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The Boltzmann factor



The Boltzmann factor

Suppose a system M
of moderate size 

is in thermal contact with 
a very large reservoir, R

Energy can be exchanged 
through the walls between 

system M and reservoir R
but no particles can be exchanged
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System M



The Boltzmann factor

The energy in the total system 
is some fixed amount Uo

System M has energy 
so the energy of reservoir R is  

Our goal is to establish the 
probability 
that system M is in some particular 

quantum state (a microstate of M ) 
given a temperature   

for the total system
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The Boltzmann factor

Consider two quantum states of M
state 1 and state 2

with associated energies 1 and 2
The probability P1 that M is in state 1 

is proportional to the multiplicity of 
the reservoir R
when it has energy

This multiplicity is the number of 
ways the total system can exist 
in which system M is in state 1
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The Boltzmann factor

With a similar argument for state 2 
and the corresponding probability  

P2 of system M being in state 2
we can write Reservoir R
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The Boltzmann factor

Note that we are not discussing the 
probabilities that 
the system M has energy 1 or 2

There could possibly be many 
different quantum states 
that have the same energy 1 or 2
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The Boltzmann factor

We are discussing the relative 
probabilities 
that the system is in a specific 

quantum state with energy 1
or in another specific quantum 
state with energy 2
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The Boltzmann factor

With            as the entropy of the 
reservoir at some energy U

So

gives
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The Boltzmann factor

Now, we presume that 
compared to the energy of the very large reservoir

the energy  of the specific state of the system M
is very small 

So, we expand the entropy of the reservoir 
in a Taylor series about the point Uo
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The Boltzmann factor

In

the derivatives are being taken at constant numbers 
of particles in both the reservoir and the system M

so                          

where                is the reservoir temperature
Presuming negligible change of reservoir temperature

we drop all higher derivatives  
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The Boltzmann factor

So retaining only the first derivative term

and using this in

gives 
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The Boltzmann factor

So, for a system M in thermal contact 
with a large reservoir at temperature  

the relative probability
under conditions of constant numbers of particles 

of the system M being 
in a specific quantum state of energy 1

rather than one of energy 2

is given by 
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The Boltzmann factor

This factor 

that expresses this 
relative probability of occupation of 

states 
separated by energy 

in thermal equilibrium
is called the Boltzmann factor
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This factor 

and closely related ones
appear in a wide range of situations

They form the basis for the 
distributions of particles 
among quantum mechanical states 

in systems in thermal equilibrium  

The Boltzmann factor
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Chemical potential

Now we extend by one more step
allowing particles to move between 

the system M and the reservoir R
through a permeable membrane 

instead of a thermally 
conducting wall

Such “diffusion” processes can occur 
even if the temperature is the same 

on both sides



Chemical potential

The joint system should now settle 
down
in what we can call 

diffusive equilibrium
to some situation that maximizes 

entropy overall 



Chemical potential

Presume for the moment that this 
movement of particles 
does not itself change the energy 

of either system
For example

we could turn off the magnetic 
field on the spins
then every spin would have 

zero energy anyway 



Chemical potential

So we examine a relation for the 
change in entropy 
for systems 1 and 2

with changes of particle numbers 
N1 and N2
at constant energies U1 and U2



Chemical potential

So we have

Presuming conservation of particle number overall
so N particles are moving from system 1 to system 2

then                   and
At diffusive equilibrium, we presume maximum entropy

so small transfers result in vanishing entropy changes
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Chemical potential

With

we conclude that in diffusive equilibrium

So the quantity represented by such a derivative 
is equalized under diffusion of particles from 

one system to the other
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Chemical potential

Conventionally in thermodynamics  
we use the chemical potential

This is simply (minus) the (fundamental) temperature 
 the derivative that is equalized in diffusive equilibrium

Presuming we are operating at some temperature
then diffusive equilibrium for some “species” of particle 

means the same chemical potential for that species in 
both systems

We can generalize to multiple species 
with separate chemical potentials for each species
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The Gibbs factor

Now we can consider
the exchange of both particles and 

energy
We can derive another useful factor

called the Gibbs factor
This is analogous to the Boltzmann 

factor 
which arose when we considered 
only the exchange of energy



The Gibbs factor

Consider now a system M in
thermal and diffusive contact with a large reservoir R

Now, in addition to being able to transfer energy 
we can also transfer particles

The entire closed system of reservoir R and system M
has No identical particles, and has energy Uo

When the system M has N particles
then the reservoir has            particles 

and when the system M has energy M
the reservoir has energy  
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The Gibbs factor

Just as for the derivation of the 
Boltzmann factor
we consider the system M to be in a 

particular state 
in which it has energy M and N
particles 



The Gibbs factor

We will consider two specific 
microstates of system M

State 1 
in which system M has energy 1

and N1 particles
State 2 

in which system M has energy 2
and N2 particles



The Gibbs factor

The ratio of the probabilities of M being in state 1 or 2 is

where g in each case is the corresponding multiplicity 
of the whole system when M is in the given state

Rewriting using entropies gives

where
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The Gibbs factor

Just as we did for the Boltzmann factor derivation
we expand                            in a Taylor series

now about the values No and Uo
where now we need to expand 

in two variables, N and , to obtain

Assuming that the reservoir is very large
we neglect all higher order terms in the expansion
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The Gibbs factor

So, with

becomes

Using our definitions

then
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The Gibbs factor

So, with

becomes
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The Gibbs factor

In

the factor that expresses this relative probability 
of occupation of states separated by 

energy  and population difference N

is called the Gibbs factor

an un-normalized probability that the system M can be 
in a state of energy  and particle number N
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