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The Boltzmann factor
e
Suppose a system M

of moderate size
s in thermal contact with
a very large reservoir, R Reservoir R
Energy can be exchanged
through the walls between
system M and reservoir R
but no particles can be exchanged




The Boltzmann factor
N

The energy in the total system Total system
is some fixed amount U, J.
System M has energy ¢
so the energy of reservoirRisU_ —¢ Reservoir R
Our goal is to establish the U, —¢
probability

that system M is in some particular
guantum state (a microstate of M)

given a temperature 7 (= k;T)
for the total system




The Boltzmann factor
N

Consider two quantum states of M Total system
state 1 and state 2 o
with associated energies g and ¢,
The probability P, that M is in state 1 Reservoir R
is proportional to the multiplicity of Ug=¢

the reservoir R
when it has energy U —g,

This multiplicity is the number of
ways the total system can exist

In which system M is in state 1




The Boltzmann factor
B

With a similar argument for state 2 Total system
and the corresponding probability o
P, of system M being in state 2
we can write Reservoir R

U,—¢

P, Multiplicity of R at energy U, — ¢,
P, Multiplicity of R atenergy U, — &,




The Boltzmann factor

B
Note that we are not discussing the Total system

probabilities that U,
the system M has energy ¢, or ¢,

There could possibly be many Reservoir R
different quantum states U —¢

that have the same energy ¢, or &,




The Boltzmann factor

B
We are discussing the relative Total system

probabilities U,
that the system is in a specific
quantum state with energy g S
or in another specific quantum U —¢
state with energy &,




The Boltzmann factor

B
With o, (U) as the entropy of the Total system

reservoir at some energy U
Multiplicity of R at energy U, — ¢

- exp[O-R (UO _ (c;l):| RefJer\ic;ir R

So
P, Multiplicity of R at energy U, —¢,
P, Multiplicity of R at energy U, — &,

gives
P explog(U,—4)]
P, exp[og(U,-¢,)]

:exp[aR (U0 —81)—0'R (Uo _‘92)]



The Boltzmann factor
.

Now, we presume that
compared to the energy of the very large reservoir
the energy ¢ of the specific state of the system M
Is very small
So, we expand the entropy of the reservoir
In a Taylor series about the point U,

0 1 0°
oV,-e)=n(U)-o( 2] 3ot 2]

+ ..o

u=U,

u=U,



The Boltzmann factor
.

0 1 0°
In GR(UO—S)ZGR(UO)—S( O-Rj +552(655j

ouU
the derivatives are being taken at constant numbers
of particles in both the reservoir and the system M

(80‘R j 1
SO
ou |,

7
where 7 (=Kk;T) Is the reservoir temperature
Presuming negligible change of reservoir temperature
we drop all higher derivatives

+ ..o

U=U,

u=U,




The Boltzmann factor
.

So retaining only the first derivative term

or (U, —¢)=0y (Uo)—£

and using this in ‘

P _ exp| o (U, — &) ]

P, exp[c)'R (U0 — &, )]
gives

P exp(—s /1) :exp{—(gl_gz)} —exp{—(gl_%)}

P, exp(-&,/7) KT

:exp[aR (U, —&)—0ox (U, _‘92)]




The Boltzmann factor
e

So, for a system M in thermal contact
with a large reservoir at temperature 7 (= k;T)
the relative probability
under conditions of constant numbers of particles
of the system M being
in a specific quantum state of energy ¢
rather than one of energy ¢,

iS given by i:exp|:_(gl_gz):|
P, k. T



The Boltzmann factor
B

This factor
E
exp| —
o]

-

that expresses this

relative probability of occupation of
states

separated by energy ¢
in thermal equilibrium
is called the Boltzmann factor



The Boltzmann factor
B

This factor -
E
exp| —
l p( Ke T j]

-

and closely related ones
appear in a wide range of situations

They form the basis for the
distributions of particles

among quantum mechanical states
In systems in thermal equilibrium
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Chemical potential
5
Now we extend by one more step

allowing particles to move between
the system M and the reservoir R

through a permeable membrane

instead of a thermally
conducting wall

Such “diffusion” processes can occur

even if the temperature is the same
on both sides



Chemical potential

5

The joint system should now settle
down

In what we can call
diffusive equilibrium
to some situation that maximizes
entropy overall



Chemical potential
5
Presume for the moment that this
movement of particles

does not itself change the energy
of either system

For example
we could turn off the magnetic
field on the spins
then every spin would have
Zero energy anyway



Chemical potential
5
So we examine a relation for the
change in entropy
for systems 1 and 2
with changes of particle numbers
N, and N,
at constant energies U, and U,



Chemical potential
N 1

So we have Ac=| 2% AN, + 00y
ON, )|, ON,

AN,

U2
Presuming conservation of particle number overall
so AN particles are moving from system 1 to system 2
then AN, =—AN and AN, = AN
At diffusive equilibrium, we presume maximum entropy
so small transfers result in vanishing entropy changes

0= 29 | aN+[Z2%]| AN
oN, ON,
U, U

2



Chemical potential
N 1

With oz—[%j ANJ{@(’ZJ AN

1 2 /|y

Uy

we conclude that in diffusive equilibrium

9o, | _| 99
oN, )|, (N,

So the quantity represented by such a derivative

Is equalized under diffusion of particles from
one system to the other

U,



Chemical potential

I =
Conventionally in thermodynamics

: . oo
we use the chemical potential . = —r(—aN j
U

This is simply (minus) the (fundamental) temperature

x the derivative that is equalized in diffusive equilibrium
Presuming we are operating at some temperature

then diffusive equilibrium for some “species” of particle

means the same chemical potential for that species in
both systems

We can generalize to multiple species
with separate chemical potentials for each species
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The Gibbs factor
B

Now we can consider

the exchange of both particles and
energy

We can derive another useful factor
called the Gibbs factor

This is analogous to the Boltzmann
factor

which arose when we considered
only the exchange of energy



The Gibbs factor
S

Consider now a system M in
thermal and diffusive contact with a large reservoir R
Now, in addition to being able to transfer energy
we can also transfer particles
The entire closed system of reservoir R and system M
has N, identical particles, and has energy U,
When the system M has N particles
then the reservoir has N, — N particles
and when the system M has energy ¢,
the reservoir has energy U, —¢,,



The Gibbs factor
B

Just as for the derivation of the
Boltzmann factor

we consider the system M to be in a
particular state
In which it has energy g, and N
particles



The Gibbs factor
B

We will consider two specific
microstates of system M

State 1

In which system M has energy &
and N, particles

State 2

In which system M has energy &,
and N, particles



The Gibbs factor
S 1
The ratio of the probabilities of M being in state 1 or 2 is
P(Ny &) _ 9(No=N,,Uy —5,)
P(N,,&,) 9(N,—N,U,—¢,)
where ¢ in each case is the corresponding multiplicity
of the whole system when M is in the given state

Rewriting using entropies gives
P(N,,&) explo(N,—N,U,—¢)]
P(N,,&,) exp[o(N,—N,U,—¢,)]

where Ac=0(N,-N,,U,—g)-oc(N

—exp(Ao)

-N,,U, _‘92)

0



The Gibbs factor
S

Just as we did for the Boltzmann factor derivation
we expand o (N, —N,U, —¢)in a Taylor series
now about the values N, and U,
where now we need to expand
In two variables, N and g to obtain

o(N,~NU, &)= (N, U,)-N[ 2T | o[ 29| ..
oN, ) “lau, |

0 0

Assuming that the reservoir is very large
we neglect all higher order terms in the expansion



The Gibbs factor
S

So, with (N, ~N,U, &)= (N,,U,)-N| 27| _¢[ 22
oN, ) “lau, )

Ao =0(N,-N,U,—¢&)-o(N,-N,,U, -¢,)

becomes AG:_(Nl_NZ)[;\Tj —(gl—gz)(aavo-j
u, N,

. _— dc ) 1 ( oo
f =—7 — =
Using our definitions £ (aNo] - (8U0j

N, =N, ) e _(‘91_‘92)
T T

then Ao = (




The Gibbs factor

So, with Ag— NN (8-

4 T
P(N,,&) explo(N,—N,U,—&)]
P(N,,&,) exp[o(N,—N,U,—¢,)]
becomes
P(N, &) exp[(Nye—&)/7]
P(N,2,) o] (Notie —2,)/ ]

—exp(Ao)




The Gibbs factor
S

P(N,,& ) _ exp[(Nl,uC —51)/2']
P(Ny.&) exp|(Nyu.—¢,)/7]
the factor that expresses this relative probability

of occupation of states separated by
energy ¢ and population difference N

exp{(NﬂC_g)} |

In

Is called the Gibbs factor

T

-

an un-normalized probability that the system M can be
in a state of energy ¢and particle number N
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