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Systems in thermal contact
B
Now we presume two systems

each containing spins

each well insulated from System 1 System 2
the environment U,

System 1 has energy U,
N, spins, spin excess S,
and multiplicity g(N,,s.,)
System 2 has energy U,
N, spins, spin excess S,
and multiplicity g(N,,s,, )

N,
01(Ny,Seq) 05(N,,Se,)




Systems in thermal contact
e

We presume total energy in the

combined system is conserved

even when joined through a

. System 1 System 2
thermally conducting wall U,
So, at all times Ny
01(Ny,Se) 92(N2:Se2)
Se = Sel + Se2
which gives the total energy thermally
through U (s, ) =—2u,Bs, conducting wall

Note N, and N, remain fixed
Spins do not pass through the wall



Systems in thermal contact
B
Our goal now is to deduce

what is the most likely macrostate

for splitting the total s, System 1 System 2
between the two systems Lle
when we have reached 0,(N1.5..) 0,(Noss.,)
thermal equilibrium
after joining the two thermally
systems through the conducting wall

thermally conducting
wall



Systems in thermal contact
I
We know that, for large systems

the most likely macrostate
and those close to it System 1 System 2

dominate the possible LNJl
microstates '
So if we know this most likely
macrostate and its properties thermally
we will essentially know the conducting wall
properties of the system at
thermal equilibrium

01 (Ng,Ser) 05(Ny,Se,)
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Systems in thermal contact
e
For a given s, and (large) N,
we know the multiplicity of the
macrostate for system 1

System 1 System 2

252 Lle

N,,S. )= N.,0)exp| — el !
g( 1 el) g( 1 ) p( Nll 01(Ny,Sep) 9,(N,S¢2)

and similarly for system 2 thermally

2 conducting wall
2S
g(NZ’Sez)zg(Nz’O)exP[_ Nezj

2




Systems in thermal contact
N

The multiplicity
of the macrostate

of the entire system System 1 System 2
Is the product of LNJi
the multiplicities of the parts 91(NySes) 92(N2Se2)

thermally
conducting wall



Systems in thermal contact
N

That is, in given macrostates of
systems 1 and 2

iIf for each microstate of system 1 System 1 System 2
there are g, possible microstates Lle
1
of system 2 9:(Ny.Se1) SPI\ PRy,
and we know there are g, possible
microstates of system 1 thermally

then the total number of possible conducting wall

microstates for the entire system is
9:9,



Systems in thermal contact
N

2
With gl(Nl,Sel)zg(Nl,O)exn[— NS“

1

possible microstates for system 1 SystSm 1 System 2
252 1
ond 8,(N,5,)= (N O)ewp| o ||

, 91(Ny,Se1) 92(N2,Se0)
possible microstates for system 2
then for the entire system, there are thermally

ducting wall
252 282 con
Jiot :g(Nl,O)g(NZ,O)eXp(— eljexp(_ eZJ

N, N,

microstates in the macrostate
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Maximizing multiplicity
N
With this multiplicity

25 252
Jiot = Q(Nl,o)g(Nz,O)eXp(— Neljexp(_ Nezj
2

1

for the combined system in thermal contact
now we want to understand how to split up
S, =Sy, + S,
between the two systems
to maximize the total multiplicity g,



Maximizing multiplicity
N
Since s, is fixed by conservation of energy overall
we can rewrite : :
Ot = g(Nl,O)g(Nz,O)exp[— ZNSel)exp(— zljezj
2

1

in terms of a fixed s, and a variable s,

O (Sel) ~ g(Nl’o)g(Nz,O)eXp(_ 2N531)eXp[_ 2(Se —Sel)zJ

1 N2

We could differentiate this with respect to s,
to find the choice that gives the maximum g,



Maximizing multiplicity
.
It is slightly easier to take the logarithm of

O (Sel) ~ g(Nl’o)g(Nz,O)eXp(_ ZNSeZl)eXp[_ 2(Se —Sel)zJ

N
that is 1 i

109] 9 (S.2) |=109[ 9(N,,0)g(N,,0)]

and differentiate that
If a positive function is maximized
so also Is its logarithm
and vice versa

_ 2551 _ 2(Se _Se1)2
N, N,




Maximizing multiplicity
B
Differentiating

109] 9 (S2) | =109] 9(N,,0)g(N,,0) ]

and setting the result to zero gives

d Iog[gtot (Sel)] 4Se1 4(Se o Sel) _ 4( Sez _ Selj

_ 25(921 _ 2(Se _Se1)2
N, N,

~——2 4
dsel Nl N2 N2 Nl

so to maximize the multiplicity of the whole system

S. S
we choose ez = ¢
N2 Nl




Energy per spin
N 1

Since in a given magnetic field
the energy of a given one of the systems is just
proportional to s,; or s,

thatis, U, (s, ) =—24,Bs,, and U,(s,,)=—-2u,Bs,,

Se2 Se1 : : :
the statement = IS equivalent to saying
2 1
the energy per spin in the two systems is the same
Ul U2

that is, =

1 N2




Energy per spin
N 1

If the energy per spin is the same on each side
then the energy per spin in the entire system
IS also the same
Thatis, with U =U,;+U,and N =N, + N,

u U, U

N, N, N
and similarly

Se2 Se1 Se




Systems in thermal equilibrium
I
So, by example
we have uncovered a relatively
straightforward result
The average energy for each
similar microscopic system
here the spins
Is the same for systems at
thermal equilibrium



Systems in thermal equilibrium
5
To understand the deeper meaning

of this

we need to generalize more
and introduce two more concepts
entropy and temperature
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Two generalized systems
N

Now we generalize beyond just spin systems
to two systems with

N; and N, quantum “particles” of the same kinds
on each side respectively

with N =N, +N,
and with energies U; and U,
withU =U, +U,
We consider these systems to have multiplicities

gl(Nl’Ul) and g2(N2’U2)



Multiplicity of the combined system
N

To obtain the total multiplicity g(N,U)
for the combined system
we should sum up the multiplicities
for every possible combination of U; and U,
that corresponds to the same total energy U

g(N,U) :Zul gl(Nl’Ul)QZ(NZ’U _Ul)

substituting U =U, for U,
and summing over all possible values of U,



Multiplicity of the combined system
N

We presume the multiplicity for the combined system

g(N,U) =2, 9,(NU;)g,(N,.U -U,)
Is dominated by the term in the sum for which
the product g,(N;,U,)g,(N,,U -U,)is largest
or at least a group of terms close to that
so we will consider just such terms
finding the conditions under which they are
maximized

We presume this approach effectively maximizes g(N,U)



Maximizing the multiplicity
5
For such a product ¢ =g,0,

treating U; and U, as independent variables for the
moment

a(glg2) . ag:l_ a(glg2) . agZ
U, \au, )% ey, % A,

so the differential can be written




Maximizing the multiplicity
N
The idea of this differential

o9
dg =| =21
o-( )

iIs that it would formally tell us
the small change in the multiplicity g
that would result from small changes in U, and U,
presuming we knew the partial derivatives




Maximizing the multiplicity
N
Here we presume total energy is conserved
so if U, increases by some amount
then U, must decrease by an equal amount

so dU, =—-dU,
If the system is to be in the macrostate with the largest
multiplicity

then its multiplicity 9 = 9,9, should be at a maximum
as far as the choice of U, is concerned

Therefore, an infinitesimally small change in U,
should make no change in g,g,



Maximizing the multiplicity
N
Hence the differential of g =g,9, should be zero
and using dU, =-dU,
we have

9
dg = 1
o[,

from which we conclude

1(591] :1(ag2j
g,\ oU, v 9 oy, N,

ag
du, — 2
gZ 1 gl(@U j

2

du, =0

N5




Maximizing the multiplicity
N

Equivalently to L [6glj = [692 j
9, \ 9V, 9.\ Y, )|,
_(ologg,
oJ, ).
So, we are concluding that
In thermal equilibrium

these two partial derivatives
should be equal

So perhaps log g has some meaning?

dlog glj

we can write (
1

N;
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