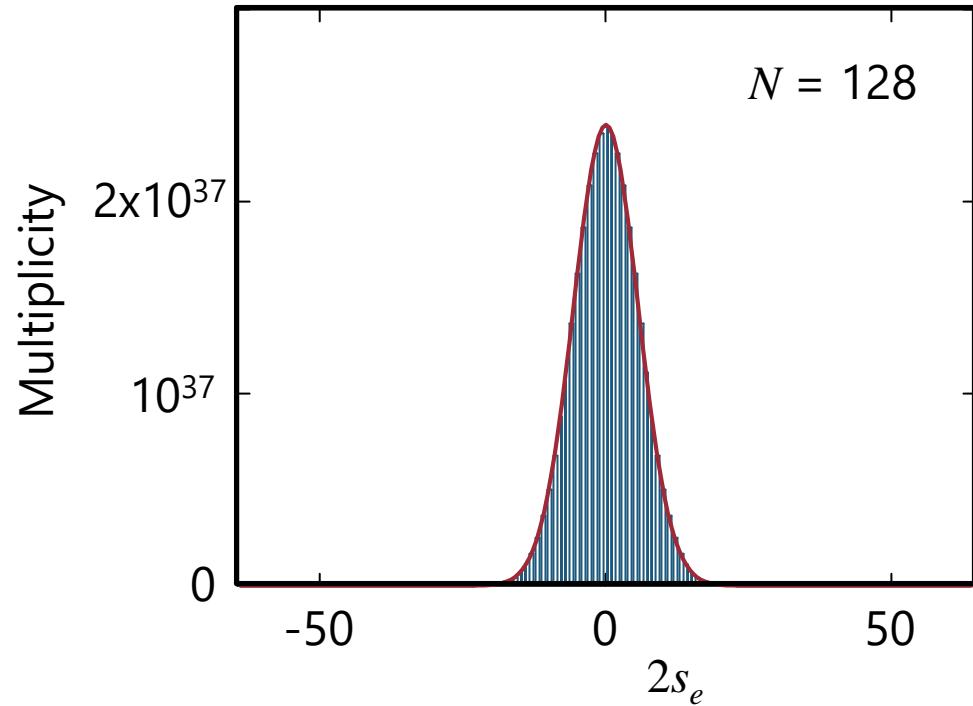
Tossing coins

Increasing N gives
much larger peak
multiplicity
and
a wider curve
though narrower
relative to N



Tossing coins

Increasing N gives
much larger peak
multiplicity
and
a wider curve
though narrower
relative to N

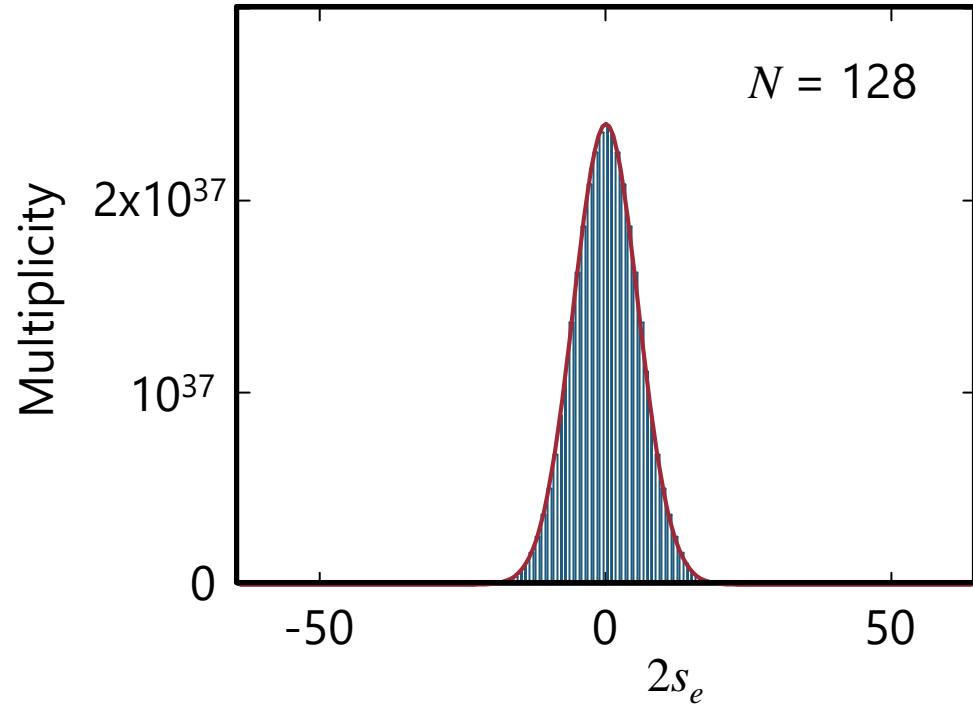


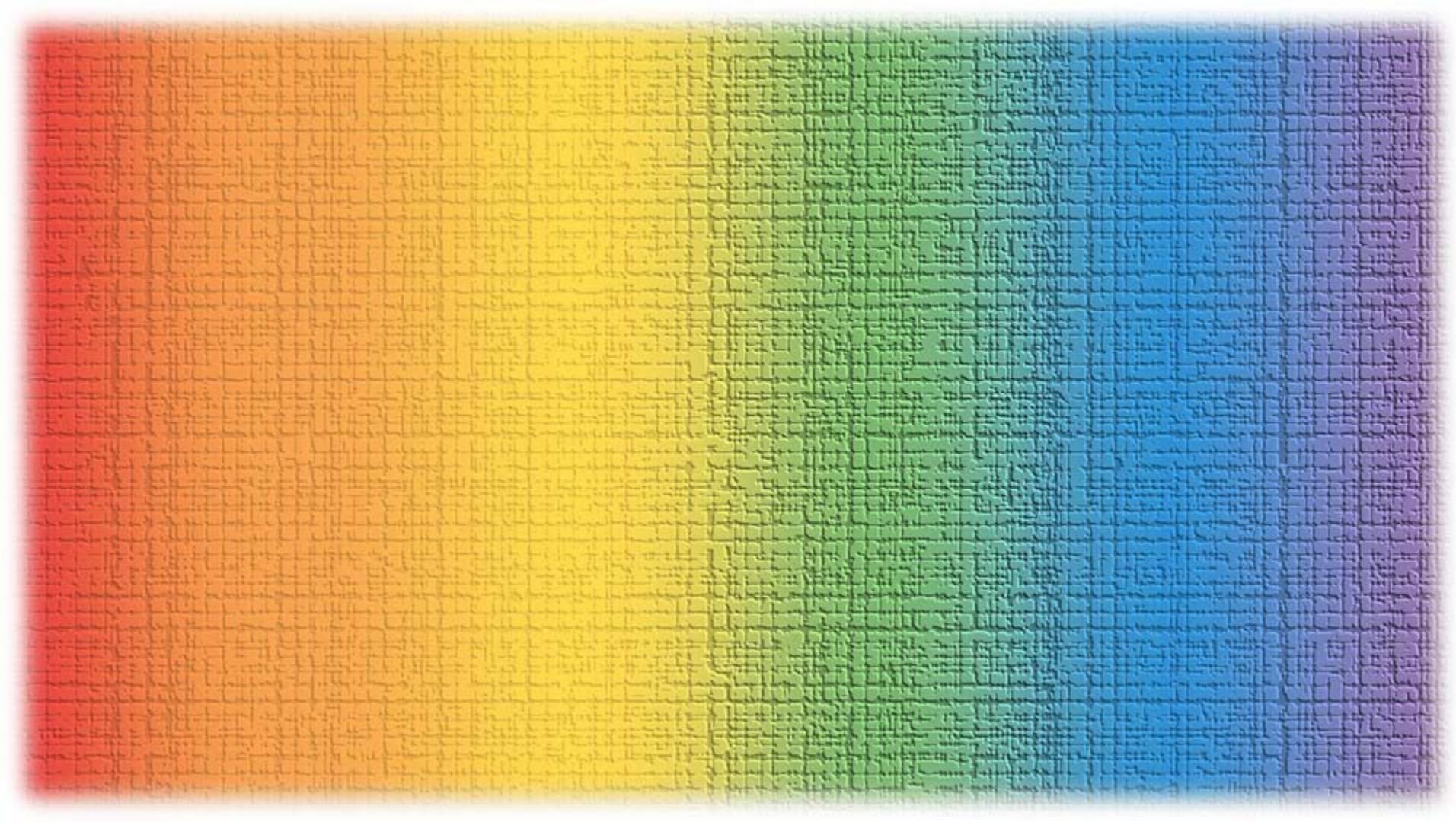
Tossing coins

The multiplicity drops as
the magnitude of the
difference between
heads and tails increases

The most likely outcome is
equal heads and tails

Outcomes with
approximately equal
heads and tails
dominate as N increases





Thermal distributions 1

Binomial distribution and Stirling's
approximation

Modern physics for engineers

David Miller

Binomial distribution

Binomial distribution

When tossing coins

the formula for the number of
microstates in a macrostate

that is, the multiplicity of the
macrostate

is an example of the binomial
distribution

Binomial distribution

Suppose we have N coins in a row

e.g., starting all “heads”

Take k of them, and flip them over

e.g., to “tails”

thereby creating two sets of
coins in the row

“heads” and “tails”

Binomial distribution

There are

N ways we can choose the first coin to flip over

$N - 1$ ways we can choose the second
and so, down to

$N - k + 1$ for our k th choice

Multiplying these together gives us

$$N(N-1)(N-2)\dots(N-k+1) = \frac{N!}{(N-k)!}$$

Binomial distribution

There are also $k!$ different orderings in which we could have chosen which coins to flip over while still leaving us the same sets of “heads” and “tails” in the row so we divide by $k!$ giving

$$g = \frac{N!}{(N-k)!k!}$$

for the total number of different-looking rows of coins in which k of them are flipped over which is the binomial distribution

Multiplicity of macrostates

This binomial distribution $g = \frac{N!}{(N-k)!k!}$

gives the multiplicity of a macrostate

corresponding to k "heads" and $N - k$ "tails"

We prefer to write this in terms of s_e , giving

$(N/2) + s_e$ for the number of "heads" and

$(N/2) - s_e$ for the number of "tails"

which gives $g(N, s_e) = \frac{N!}{\left(\frac{N}{2} + s_e\right)! \left(\frac{N}{2} - s_e\right)!}$

Multiplicity of macrostates

For example, for $k = 1$ "heads"

out of $N = 4$ coin tossings

$$g = \frac{N!}{(N-k)!k!} = \frac{4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1) \times 1} = 4$$

For $s_e = 2$, an "excess" $2s_e = 4$

which corresponds to 4 more "heads" than "tails"

$$g(N, s_e) = \frac{N!}{\left(\frac{N}{2} + s_e\right)! \left(\frac{N}{2} - s_e\right)!} = g(4, 2) = \frac{4!}{(2+2)!0!} = \frac{4!}{4!0!} = 1$$

remembering $0! = 1$

Stirling's approximation

Stirling's approximation

For large N , we can use an approximation to this binomial distribution

which in turn is based on Stirling's approximation

For large N

$$\log(n!) \simeq \frac{1}{2} \log 2\pi n + n \log n - n$$

or equivalently

$$n! \simeq \sqrt{2\pi n} (n/e)^n$$

Approximate binomial distribution for large N

Using Stirling's approximation
together with the power series expansion

$$\log(1+x) \simeq x - x^2/2$$

after some algebra we can rewrite

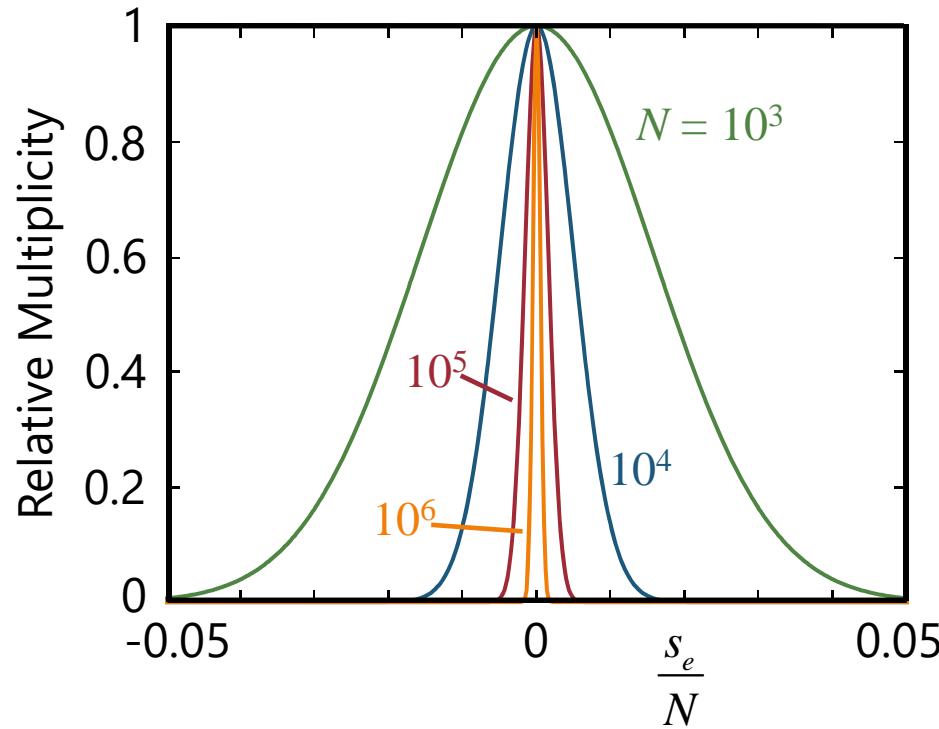
$$g(N, s_e) = \frac{N!}{\left(\frac{N}{2} + s_e\right)! \left(\frac{N}{2} - s_e\right)!}$$

as

$$g(N, s_e) \simeq g(N, 0) \exp\left(-\frac{2s_e^2}{N}\right) \quad \text{with} \quad g(N, 0) \simeq \sqrt{\frac{2}{\pi N}} 2^N$$

Gaussian approximation

Using this Gaussian approximation as N becomes large the absolute width does continue to grow but the relative width becomes smaller



Width of the multiplicity distribution

From $g(N, s_e) \simeq g(N, 0) \exp\left(-\frac{2s_e^2}{N}\right)$

we see the value of s_e for which
the distribution falls to $1/e^2$ of its peak value is

$$s_{ec} = \sqrt{N}$$

So, though the width of the distribution grows as \sqrt{N}

for the relative width we have $\frac{s_{ec}}{N} = \frac{1}{\sqrt{N}}$

Width of the multiplicity distribution

So, for example

if we tossed a coin 10^{20} times

the average number of heads or
tails would be

0.5 within roughly 1 part in 10^{10}

Width of the multiplicity distribution

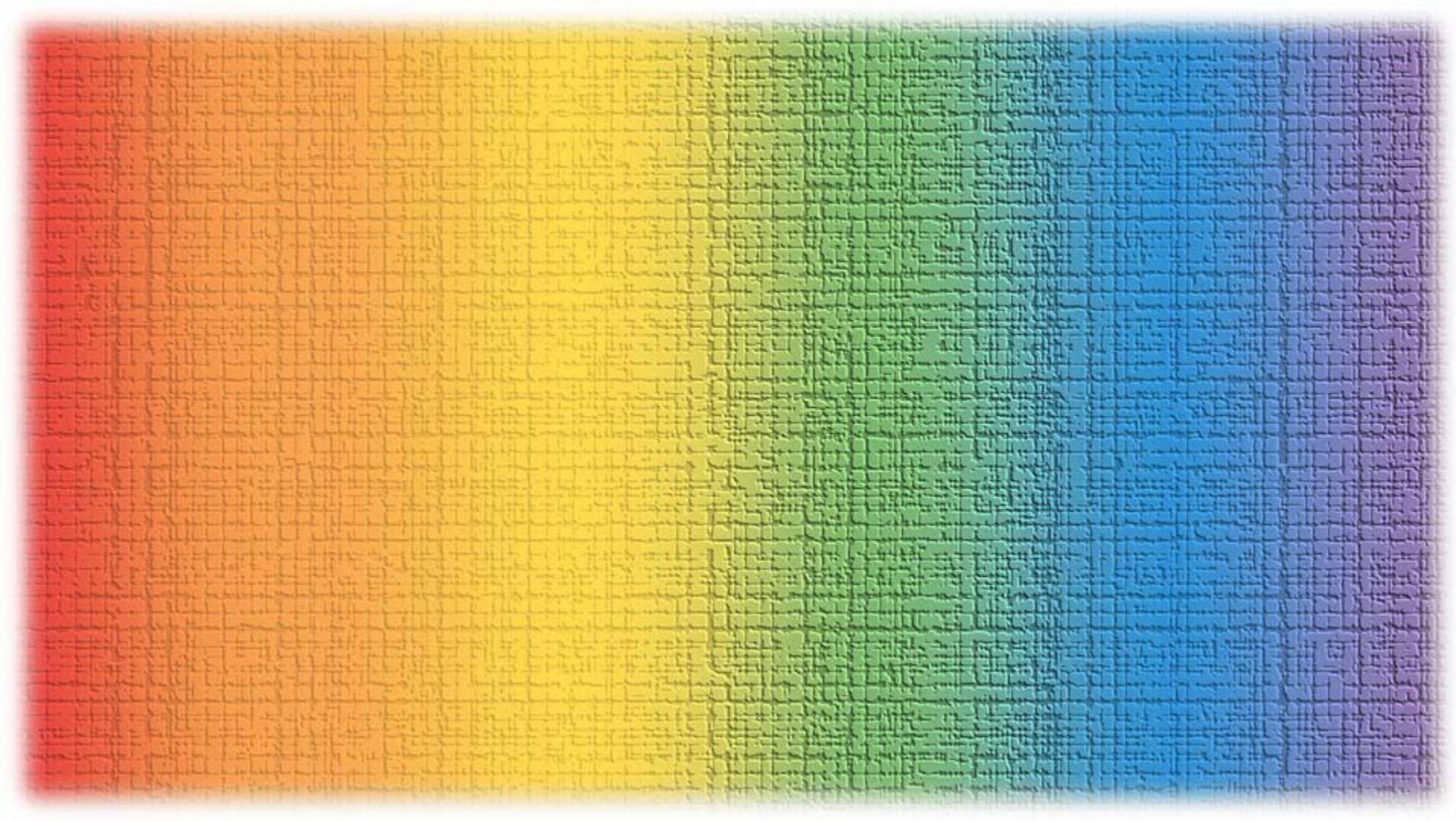
Note that

in terms of s_e / N

nearly all the microstates are found
in or very close

to the most likely macrostate

This is quite general behavior for
such statistical systems
with large numbers of elements like
this



Thermal distributions 1

Two-state spin systems and microstates

Modern physics for engineers

David Miller

Two-state spin systems and accessible microstates

Two-state spin systems

So far, we presumed that
every such outcome of heads and
tails
is possible
as indeed it is for tossing a coin

A related physical system would be
a set of spins
such as a set of electrons
with negligible interaction
between them

Two-state spin systems

Just as each coin could be heads or tails

so each spin (or electron) could be
"spin-up" (" \uparrow ") or
"spin-down" (" \downarrow ")

If there are no other constraints on spins being up or down
then we obtain the same kind of counting
for spins as for coins

Two-state spin systems and accessible microstates

Accessible states

In real physical systems

different possible microstates

may have different energies

If there is a fixed energy available

or there is some other constraint on
energy

it may be that

not all the microstates we could
write down

would be possible

or “accessible”

Accessible microstates

Given whatever physical constraints there are on the system
an accessible microstate is one that is physically possible

Accessible microstates

Now we make an important physical postulate

which underlies our statistical analysis of physical systems that are in equilibrium

By “equilibrium”

we mean after everything has settled down

at least as we observe it macroscopically

Accessible microstates

For a physical system in equilibrium
each accessible microstate is
equally probable

Two-state spin systems and energy

Non-equilibrium starting states

We can start the system in a specific microstate

so its probability dominates over all the others

at that starting “non-equilibrium” condition

Non-equilibrium starting states

But once we have left the system to equilibrate

on measuring the system

any accessible microstate is presumed to be

just as likely as any other

Two-state spin systems

We use the two-state spin system
as a model to understand the
behavior of physical systems
presuming we can generalize to
similar behaviors of
more complicated systems
without further formal proofs

Two-state spin systems

The key attribute we need
is to allow the microstates
to have energies that may not all
be the same

Spins in a magnetic field

For our spin system

we imagine that we apply a magnetic field

of magnitude B

along the “up-down” axis of the spins

For a small magnet or spin

of magnetic moment (magnet “strength”) μ_s

the energy of a “spin-up” “magnet” is

$$E_\mu = -\mu_s B$$

A spin with “spin-down”

will have exactly the opposite energy

Spins in a magnetic field

With some spins “up” and others “down”

the energy of equal numbers of “up” and “down” spins
will cancel out in the total energy, U

Hence, the total energy only depends on

the “spin excess” $2s_e$

specifically being

$$U(s_e) = -2\mu_s B s_e$$

We are interested in a closed physical system
in which this total energy U is fixed

