

Thermal distributions 2

Systems in thermal contact

Modern physics for engineers

David Miller

Systems in thermal contact

Systems in thermal contact

Now we presume two systems

each containing spins

each well insulated from
the environment

System 1 has energy U_1

N_1 spins, spin excess s_{e1}
and multiplicity $g(N_1, s_{e1})$

System 2 has energy U_2

N_2 spins, spin excess s_{e2}
and multiplicity $g(N_2, s_{e2})$

System 1

U_1

N_1

$g_1(N_1, s_{e1})$

System 2

U_2

N_2

$g_2(N_2, s_{e2})$

Systems in thermal contact

We presume total energy in the combined system is conserved even when joined through a thermally conducting wall

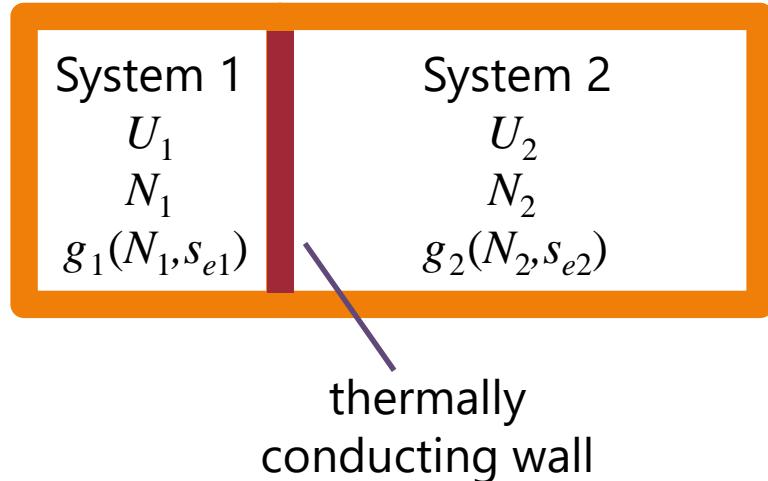
So, at all times

$$s_e = s_{e1} + s_{e2}$$

which gives the total energy through $U(s_e) = -2\mu_s B s_e$

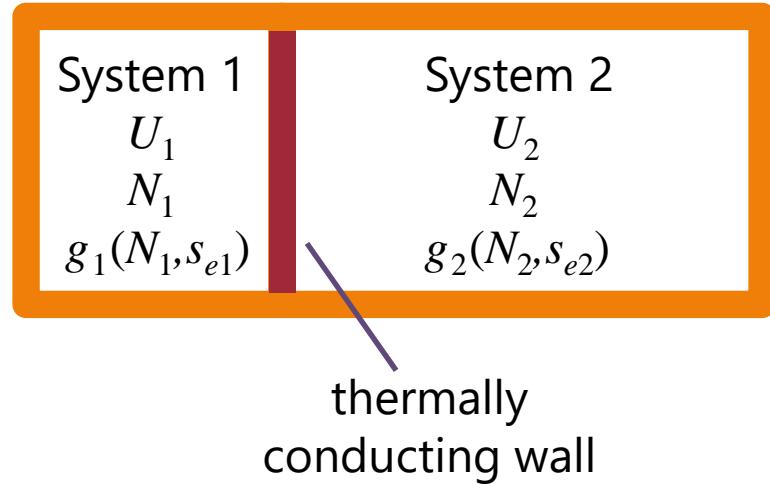
Note N_1 and N_2 remain fixed

Spins do not pass through the wall



Systems in thermal contact

Our goal now is to deduce
what is the most likely macrostate
for splitting the total s_e
between the two systems
when we have reached
thermal equilibrium
after joining the two
systems through the
thermally conducting
wall



Systems in thermal contact

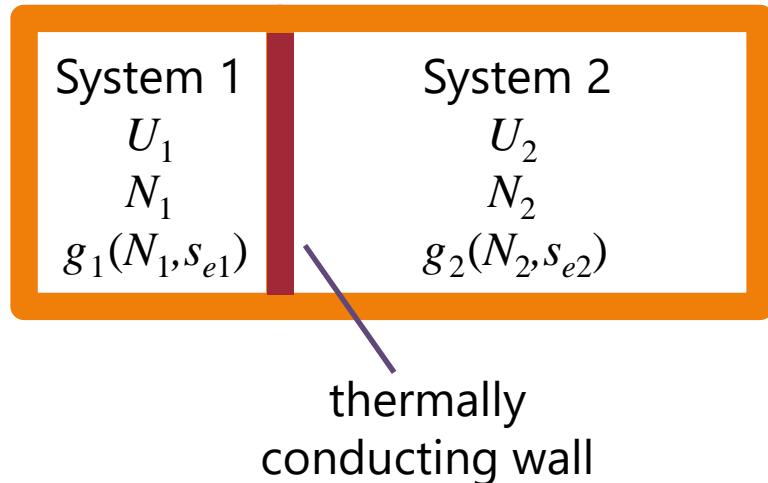
We know that, for large systems

the most likely macrostate

and those close to it

dominate the possible
microstates

So if we know this most likely
macrostate and its properties
we will essentially know the
properties of the system at
thermal equilibrium



Multiplicities for systems in thermal contact

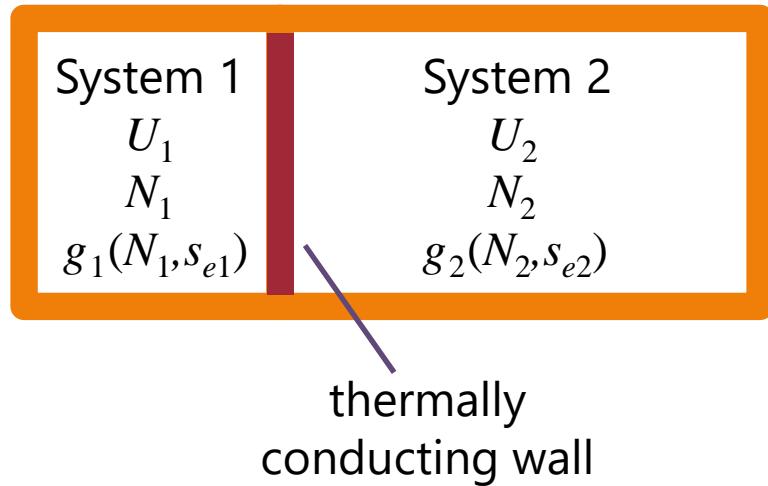
Systems in thermal contact

For a given s_{e1} and (large) N_1
we know the multiplicity of the
macrostate for system 1

$$g(N_1, s_{e1}) \approx g(N_1, 0) \exp\left(-\frac{2s_{e1}^2}{N_1}\right)$$

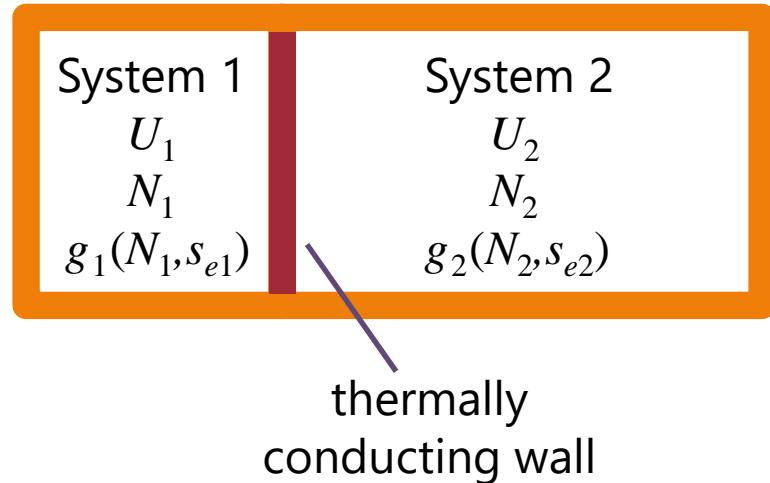
and similarly for system 2

$$g(N_2, s_{e2}) \approx g(N_2, 0) \exp\left(-\frac{2s_{e2}^2}{N_2}\right)$$



Systems in thermal contact

The multiplicity
of the macrostate
of the entire system
is the product of
the multiplicities of the parts



Systems in thermal contact

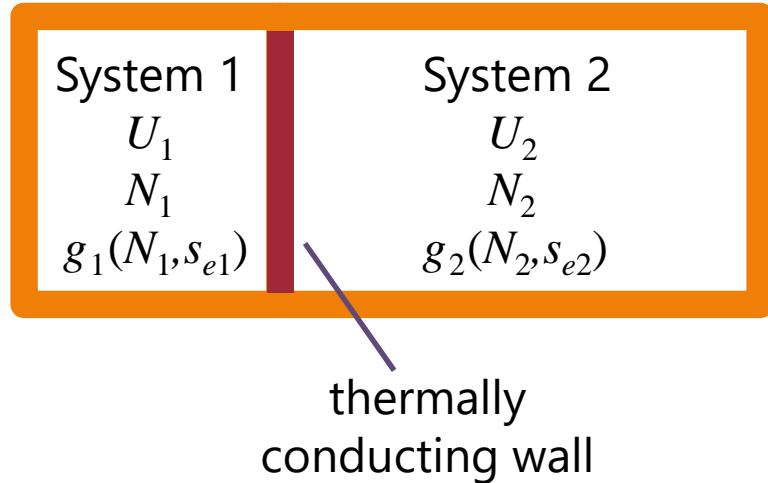
That is, in given macrostates of systems 1 and 2

if for each microstate of system 1 there are g_2 possible microstates of system 2

and we know there are g_1 possible microstates of system 1

then the total number of possible microstates for the entire system is

$$g_1 g_2$$



Systems in thermal contact

With $g_1(N_1, s_{e1}) \simeq g(N_1, 0) \exp\left(-\frac{2s_{e1}^2}{N_1}\right)$

possible microstates for system 1

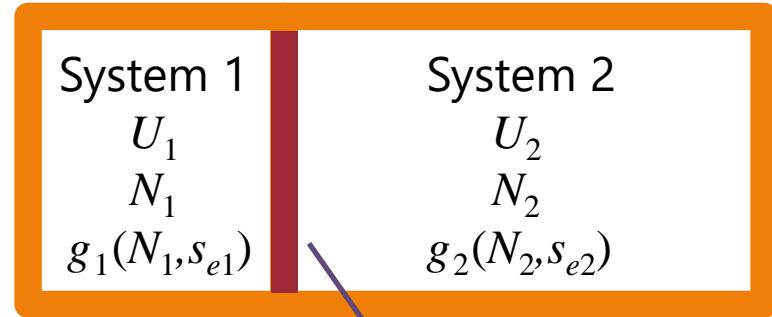
and $g_2(N_2, s_{e2}) \simeq g(N_2, 0) \exp\left(-\frac{2s_{e2}^2}{N_2}\right)$

possible microstates for system 2

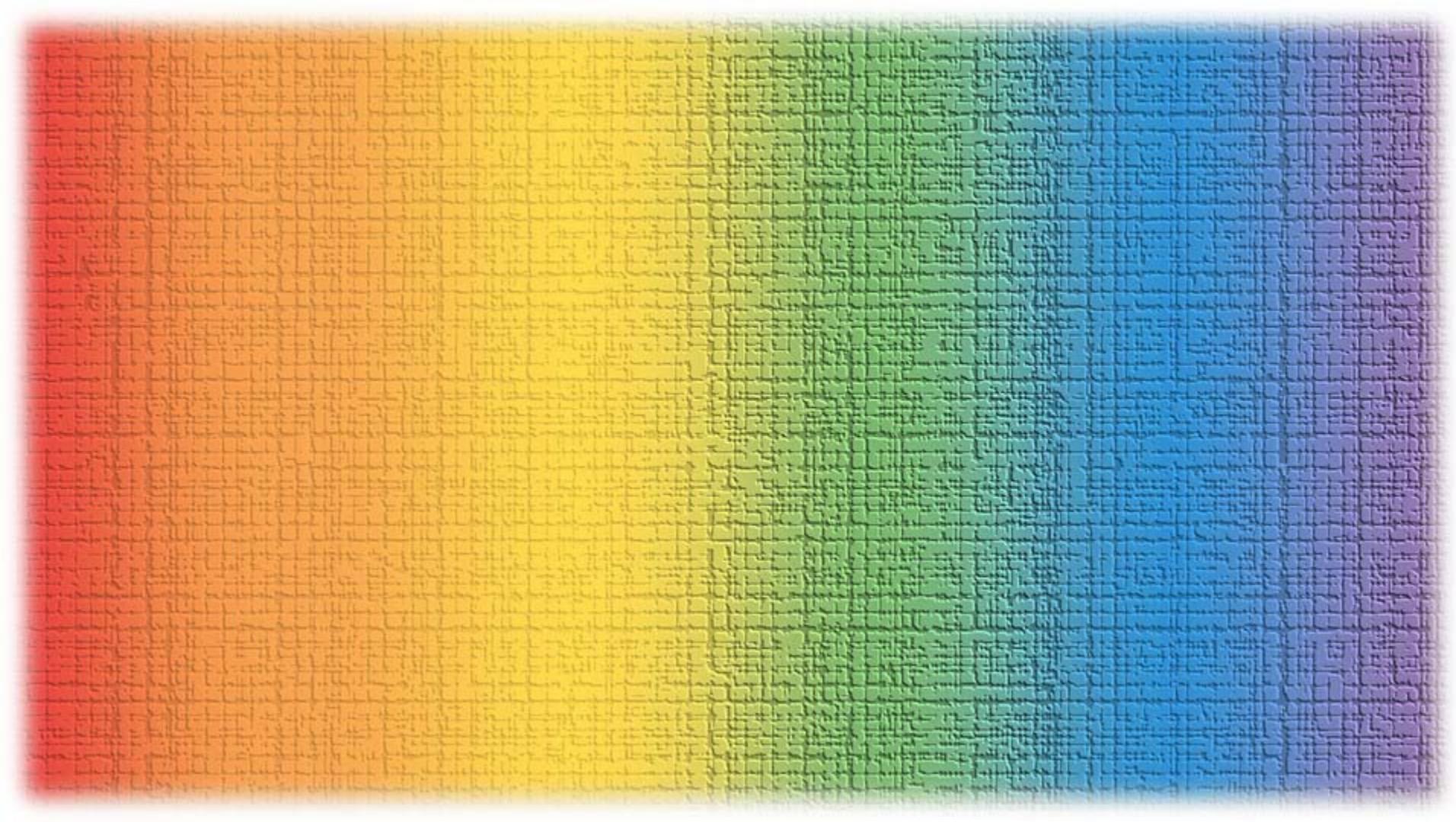
then for the entire system, there are

$$g_{tot} \simeq g(N_1, 0) g(N_2, 0) \exp\left(-\frac{2s_{e1}^2}{N_1}\right) \exp\left(-\frac{2s_{e2}^2}{N_2}\right)$$

microstates in the macrostate



thermally
conducting wall



Thermal distributions 2

Maximizing multiplicities for spin systems

Modern physics for engineers

David Miller

Maximizing multiplicity

With this multiplicity

$$g_{tot} \simeq g(N_1, 0)g(N_2, 0) \exp\left(-\frac{2s_{e1}^2}{N_1}\right) \exp\left(-\frac{2s_{e2}^2}{N_2}\right)$$

for the combined system in thermal contact

now we want to understand how to split up

$$s_e = s_{e1} + s_{e2}$$

between the two systems

to maximize the total multiplicity g_{tot}

Maximizing multiplicity

Since s_e is fixed by conservation of energy overall
we can rewrite

$$g_{tot} \simeq g(N_1, 0) g(N_2, 0) \exp\left(-\frac{2s_{e1}^2}{N_1}\right) \exp\left(-\frac{2s_{e2}^2}{N_2}\right)$$

in terms of a fixed s_e and a variable s_{e1}

$$g_{tot}(s_{e1}) \simeq g(N_1, 0) g(N_2, 0) \exp\left(-\frac{2s_{e1}^2}{N_1}\right) \exp\left(-\frac{2(s_e - s_{e1})^2}{N_2}\right)$$

We could differentiate this with respect to s_{e1}
to find the choice that gives the maximum g_{tot}

Maximizing multiplicity

It is slightly easier to take the logarithm of

$$g_{tot}(s_{e1}) \simeq g(N_1, 0)g(N_2, 0) \exp\left(-\frac{2s_{e1}^2}{N_1}\right) \exp\left(-\frac{2(s_e - s_{e1})^2}{N_2}\right)$$

that is

$$\log[g_{tot}(s_{e1})] \simeq \log[g(N_1, 0)g(N_2, 0)] - \frac{2s_{e1}^2}{N_1} - \frac{2(s_e - s_{e1})^2}{N_2}$$

and differentiate that

If a positive function is maximized

so also is its logarithm

and *vice versa*

Maximizing multiplicity

Differentiating

$$\log[g_{tot}(s_{e1})] \simeq \log[g(N_1, 0)g(N_2, 0)] - \frac{2s_{e1}^2}{N_1} - \frac{2(s_e - s_{e1})^2}{N_2}$$

and setting the result to zero gives

$$\frac{d \log[g_{tot}(s_{e1})]}{ds_{e1}} \simeq -\frac{4s_{e1}}{N_1} + \frac{4(s_e - s_{e1})}{N_2} = 4\left(\frac{s_{e2}}{N_2} - \frac{s_{e1}}{N_1}\right) = 0$$

so to maximize the multiplicity of the whole system

we choose

$$\frac{s_{e2}}{N_2} = \frac{s_{e1}}{N_1}$$

Energy per spin

Since in a given magnetic field

the energy of a given one of the systems is just

proportional to s_{e1} or s_{e2}

that is, $U_1(s_{e1}) = -2\mu_s B s_{e1}$ and $U_2(s_{e2}) = -2\mu_s B s_{e2}$

the statement $\frac{s_{e2}}{N_2} = \frac{s_{e1}}{N_1}$ is equivalent to saying

the energy per spin in the two systems is the same

that is, $\frac{U_1}{N_1} = \frac{U_2}{N_2}$

Energy per spin

If the energy per spin is the same on each side
then the energy per spin in the entire system
is also the same

That is, with $U = U_1 + U_2$ and $N = N_1 + N_2$

$$\frac{U_1}{N_1} = \frac{U_2}{N_2} = \frac{U}{N}$$

and similarly

$$\frac{S_{e2}}{N_2} = \frac{S_{e1}}{N_1} = \frac{S_e}{N}$$

Systems in thermal equilibrium

So, by example

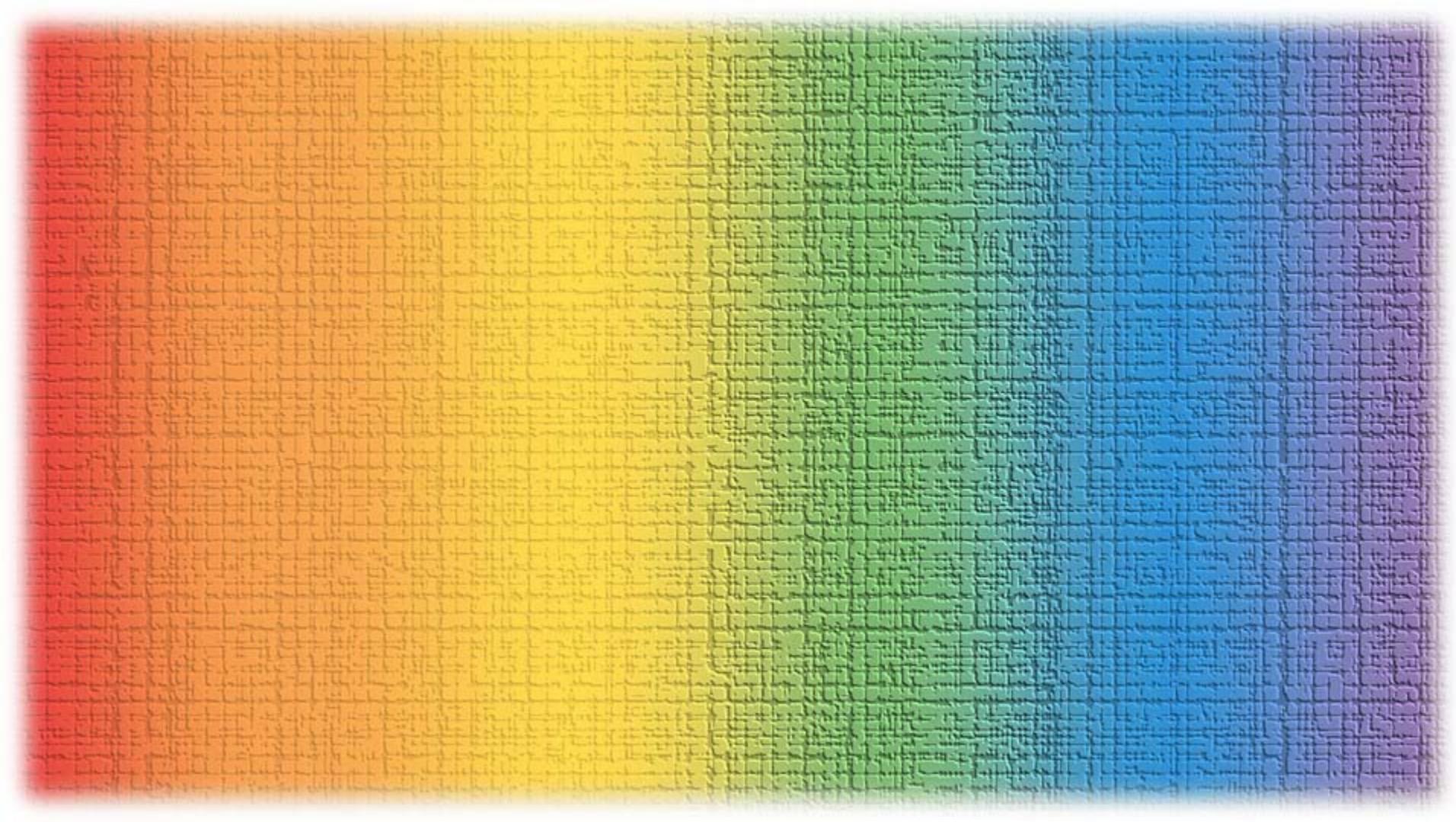
we have uncovered a relatively
straightforward result

The average energy for each
similar microscopic system
here the spins

is the same for systems at
thermal equilibrium

Systems in thermal equilibrium

To understand the deeper meaning
of this
we need to generalize more
and introduce two more concepts
entropy and temperature



Thermal distributions 2

Maximizing multiplicity for general systems

Modern physics for engineers

David Miller

Two generalized systems

Now we generalize beyond just spin systems

to two systems with

N_1 and N_2 quantum “particles” of the same kinds
on each side respectively

with $N = N_1 + N_2$

and with energies U_1 and U_2

with $U = U_1 + U_2$

We consider these systems to have multiplicities

$g_1(N_1, U_1)$ and $g_2(N_2, U_2)$

Multiplicity of the combined system

To obtain the total multiplicity $g(N, U)$

for the combined system

we should sum up the multiplicities

for every possible combination of U_1 and U_2

that corresponds to the same total energy U

$$g(N, U) = \sum_{U_1} g_1(N_1, U_1) g_2(N_2, U - U_1)$$

substituting $U - U_1$ for U_2

and summing over all possible values of U_1

Multiplicity of the combined system

We presume the multiplicity for the combined system

$$g(N, U) = \sum_{U_1} g_1(N_1, U_1) g_2(N_2, U - U_1)$$

is dominated by the term in the sum for which
the product $g_1(N_1, U_1) g_2(N_2, U - U_1)$ is largest
or at least a group of terms close to that
so we will consider just such terms

finding the conditions under which they are
maximized

We presume this approach effectively maximizes $g(N, U)$

Maximizing the multiplicity

For such a product $g = g_1 g_2$

treat U_1 and U_2 as independent variables for the moment

$$\frac{\partial(g_1 g_2)}{\partial U_1} = \left(\frac{\partial g_1}{\partial U_1} \right) g_2 \text{ and } \frac{\partial(g_1 g_2)}{\partial U_2} = g_1 \left(\frac{\partial g_2}{\partial U_2} \right)$$

so the differential can be written

$$dg = \left(\frac{\partial g_1}{\partial U_1} \right) \bigg|_{N_1} g_2 dU_1 + g_1 \left(\frac{\partial g_2}{\partial U_2} \right) \bigg|_{N_2} dU_2$$

Maximizing the multiplicity

The idea of this differential

$$dg = \left(\frac{\partial g_1}{\partial U_1} \right) \Big|_{N_1} g_2 dU_1 + g_1 \left(\frac{\partial g_2}{\partial U_2} \right) \Big|_{N_2} dU_2$$

is that it would formally tell us

the small change in the multiplicity g

that would result from small changes in U_1 and U_2

presuming we knew the partial derivatives

Maximizing the multiplicity

Here we presume total energy is conserved

so if U_1 increases by some amount

then U_2 must decrease by an equal amount

$$\text{so } dU_1 = -dU_2$$

If the system is to be in the macrostate with the largest multiplicity

then its multiplicity $g = g_1 g_2$ should be at a maximum as far as the choice of U_1 is concerned

Therefore, an infinitesimally small change in U_1 should make no change in $g_1 g_2$

Maximizing the multiplicity

Hence the differential of $g = g_1 g_2$ should be zero

and using $dU_1 = -dU_2$

we have

$$dg = \left(\frac{\partial g_1}{\partial U_1} \right) \Big|_{N_1} g_2 dU_1 - g_1 \left(\frac{\partial g_2}{\partial U_2} \right) \Big|_{N_2} dU_1 = 0$$

from which we conclude

$$\frac{1}{g_1} \left(\frac{\partial g_1}{\partial U_1} \right) \Big|_{N_1} = \frac{1}{g_2} \left(\frac{\partial g_2}{\partial U_2} \right) \Big|_{N_2}$$

Maximizing the multiplicity

Equivalently to $\frac{1}{g_1} \left(\frac{\partial g_1}{\partial U_1} \right)_{N_1} = \frac{1}{g_2} \left(\frac{\partial g_2}{\partial U_2} \right)_{N_2}$

we can write $\left(\frac{\partial \log g_1}{\partial U_1} \right)_{N_1} = \left(\frac{\partial \log g_2}{\partial U_2} \right)_{N_2}$

So, we are concluding that
in thermal equilibrium
these two partial derivatives
should be equal

So perhaps $\log g$ has some meaning?

