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Tossing coins Microstate
e —

We toss a coin 4 times 8
There are 16 possibilities N
g RN}

shown using | for heads
: ™M
and 4 for tails N
We call each possible set of 4 *ﬁ*
outcomes INA
a microstate adll
AT
W
VIR
NI

Wl



TOSS| ng CO| NS Microstate Macrostate

e seeseseesesessmm 1000 [4upCheadsn|
We can group these T
. . ™M1 3 up ("heads")
microstates into N |1 down (tails?) |
macrostates _fT_T_T_ _________________________
.. ™Ml
each containing all A UL
microstates *I 1* 2 up Cheads’) |
. 2 “tails”
corresponding to D B
a particular number of e
heads and tails VAT
W 1 up ("heads”)
I 3 down (“tails”)
T
M 4 down (“tails”)




TOSS|ng CO|nS Microstate Macrostate Multiplicity

R ———————————————— o R T O TN R Y
The number of microstates T
) T 3 up (“heads") ‘ |i|
In each macrostate N |1 down (‘tails") |
Is called the LN .
C . ™Ml
multiplicity AL
I | 2 up (“heads”)
of the macrostate ol f,f’taijs,,)‘ 6]
U I '
NN
T

W 1 up ("heads”)
T | 3 down (“tails”) | |i|

LWL |4 down (raits) | | 1]




. . Microstate Macrostate Multiplicity Excess, 2s
Tossing coins s :

T ———— ey R YT R T
For each macrostate T
) T 3 up ("heads”) | I_A;I lil
we can also write an AN |1 down (tails?)
I '
excess TR
which is the “excess” AL
I | 2 up (“heads”)
number of heac!s ud f"ataﬁsﬂ)l o] o]
compared to tails R |
We can write the excess as 2s, I _____
where s, is the difference in ﬁ*] ——
u
the number of heads WU |3 down (tails?) L2
bl
compared to the average =220
P J WL |4down craitsn | [1] |4




Tossing coins
B
We can plot the multiplicity

here for N = 4 coin tosses

as a function of the
"excess”

also showing a curve of a
Gaussian approximation

Multiplicity
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Tossing coins
I T ——
Increasing N gives

much larger peak

multiplicity 60 |
>
and S
a wider curve S 40
-]
though narrower >

relative to N




Tossing coins

Increasing N gives
much larger peak
multiplicity
and
a wider curve

though narrower
relative to N

6x108 |

Multiplicity
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Tossing coins
I T ——
Increasing N gives

-50 0 50

much larger peak N =128
multiplicity |
a wider curve E |
though narrower S 0%
relative to N ‘
0 AHH ’M
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Tossing coins
B
The multiplicity drops as

2x1037}

The most likely outcome is
equal heads and tails

Outcomes with

Multiplicity

the magnitude of the N = 128
1057 |
approximately equal

difference between ‘A
heads and tails increases

heads and tails -50 0 50
dominate as N increases e

2S
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Binomial distribution
5
When tossing coins

the formula for the number of
microstates in a macrostate
that is, the multiplicity of the
macrostate
is an example of the binomial
distribution



Binomial distribution
5
Suppose we have N coins in a row

e.g., starting all "heads”
Take k of them, and flip them over
e.g., to "tails”
thereby creating two sets of
coins in the row
"heads” and "tails”



Binomial distribution
N

There are
N ways we can choose the first coin to flip over
N — 1 ways we can choose the second
and so, down to
N -k +1 for our kth choice
Multiplying these together gives us

N!

N(N-1)(N-2)...(N —k+1):(N o




Binomial distribution
N

There are also k! different orderings in which
we could have chosen which coins to flip over

while still leaving us the same sets of “heads” and
“tails” in the row

so we divide by k! giving
N!
~ (N —K)Ik!
for the total number of different-looking rows
of coins in which k of them are flipped over
which is the binomial distribution

9



Multiplicity of macrostates
N

N!
(N —k)IK!
gives the multiplicity of a macrostate
corresponding to k “heads” and N — k “tails”
We prefer to write this in terms of s, giving
(N /2)+s, for the number of “heads” and
(N /2)-s, for the number of “tails”
N!

This binomial distribution g =

which gives g(N,s,)=




Multiplicity of macrostates
N

For example, for k =1 "heads”
out of N =4 coin tossings
N ! 4x3x2x1
j— j— :4
(N-k)Ik! (3x2x1)x1
For s, =2, an "excess” 2s, = 4

which corresponds to 4 more "heads” than "tails”
N! 4] 41

9(N..)= (I;IHEJ!(I;I_SG)! =904 = o~ w0

remembering 0! =1

9
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Stirling’s approximation
N

For large N, we can use an approximation to this
binomial distribution

which in turn is based on Stirling’s approximation
For large N

Iog(n!):%logbzn+nlogn—n

or equivalently

n'=+2zn(n/e)"



Approximate binomial distribution for large N
N

Using Stirling’s approximation
together with the power series expansion
log(1+x) =x—x°/2
after some algebra we can rewrite




Gaussian approximation
B
Using this Gaussian
approximation

as N becomes large

the absolute width does
continue to grow

but the relative width
becomes smaller

Relative Multiplicity

-0.05 0 S 0.05



Width of the multiplicity distribution
N

25°
From g(N,s,)= g(N,O)eXD(— Nej

we see the value of s, for which
the distribution falls to 1/e? of its peak value is

s, =N
So, though the width of the distribution grows as +/N

for the relative width we have Sec _ L
N /N




Width of the multiplicity distribution
5
So, for example

if we tossed a coin 1029 times

the average number of heads or
tails would be

0.5 within roughly 1 part in 10



Width of the multiplicity distribution
N
Note that

in terms of s, /N
nearly all the microstates are found
In or very close
to the most likely macrostate
This is quite general behavior for
such statistical systems

with large numbers of elements like
this
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Modern physics for engineers
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Two-state spin systems
5
So far, we presumed that

every such outcome of heads and
tails

IS possible
as indeed it is for tossing a coin
A related physical system would be
a set of spins
such as a set of electrons

with negligible interaction
between them



Two-state spin systems
e
Just as each coin could be heads or

tails

so each spin (or electron) could be
“spin-up” (“T") or
“spin-down” (")
If there are no other constraints on
spins being up or down

then we obtain the same kind of
counting

for spins as for coins
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Accessible states

5
In real physical systems

different possible microstates
may have different energies
If there is a fixed energy available

or there is some other constraint on
energy

it may be that

not all the microstates we could
write down

would be possible
or “accessible”



Accessible microstates
B

\

Given whatever physical constraints
there are on the system

an accessible microstate is one that
Is physically possible

(. J




Accessible microstates
5
Now we make an important physical
postulate
which underlies our statistical
analysis of physical systems
that are in equilibrium
By “equilibrium”
we mean after everything has
settled down

at least as we observe it
macroscopically



Accessible microstates
B

For a physical system in equilibrium
each accessible microstate is
equally probable

"
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Non-equilibrium starting states

5

We can start the system in a specific
microstate

so its probability dominates over all
the others

at that starting "non-equilibrium”
condition



Non-equilibrium starting states
5
But once we have left the system to
equilibrate
on measuring the system
any accessible microstate is
presumed to be

just as likely as any other



Two-state spin systems
I
We use the two-state spin system

as a model to understand the
behavior of physical systems

presuming we can generalize to
similar behaviors of

more complicated systems
without further formal proofs



Two-state spin systems
I
The key attribute we need
Is to allow the microstates
to have energies that may not all
be the same



Spins in @ magnetic field
N

For our spin system
we imagine that we apply a magnetic field
of magnitude B
along the “up-down” axis of the spins
For a small magnet or spin
of magnetic moment (magnet “strength”) g

the energy of a “spin-up” “magnet” is
E =-uB

Y7,
A spin with “spin-down”

will have exactly the opposite energy



Spins in @ magnetic field
N

With some spins “up” and others “down”
the energy of equal numbers of “up” and “down” spins
will cancel out in the total energy, U
Hence, the total energy only depends on
the “spin excess” 2s,
specifically being
U (s,)=—2u,Bs,

We are interested in a closed physical system
in which this total energy U is fixed
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