
David MillerModern physics for engineers

Thermal distributions 1

Tossing coins, microstates, and macrostates



Tossing coins

We toss a coin 4 times
There are 16 possibilities

shown using  for heads
and  for tails

We call each possible set of 4 
outcomes
a microstate



Microstate






















1 up (“heads”)
3 down (“tails”)

4 down (“tails”)

2 up (“heads”)
2 down (“tails”)

3 up (“heads”)
1 down (“tails”)

4 up (“heads”)
Tossing coins

We can group these 
microstates into  
macrostates

each containing all 
microstates 
corresponding to 
a particular number of 

heads and tails
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Macrostate



Tossing coins

The number of microstates 
in each macrostate

is called the 
multiplicity 

of the macrostate
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Tossing coins

For each macrostate
we can also write an 

excess
which is the “excess” 

number of heads 
compared to tails

We can write the excess as 2se
where se is the difference in 

the number of heads
compared to the average
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Tossing coins

We can plot the multiplicity
here for N = 4 coin tosses 

as a function of the 
“excess”
also showing a curve of a

Gaussian approximation M
ul
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Tossing coins

Increasing N gives
much larger peak 

multiplicity
and

a wider curve
though narrower 
relative to N
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Tossing coins

Increasing N gives
much larger peak 

multiplicity
and

a wider curve
though narrower 
relative to N
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Tossing coins

Increasing N gives
much larger peak 

multiplicity
and

a wider curve
though narrower 
relative to N
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Tossing coins

The multiplicity drops as 
the magnitude of the 

difference between 
heads and tails increases

The most likely outcome is 
equal heads and tails
Outcomes with 

approximately equal 
heads and tails 
dominate as N increases
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Binomial distribution and Stirling’s 
approximation



Binomial distribution



Binomial distribution

When tossing coins
the formula for the number of 

microstates in a macrostate 
that is, the multiplicity of the 

macrostate
is an example of the binomial 
distribution 



Binomial distribution

Suppose we have N coins in a row
e.g., starting all “heads”

Take k of them, and flip them over 
e.g., to “tails”

thereby creating two sets of 
coins in the row
“heads” and “tails”



Binomial distribution

There are 
N ways we can choose the first coin to flip over  

N – 1 ways we can choose the second
and so, down to   

N – k +1 for our kth choice
Multiplying these together gives us 
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Binomial distribution

There are also k! different orderings in which 
we could have chosen which coins to flip over 

while still leaving us the same sets of “heads” and 
“tails” in the row

so we divide by k! giving 

for the total number of different-looking rows 
of coins in which k of them are flipped over

which is the binomial distribution
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Multiplicity of macrostates

This binomial distribution

gives the multiplicity of a macrostate
corresponding to k “heads” and N – k “tails”

We prefer to write this in terms of se, giving
for the number of “heads” and
for the number of “tails”

which gives
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Multiplicity of macrostates

For example, for k = 1 “heads” 
out of N = 4 coin tossings

For se = 2, an “excess” 2se = 4
which corresponds to 4 more “heads” than “tails”

remembering 0! = 1
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Stirling’s approximation



Stirling’s approximation

For large N, we can use an approximation to this 
binomial distribution

which in turn is based on Stirling’s approximation 
For large N

or equivalently 
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Approximate binomial distribution for large N

Using Stirling’s approximation
together with the power series expansion

after some algebra we can rewrite

as

with  

  2log 1 / 2x x x 
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104

Gaussian approximation

Using this Gaussian 
approximation
as N becomes large

the absolute width does 
continue to grow
but the relative width 

becomes smaller 
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Width of the multiplicity distribution

From

we see the value of se for which
the distribution falls to 1/e2 of its peak value is

So, though the width of the distribution grows as  

for the relative width we have 
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Width of the multiplicity distribution

So, for example
if we tossed a coin 1020 times

the average number of heads or 
tails would be 
0.5 within roughly 1 part in 1010



Width of the multiplicity distribution

Note that 
in terms of se /N

nearly all the microstates are found 
in or very close

to the most likely macrostate
This is quite general behavior for 

such statistical systems 
with large numbers of elements like 

this
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Two-state spin systems and microstates



Two-state spin systems and 
accessible microstates



Two-state spin systems

So far, we presumed that 
every such outcome of heads and 

tails 
is possible

as indeed it is for tossing a coin
A related physical system would be 

a set of spins
such as a set of electrons 

with negligible interaction 
between them



Two-state spin systems

Just as each coin could be heads or 
tails
so each spin (or electron) could be 

“spin-up” (“”) or 
“spin-down” (“”)

If there are no other constraints on 
spins being up or down
then we obtain the same kind of 

counting 
for spins as for coins



Two-state spin systems and 
accessible microstates



Accessible states

In real physical systems
different possible microstates 

may have different energies
If there is a fixed energy available 

or there is some other constraint on 
energy
it may be that 

not all the microstates we could 
write down 
would be possible 

or “accessible”



Accessible microstates

Given whatever physical constraints 
there are on the system
an accessible microstate is one that 

is physically possible



Accessible microstates

Now we make an important physical 
postulate 
which underlies our statistical 

analysis of physical systems
that are in equilibrium 

By “equilibrium” 
we mean after everything has 

settled down
at least as we observe it 
macroscopically 



Accessible microstates

For a physical system in equilibrium
each accessible microstate is 

equally probable



Two-state spin systems and 
energy



Non-equilibrium starting states

We can start the system in a specific 
microstate
so its probability dominates over all 

the others 
at that starting “non-equilibrium” 
condition



Non-equilibrium starting states

But once we have left the system to 
equilibrate
on measuring the system

any accessible microstate is 
presumed to be
just as likely as any other



Two-state spin systems

We use the two-state spin system
as a model to understand the 

behavior of physical systems
presuming we can generalize to 
similar behaviors of 
more complicated systems

without further formal proofs



Two-state spin systems

The key attribute we need
is to allow the microstates 

to have energies that may not all 
be the same



Spins in a magnetic field

For our spin system
we imagine that we apply a magnetic field 

of magnitude B
along the “up-down” axis of the spins

For a small magnet or spin
of magnetic moment (magnet “strength”) s

the energy of a “spin-up” “magnet” is 

A spin with “spin-down” 
will have exactly the opposite energy

sE B  



Spins in a magnetic field

With some spins “up” and others “down”
the energy of equal numbers of  “up” and “down” spins 

will cancel out in the total energy, U
Hence, the total energy only depends on 

the “spin excess” 2se
specifically being

We are interested in a closed physical system
in which this total energy U is fixed 
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