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Entropy and temperature



Entropy

Now we can usefully define a 
quantity
which we call the “entropy”

The key idea of entropy is that
for some given macrostate

it is the log of the multiplicity 
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Entropy

Though the multiplicity of some combined system is the 
product of the multiplicities of the individual systems 

because of the logarithm
the entropy of the combined system 

is the sum of the entropies
So, for two systems in macrostates 

with multiplicities g1 and g2 respectively
and hence with entropies                  and

the total entropy is
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Thermal equilibrium

So, with our conclusion that, in thermal equilibrium

then with our definition of entropy, we have

as the condition for thermal equilibrium for two 
systems in thermal contact
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Thermal equilibrium

We can restate the condition 

as
the rate of change of entropy with energy 

is the same for all systems in thermal 
equilibrium with each other

at least for fixed numbers of particles in each 
system
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Thermal equilibrium

For two systems with temperatures T1 and T2
in thermal equilibrium, we expect

We have derived the condition

so we expect these partial derivatives are related to 
temperature in some way

We can relate to the existing ideas of temperature if
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Temperature and entropy

In the expression                         , kB is Boltzmann’s constant

and it is only there because of our system of units
Sometimes we work with “fundamental temperature”, 

which we can define as

or, equivalently

Fundamentally, the real unit of temperature is energy
though other units can be more convenient
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Temperature and entropy

In classical thermodynamics, we write

where the thermodynamic entropy S
corresponds with the “fundamental” entropy through

We can also write directly

a key equation by Boltzmann that gave 
a tangible meaning to the concept of entropy
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An example system



An example system

Two systems, with energies U1 and U2, each with two spins
Initially, system 1 has both spins “up”

and system 2 has both spins “down” 
A magnetic field B is applied to both systems

so the energies of these systems are
for system 1,
and for system 2,

Only one microstate of each system corresponds to these 
energies

so the starting entropies are each 
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4 microstates 
are in the 
most probable 
macrostate

An example system

Initial ensemble
System 1 System 2
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Only one microstate 
of each system is 
accessible for the 
chosen energy for 
each system
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log6tot 

6 microstates 
are accessible 
for the same 
total energy
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Final ensemble



An example system

After we allow the systems to exchange energy
6 accessible microstates have that same total energy

4 of these are in one macrostate
which is the most probable one

All the microstates in this most probable macrostate 
have the same energy in each (sub) system 1 and 2 

2/3 of the microstates are in that macrostate 
which has most (                ) of the entropy,

Explicitly,                                  - that is, ~ 77% 
log 4mp  log6tot 

   log 4 / log6 0.77
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Entropy and heat flow

The entropy 1 of system or body 1 
does not depend on the energy U2 of body 2 

and the entropy 2 of system or body 2 
does not depend on the energy U1 of body 1

Changing the energy of body 1 by a small amount U1
and changing the energy of body 2 by a small amount U2

therefore gives a change  in the 
total entropy                  of the combined system

given by

1 2   

1 2

1 2
1 2

1 2N N

U U
U U
 

    
           



Entropy and heat flow

Suppose we allow a small amount of heat U
to flow from body 1 to body 2 

So, body 1 loses energy U, so 
and body 2 gains energy U, so

Then

where we used the definition  
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Entropy and heat flow

In conventional thermodynamic notation
multiplying both sides by Boltzmann’s constant

becomes

So, if           
transfer of positive energy or “heat” U

from body 1 to body 2 
leads to an increase of entropy overall 
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Entropy and heat flow

We could rewrite                            

as
where S1 and S2 are 

the changes in entropy of the individual bodies

So the entropy of “hotter” body 1 has decreased
and the entropy of “colder” body 2 has increased

with entropy increasing overall
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An example of entropy and heat 
flow



Entropy and heat flow

Consider a hot cup of coffee (body 1) 
at a temperature of 67° C 

so T1 = 340.15 K
and a counter-top (body 2) 

at room temperature of, say, 20° C 
so T2 = 293.15 K

T1 = 340.15 K (67° C) 

T2 = 293.15 K (20° C) 



Entropy and heat flow

Suppose we transfer 0.01 J of energy 
from the cup of coffee to the 

counter-top 
by briefly laying down the cup of 
coffee 

We presume that both the cup of 
coffee and the counter-top are 
sufficiently large that 
this small transfer of energy does 

not appreciably change the 
temperature of either of them 

T1 = 340.15 K (67° C) 

T2 = 293.15 K (20° C) 

0.01 J



Entropy and heat flow

So we have

and

so the total change in entropy is

which verifies entropy increases 
as heat flows from a hotter to 

a colder body

5 1
1

0.01 2.94 10  J K
340.15

S      

5 1
2

0.01 3.41 10  J K
293.15

S    

  5 6 13.41 2.94 10 4.17 10  J KS       

T1 = 340.15 K (67° C) 

T2 = 293.15 K (20° C) 

0.01 J

5 1
1 2.94 10  J KS    

5 1
2 3.41 10  J KS   



Entropy and heat flow

Converting back this entropy increase

to the “fundamental” form

we can deduce that the number of microstates 
available to the combined system 

has increased by

a truly massive number
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Entropy and heat flow

If the heat flowed in the opposite direction
from “cold” at 20° C to “hot” at 67° C

leading to an entropy decrease of the same size
the system would be changing to a macrostate

with                         fewer microstates
Tossing a coin N times leads to 2N possible outcomes

For

so asking this heat to flow backwards is like asking for
“all heads” when tossing a coin               times   
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Entropy and heat flow

Since the universe is ~ 13.8 billion 
years old
~              seconds old 

this is like tossing a coin 
once a second since the Big 

Bang 
and asking for it to come up 

heads every time! 

174.4 10



Entropy and heat flow

This calculation illustrates 
why heat flows from hot to cold

There are massively more accessible 
microstates if the energy flows 
from the hot body to the cold body

To flow in the opposite direction 
would correspond to the number of 

accessible microstates 
decreasing by an equally large 
factor 



The second law of 
thermodynamics



The second law of thermodynamics

The second law of thermodynamics 
can be stated in many ways
many related to the behavior of 

heat engines
Its essence is the “law of increase of 

entropy”
the entropy of a closed system 

tends to remain constant or to 
increase



The second law of thermodynamics

The entropy of parts of a system can 
decrease
Heat flowing out of a hot part of 

the system 
decreases its entropy

but the entropy of the cold part 
of the system 
increases by more 



The second law of thermodynamics

The second law is the idea that
given random processes that 
change the microstate

the system will tend to change 
towards macrostates with larger 
multiplicity
i.e., larger numbers of microstates

There many more ways to do that 
than to change towards lower 

multiplicity



The second law of thermodynamics

Because multiplicities increase very 
fast with system size
even for moderate sizes of (closed) 

systems
entropy is overwhelmingly 
unlikely to decrease by any large 
amount



The second law of thermodynamics

The second law is a statistical 
principle
In small systems, we can observe 

small decreases of entropy 
sometimes
but those systems need to be 
really small for there to be much 
chance of seeing this happen



The second law of thermodynamics

It is also possible to calculate the 
possibility of small random 
fluctuations in the system 
away from the “equilibrium” values

Such calculations are an 
important part of the larger field 
of statistical mechanics







David MillerModern physics for engineers

Thermal distributions 3

Carnot efficiency limit for heat engines



Limit to heat engine efficiency

All heat engines have a simple
and quite fundamental 

limit to their efficiency
Here, efficiency is

the ratio of 
work out 

to 
heat energy in



Limit to heat engine efficiency

This is the Carnot limit
(Sadi Carnot, 1824)

It can be deduced from
conservation of energy overall 

the first law of thermodynamics
and the requirement that entropy 
overall should not decrease
the second law of 

thermodynamics



Heat engine operation

Heat energy of magnitude UH
flows out of the hot reservoir

at temperature TH
Work of an amount W

is performed by the heat engine
Heat energy of magnitude UC

flows into the cold reservoir
at temperature TC

Hot 
reservoir

Cold 
reservoir

TH

TC

Heat 
engine

UH

UC

Work W



Heat engine operation

The entropy change of the hot reservoir 
is

which is a decrease of entropy 
because heat energy has flowed out

The entropy change of the cold reservoir 
is

which is an increase of entropy 
because heat energy has flowed in
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Heat engine operation

Presuming the engine is to be as 
efficient as possible
there will be no other loss of energy

so conservation of energy gives

So we can rewrite 
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Heat engine operation

We ask that entropy should not 
decrease overall
so

Substituting gives

Rearranging gives
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Carnot efficiency limit

Defining the efficiency engine as 
the work energy out per unit heat 

energy in 
presuming we have to keep 
replenishing the heat extracted 
from the hot reservoir

then from 

we have
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Carnot efficiency limit

This is the Carnot efficiency limit
For given temperatures

nothing we can do can make a heat 
engine more efficient than this
To do so would require violating 
either the First or Second Laws 
of Thermodynamics 
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