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Entropy
5

Now we can usefully define a
guantity
which we call the "entropy”

(o(N,U)=log g(N,U)J

The key idea of entropy is that
for some given macrostate
it is the log of the multiplicity




Entropy
_

Though the multiplicity of some combined system is the
product of the multiplicities of the individual systems
because of the logarithm
the entropy of the combined system
is the sum of the entropies
So, for two systems in macrostates
with multiplicities g, and g, respectively
and hence with entropies o, =logg, and o, =logg,
the total entropy is
o, =log(gg,)=logg +logg, =0, +0,



Thermal equilibrium
N

So, with our conclusion that, in thermal equilibrium
ologg, || |(Ologg,
ou, ), oU,
then with our definition of entropy, we have
do, | | 0o,
ou, ), \au,

as the condition for thermal equilibrium for two
systems in thermal contact

N,

N,



Thermal equilibrium
N

We can restate the condition

do, || | Oo,
ou, )|, \oU,
as 1

the rate of change of entropy with energy

is the same for all systems in thermal
equilibrium with each other

at least for fixed numbers of particles in each
system

N,



Thermal equilibrium
N

For two systems with temperatures 7, and 7,
in thermal equilibrium, we expect T, =T,
: " 00, 0o,
We have derived the condition =
ou, ), \ou, ),

so we expect these partial derivatives are related to
temperature in some way

We can relate to the existing ideas of temperature if

L (@_0)
T oU

N



Temperature and entropy
N 1

In the expression 1 k (80)
T oU

'k, =1.380 6488 x 10> JK '

and it is only there because of our system of units
Sometimes we work with “fundamental temperature”, ¢
which we can define as

1 (Jdo
(),
Fundamentally, the real unit of temperature is energy
though other units can be more convenient

, k5 1s Boltzmann's constant

or, equivalently r=+k,T




Temperature and entropy
N 1

In classical thermodynamics, we write 1 (G_Sj
T \oU

N
where the thermodynamic entropy S

corresponds with the “fundamental” entropy through
S=k,o
We can also write directly

LS =k, log gJ

a key equation by Boltzmann that gave
a tangible meaning to the concept of entropy
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An example system
N 1

Two systems, with energies U, and U,, each with two spins
Initially, system 1 has both spins “up”
and system 2 has both spins “down”
A magnetic field B is applied to both systems
so the energies of these systems are
for system 1, U, =-2uB
and for system 2, U,=+2uB

Only one microstate of each system corresponds to these
energies

so the starting entropies are each logl =0



An example system
N 1

Initial ensemble Final ensemble -

System 1 System 2

of each system is

accessible for the

chosen energy for
each system

c,=0,1t0,=0 ‘1"1’!1‘1‘

1‘ 1‘ l' l, 4 microstates E 1\ ‘1,;1\ 1, i 6 microstates
toe(]) 0 are in the ] ' i | are accessible
o, =108 o, =logll most probable i NEH i for the same
=0 =0 macrostate ! ! | | total energy
Only one microstate ,, =log4 all 1\51\ I o, =logb
i i




An example system
N 1

After we allow the systems to exchange energy
6 accessible microstates have that same total energy
4 of these are in one macrostate
which is the most probable one
All the microstates in this most probable macrostate
have the same energy in each (sub) system 1 and 2
2/3 of the microstates are in that macrostate
which has most (o, =log4) of the entropy, ,, =log6
Explicitly, (log4)/(log6)=0.77 - that is, ~ 77%
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Entropy and heat flow

.
The entropy o, of system or body 1

does not depend on the energy U, of body 2
and the entropy o, of system or body 2
does not depend on the energy U, of body 1
Changing the energy of body 1 by a small amount AU,
and changing the energy of body 2 by a small amount AU,
therefore gives a change Acin the
total entropy ¢ = o, + g, of the combined system

given by Ao = o0, AU, + 00, AU,
oU, oU,

1



Entropy and heat flow
N 1

Suppose we allow a small amount of heat AU
to flow from body 1 to body 2
So, body 1 loses energy AU, so AU, =-AU
and body 2 gains energy AU, so AU, =AU
Then

po=| 29| (cav)+| 2%
oU, oU,
Nl N2

where we used the definition 1 = (2—5)

(AU) :(—l+i)AU

SN2

T

N



Entropy and heat flow
N 1

In conventional thermodynamic notation
multiplying both sides by Boltzmann's constant

Ao = [—l+ijAU becomes AS = (—i+ijAU
SRS I T,
So, if T, >T,
transfer of positive energy or "heat” AU
from body 1 to body 2
leads to an increase of entropy overall



Entropy and heat flow
N 1

We could rewrite AS = —l+L AU
L T,
as AS = AS, +AS,

where AS, and AS, are
the changes in entropy of the individual bodies

AU AS, = AU

7 7,

So the entropy of “hotter” body 1 has decreased
and the entropy of “colder” body 2 has increased

with entropy increasing overall

AS, = -
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Entropy and heat flow
N

Consider a hot cup of coffee (body 1) T, =340.15 K (67° C)
at a temperature of 67° C
so T, =340.15 K
and a counter-top (body 2)
at room temperature of, say, 20° C
so7,=293.15K

/

T, =293.15 K (20° C)




Entropy and heat flow

.
Suppose we transfer 0.01 J of energy T, =340.15 K (67° C)

from the cup of coffee to the
counter-top

by briefly laying down the cup of
coffee 0.01 1y

We presume that both the cup of /
coffee and the counter-top are T,=293.15K (20° C)
sufficiently large that

this small transfer of energy does
not appreciably change the
temperature of either of them




Entropy and heat flow
N

So we have
0.01 o
AS, = — =-2.94x107° JK
340.15
and AS, = 001 3 41x10° JK
293.15

so the total change in entropy is
AS =(3.41-2.94)x10> =4.17x10° JK™
which verifies entropy increases

as heat flows from a hotter to
a colder body

T, =340.15 K (67° C)

AS, =-2.94x10" JK™

0.01 JJ,

/

T,=293.15K (20° C)
AS, =3.41x107° JK™'



Entropy and heat flow
N 1

Converting back this entropy increase
AS =(3.41-2.94)x107° =4.17x107° JK™'
to the "fundamental” form
-6
S A Y P
k, 1.38x10
we can deduce that the number of microstates
available to the combined system
has increased by
Ag = exp(3.02 . 1017) ~ 10(10g106)x3.02><1017 ~ 101.31><1017
a truly massive number

Ao



Entropy and heat flow
N
If the heat flowed in the opposite direction

from “cold” at 20° C to "hot" at 67° C
leading to an entropy decrease of the same size
the system would be changing to a macrostate
with exp(3.02x10'7) fewer microstates
Tossing a coin N times leads to 2V possible outcomes
For 2V = exp(3.02x10")

N =log, (63.02><1017 ) - log, |:(210826 )3'02X1017 ] ~ log, {[2(1/1og62) ]3'02XI0 } ~ 4 4%10"

so asking this heat to flow backwards is like asking for
"all heads” when tossing a coin 4.4x10" times



Entropy and heat flow
I
Since the universe is ~ 13.8 billion
years old

~ 4.4x10" seconds old
this is like tossing a coin
once a second since the Big
Bang

and asking for it to come up
heads every time!



Entropy and heat flow
e
This calculation illustrates

why heat flows from hot to cold

There are massively more accessible
microstates if the energy flows

from the hot body to the cold body
To flow in the opposite direction

would correspond to the number of
accessible microstates

decreasing by an equally large
factor
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The second law of thermodynamics
5
The second law of thermodynamics

can be stated in many ways

many related to the behavior of
heat engines

Its essence is the “law of increase of
entropy”
the entropy of a closed system

tends to remain constant or to
Increase



The second law of thermodynamics

5

The entropy of parts of a system can
decrease

Heat flowing out of a hot part of
the system

decreases its entropy

but the entropy of the cold part
of the system

Increases by more



The second law of thermodynamics
5
The second law is the idea that

given random processes that
change the microstate

the system will tend to change
towards macrostates with larger
multiplicity
l.e., larger numbers of microstates
There many more ways to do that

than to change towards lower
multiplicity



The second law of thermodynamics
5
Because multiplicities increase very

fast with system size

even for moderate sizes of (closed)
systems
entropy is overwhelmingly

unlikely to decrease by any large
amount



The second law of thermodynamics
I
The second law is a statistical
principle
In small systems, we can observe
small decreases of entropy
sometimes

but those systems need to be
really small for there to be much
chance of seeing this happen



The second law of thermodynamics
5
It is also possible to calculate the
possibility of small random
fluctuations in the system

away from the “equilibrium” values

Such calculations are an
important part of the larger field
of statistical mechanics
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Limit to heat engine efficiency
5
All heat engines have a simple

and quite fundamental
limit to their efficiency
Here, efficiency is
the ratio of
work out
to
heat energy In



Limit to heat engine efficiency
e
This is the Carnot limit

(Sadi Carnot, 1824)
It can be deduced from
conservation of energy overall
the first law of thermodynamics
and the requirement that entropy
overall should not decrease

the second law of
thermodynamics



Heat engine operation Hot

B reservoir

Heat energy of magnitude U, Lu

flows out of the hot reservoir YU,
at temperature 7

Work of an amount W IR Work
Is performed by the heat engine engine

Heat energy of magnitude U,
flows into the cold reservoir Y U.

at temperature 7, =

reservoir
TC




Heat engine operation
B

The entropy change of the hot reservoir

IS
sy -V
TH

which is a decrease of entropy
because heat energy has flowed out

The entropy change of the cold reservoir

IS
A
TC

which is an increase of entropy
because heat energy has flowed in

Hot
reservoir
TH

Y U,

Heat
engine

WUC

Cold
reservoir

e

Work W



Heat engine operation
B

Presuming the engine is to be as
efficient as possible

there will be no other loss of energy
so conservation of energy gives
U.=U, -W
So we can rewrite
U _U,-W
T T

C C

AS,

Hot
reservoir
TH

Lo,

Heat
engine

Y Uo

Cold
reservoir

e

Work W



Heat engine operation Hot
B reservoir

We ask that entropy should not Ty
decrease overall Lo
SO AS, +AS,. >0

Substituting gives Heat ) o<

engine
“ln YnmW s
T, T.
Rearranging gives YU
UHLI—lsz Cold
I. T,) T reservoir
TC




Carnot efficiency limit
I

Defining the efficiency 7,,,,,. as
the work energy out per unit heat
energy in
presuming we have to keep
replenishing the heat extracted
from the hot reservoir

then from v, L
TC TH TC

we have . =

engine U
H

Hot
reservoir
TH

‘o,

Heat
engine

Y U,

Cold
reservoir

Te

Work W



Carnot efficiency limit Hot

B reservoir
TH
T
gf— ¢
77 s TH ¢ UH
This is the Carnot efficiency limit emt\ Work W
For given temperatures engine

nothing we can do can make a heat
engine more efficient than this

To do so would require violating
either the First or Second Laws Cold

. reservoir
of Thermodynamics -
C

Y Uq
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