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Systems in thermal contact

Now we presume two systems
each containing spins

each well insulated from 
the environment

System 1 has energy U1
N1 spins, spin excess se1

and multiplicity 
System 2 has energy U2

N2 spins, spin excess se2
and multiplicity 

System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

 1 1, eg N s

 2 2, eg N s



Systems in thermal contact

We presume total energy in the 
combined system is conserved
even when joined through a 

thermally conducting wall
So, at all times

which gives the total energy 
through

Note N1 and N2 remain fixed
Spins do not pass through the wall

System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

thermally 
conducting wall

1 2e e es s s 

  2e s eU s Bs 



Systems in thermal contact

Our goal now is to deduce 
what is the most likely macrostate 

for splitting the total se
between the two systems 

when we have reached 
thermal equilibrium 
after joining the two 

systems through the 
thermally conducting 
wall

System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

thermally 
conducting wall



Systems in thermal contact

We know that, for large systems
the most likely macrostate 

and those close to it 
dominate the possible 

microstates
So if we know this most likely 

macrostate and its properties
we will essentially know the 

properties of the system at 
thermal equilibrium

System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

thermally 
conducting wall



Multiplicities for systems in 
thermal contact



Systems in thermal contact

For a given se1 and (large) N1
we know the multiplicity of the 

macrostate for system 1 

and similarly for system 2

   
2
1

1 1 1
1

2, ,0 exp e
e

sg N s g N
N

 
 
 



   
2
2

2 2 2
2

2, ,0 exp e
e

sg N s g N
N

 
 
 



System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

thermally 
conducting wall



Systems in thermal contact

The multiplicity 
of the macrostate 

of the entire system 
is the product of 

the multiplicities of the parts

System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

thermally 
conducting wall



Systems in thermal contact

That is, in given macrostates of 
systems 1 and 2
if for each microstate of system 1

there are g2 possible microstates 
of system 2 

and we know there are g1 possible 
microstates of system 1

then the total number of possible 
microstates for the entire system is 

g1g2

System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

thermally 
conducting wall



Systems in thermal contact

With

possible microstates for system 1 

and   
possible microstates for system 2

then for the entire system, there are

microstates in the macrostate 

   
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1 2

1 2
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2 2,0 ,0 exp expe e
tot

s sg g N g N
N N

   
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

System 1
U1
N1

g1(N1,se1)

System 2
U2
N2

g2(N2,se2)

thermally 
conducting wall
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Maximizing multiplicity

With this multiplicity 

for the combined system in thermal contact
now we want to understand how to split up

between the two systems
to maximize the total multiplicity gtot

   
2 2
1 2

1 2
1 2

2 2,0 ,0 exp expe e
tot

s sg g N g N
N N

   
    
   



1 2e e es s s 



Maximizing multiplicity

Since se is fixed by conservation of energy overall
we can rewrite

in terms of a fixed se and a variable se1

We could differentiate this with respect to se1
to find the choice that gives the maximum gtot

   
2 2
1 2

1 2
1 2

2 2,0 ,0 exp expe e
tot

s sg g N g N
N N

   
    
   



       22
11

1 1 2
1 2

22,0 ,0 exp exp e ee
tot e

s ssg s g N g N
N N

  
     
   





Maximizing multiplicity

It is slightly easier to take the logarithm of

that is

and differentiate that
If a positive function is maximized

so also is its logarithm
and vice versa

       22
11

1 1 2
1 2

22,0 ,0 exp exp e ee
tot e

s ssg s g N g N
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

       22
11

1 1 2
1 2

22log log ,0 ,0 e ee
tot e

s ssg s g N g N
N N


        



Maximizing multiplicity

Differentiating

and setting the result to zero gives

so to maximize the multiplicity of the whole system

we choose

       22
11

1 1 2
1 2

22log log ,0 ,0 e ee
tot e

s ssg s g N g N
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
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Energy per spin

Since in a given magnetic field 
the energy of a given one of the systems is just 

proportional to se1 or se2

that is,                             and

the statement                is equivalent to saying

the energy per spin in the two systems is the same 

that is,

 1 1 12e s eU s Bs   2 2 22e s eU s Bs 

2 1

2 1

e es s
N N



1 2

1 2

U U
N N





Energy per spin

If the energy per spin is the same on each side
then the energy per spin in the entire system 

is also the same
That is, with                   and

and similarly

1 2U U U  1 2N N N 

1 2

1 2

U U U
N N N

 

2 1

2 1

e e es s s
N N N

 



Systems in thermal equilibrium

So, by example 
we have uncovered a relatively 

straightforward result 
The average energy for each 
similar microscopic system 
here the spins 

is the same for systems at 
thermal equilibrium



Systems in thermal equilibrium

To understand the deeper meaning 
of this
we need to generalize more

and introduce two more concepts 
entropy and temperature
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Two generalized systems

Now we generalize beyond just spin systems
to two systems with 

N1 and N2 quantum “particles” of the same kinds 
on each side respectively

with
and with energies U1 and U2

with
We consider these systems to have multiplicities 

and

1 2N N N 

1 2U U U 

 1 1 1,g N U  2 2 2,g N U



Multiplicity of the combined system

To obtain the total multiplicity
for the combined system

we should sum up the multiplicities 
for every possible combination of U1 and U2

that corresponds to the same total energy U

substituting            for U2

and summing over all possible values of U1

 ,g N U

   
1

1 1 1 2 2 1( , ) , ,
U

g N U g N U g N U U 
1U U



Multiplicity of the combined system

We presume the multiplicity for the combined system

is dominated by the term in the sum for which 
the product                                       is largest 

or at least a group of terms close to that
so we will consider just such terms

finding the conditions under which they are 
maximized

We presume this approach effectively maximizes

   
1

1 1 1 2 2 1( , ) , ,
U

g N U g N U g N U U 

   1 1 1 2 2 1, ,g N U g N U U

 ,g N U



Maximizing the multiplicity 

For such a product 
treating U1 and U2 as independent variables for the 
moment

and

so the differential can be written

1 2g g g

1 2 1
2

1 1

( )g g g g
U U
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1
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( )g g gg
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Maximizing the multiplicity 

The idea of this differential 

is that it would formally tell us 
the small change in the multiplicity g

that would result from small changes in U1 and U2
presuming we knew the partial derivatives

1 2

1 2
2 1 1 2

1 2N N

g gdg g dU g dU
U U

    
        



Maximizing the multiplicity 

Here we presume total energy is conserved
so if U1 increases by some amount 

then U2 must decrease by an equal amount
so

If the system is to be in the macrostate with the largest 
multiplicity

then its multiplicity              should be at a maximum 
as far as the choice of U1 is concerned

Therefore, an infinitesimally small change in U1
should make no change in  

1 2dU dU 

1 2g g g

1 2g g



Maximizing the multiplicity 

Hence the differential of               should be zero
and using 

we have

from which we conclude

1 2g g g

1 2dU dU 
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2 1 1 1

1 2

0
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Maximizing the multiplicity 

Equivalently to

we can write

So, we are concluding that
in thermal equilibrium 

these two partial derivatives 
should be equal

So perhaps log g has some meaning?

1 2

1 2

1 1 2 2

1 1

N N

g g
g U g U
    

       

1 2

1 2

1 2

log log

N N

g g
U U

    
       




