

Oscillations and waves 1

Classical mechanics

Modern physics for engineers

David Miller

Introduction

Before moving on

we remind ourselves of basic
classical mechanics, such as

kinetic energy

momentum

Newton's second law

potential energy and force

and various relations between these

Introduction

Then we will look at simple oscillators
such as a mass on a spring

Finally, we will look at

waves on a string

including ideas like standing
waves

We will also introduce the important
idea of “modes”

Momentum and kinetic energy

Momentum and kinetic energy

For a particle of mass m
the classical momentum
which is a vector
because it has direction
is $\mathbf{p} = m\mathbf{v}$
where \mathbf{v} is the (vector) velocity

The kinetic energy
the energy associated with motion
is
$$K.E. = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

Momentum and kinetic energy

In the kinetic energy expression

$$K.E. = \frac{p^2}{2m}$$

we mean

$$p^2 \equiv \mathbf{p} \cdot \mathbf{p}$$

i.e.,

the vector dot product of \mathbf{p} with itself

Potential energy

Potential energy

Potential energy is defined as
energy due to position

It is usually denoted by V in quantum
mechanics

even though this potential energy
in units of Joules

might be confused with the idea of
voltage

in units of Joules/Coulomb

and even though we use voltage
often in quantum mechanics

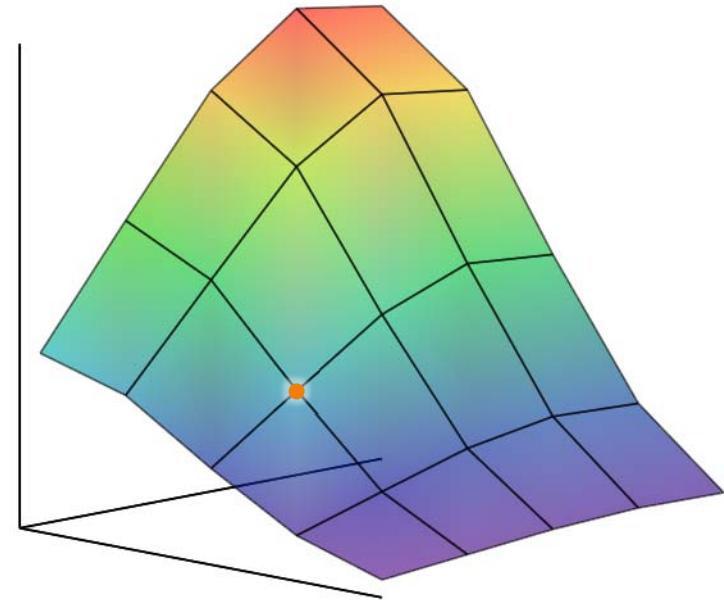
Potential energy

Since it is energy due to position
it can be written as $V(\mathbf{r})$

We can talk about potential
energy

if that energy only
depends on where we
are

not how we got there



Potential energy

Classical “fields” with this property are called

“conservative” or “irrotational”

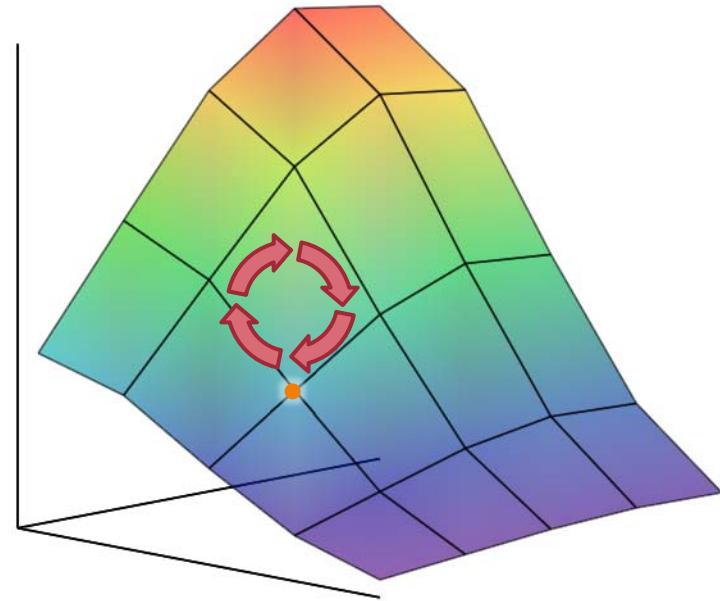
the change in potential energy round any closed path is zero

Not all fields are conservative

e.g., going round a vortex

but many are conservative

gravitational, electrostatic



Energy origin

The “zero” or “origin” we use for potential energy is always arbitrary

We can choose it to be what we want

as long as we are consistent

There is no absolute origin for potential energy

Energy origin

We only really work with differences
in potential energy
between one position and another
and we can choose any “zero”
position we want
as long as we are consistent

Force and potential energy

Force

In classical mechanics

we often use the concept of force

Newton's second law relates force and acceleration

$$\mathbf{F} = m\mathbf{a}$$

where m is the mass and \mathbf{a} is the acceleration

Equivalently

$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$

where \mathbf{p} is the momentum

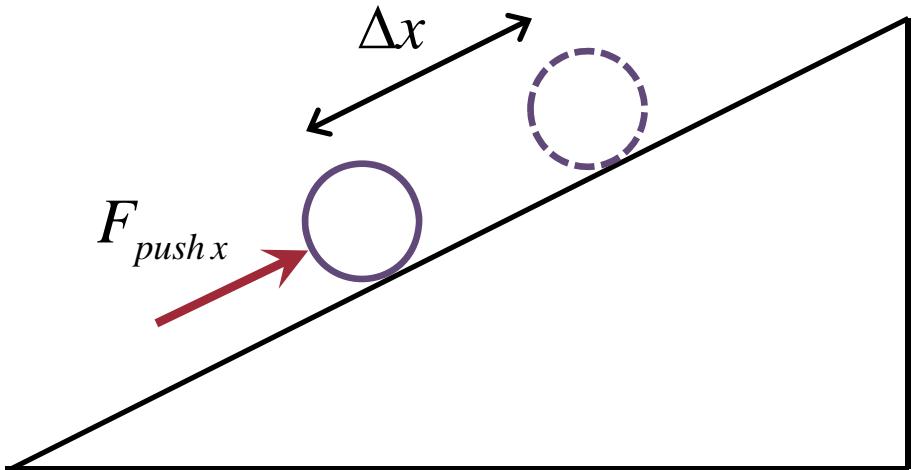
Force and potential energy

We can express the same idea by thinking of a force as the gradient of a potential

To understand this

suppose we are trying to change the potential energy of a ball

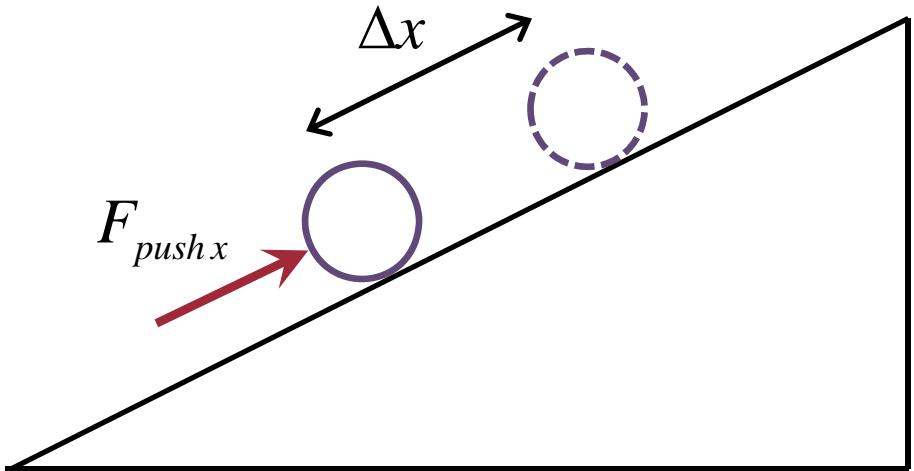
by pushing it slowly (and frictionlessly) up a hill or a slope



Force and potential energy

We get a change ΔV in potential energy V

$$\Delta V = F_{pushx} \Delta x$$



by exerting a force F_{pushx} in the x direction up the slope through a distance Δx

Force and potential energy

Equivalently

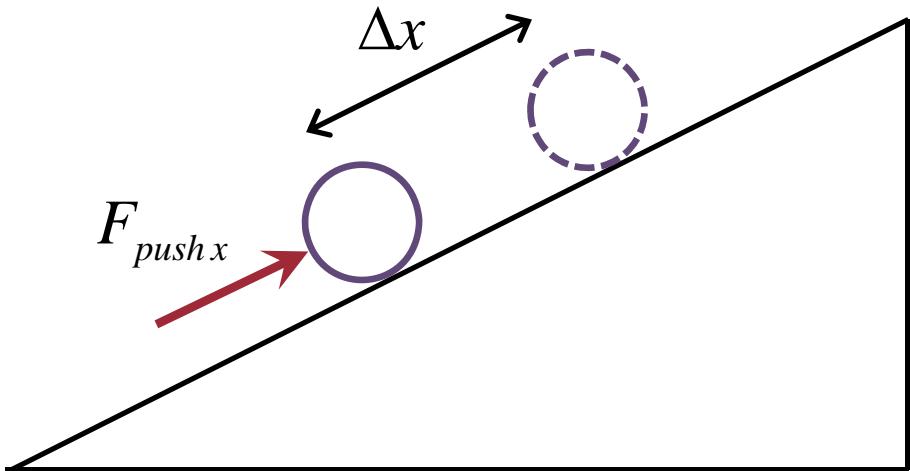
$$F_{pushx} = \frac{\Delta V}{\Delta x}$$

or in the limit $F_{pushx} = \frac{dV}{dx}$

The force exerted by the potential gradient on the ball is downhill

so the relation between force and potential is

$$F_x = -\frac{dV}{dx}$$



Force as a vector

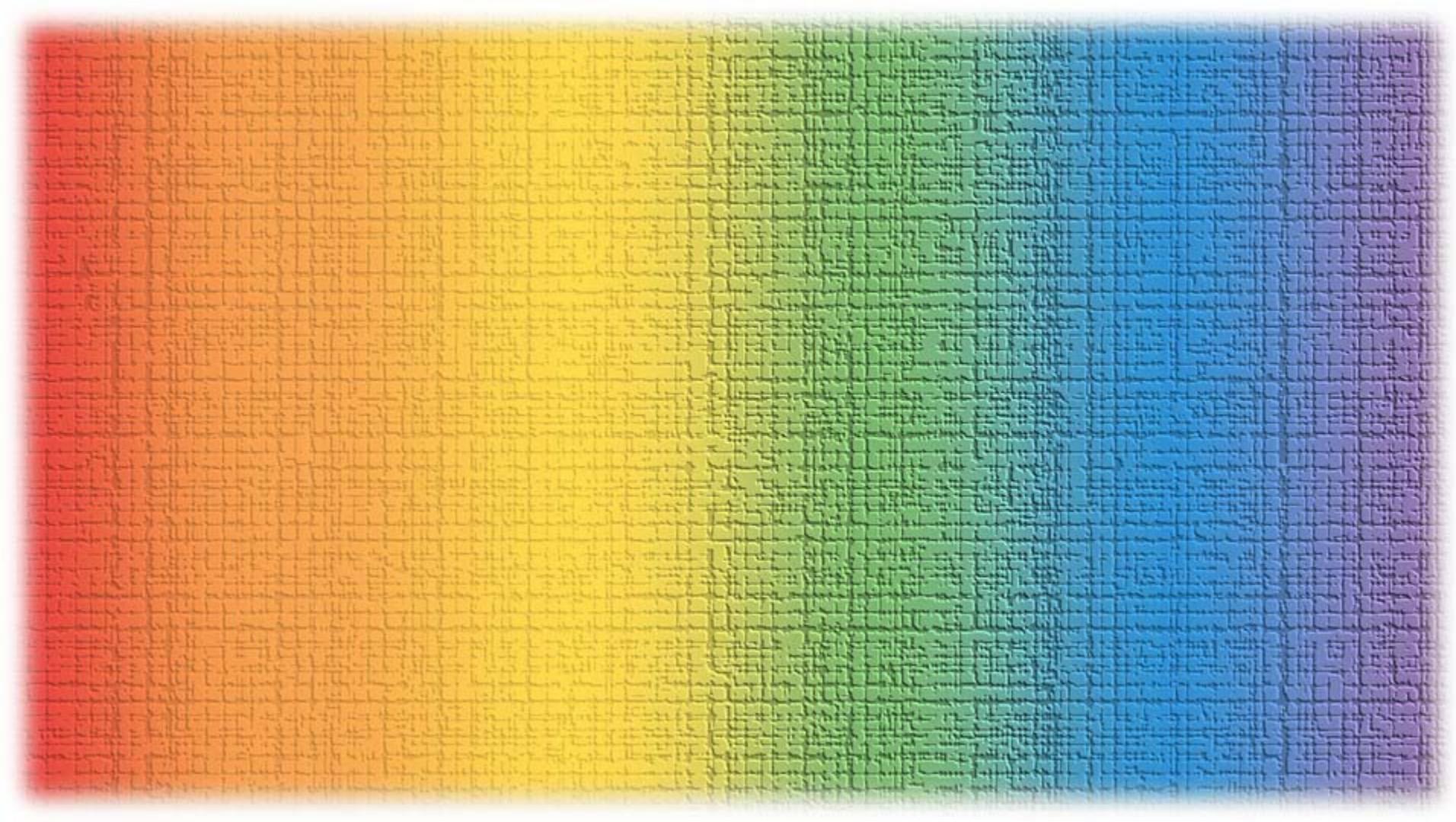
We can generalize the relation between potential and force

to three dimensions

with force as a vector

by using the gradient operator

$$\mathbf{F} = -\nabla V \equiv -\left[\frac{\partial V}{\partial x} \mathbf{i} + \frac{\partial V}{\partial y} \mathbf{j} + \frac{\partial V}{\partial z} \mathbf{k} \right]$$



Oscillations and waves 1

Modes

Modern physics for engineers

David Miller

Concepts and terminology

Concepts and terminology

“Modes” appear in many physical systems
especially those that oscillate
and in wave propagation
including classical applications in

- acoustics
- mechanical structural engineering
- the electrical engineering of waves, signals, and oscillators

Concepts and terminology

Modes have very useful mathematical properties

This mathematics is at the core of quantum mechanics

Modes are often not taught as a general concept

despite the wide usefulness of the idea

Concepts and terminology

The terminology varies between fields

In the classical physics of oscillations or waves

the term “mode” is common
mechanical oscillating modes
are also often known as
normal modes

Concepts and terminology

In the mathematics of modes, they
are known as
eigenfunctions or basis functions
and in quantum mechanics
eigenstates or basis states, and, for
atoms, orbitals

The underlying concepts are the
same in all these cases

Examples of modes

Examples of modes

It is difficult to find a broad definition of modes in text books

There is a precise mathematical answer

but it gives little direct physical insight

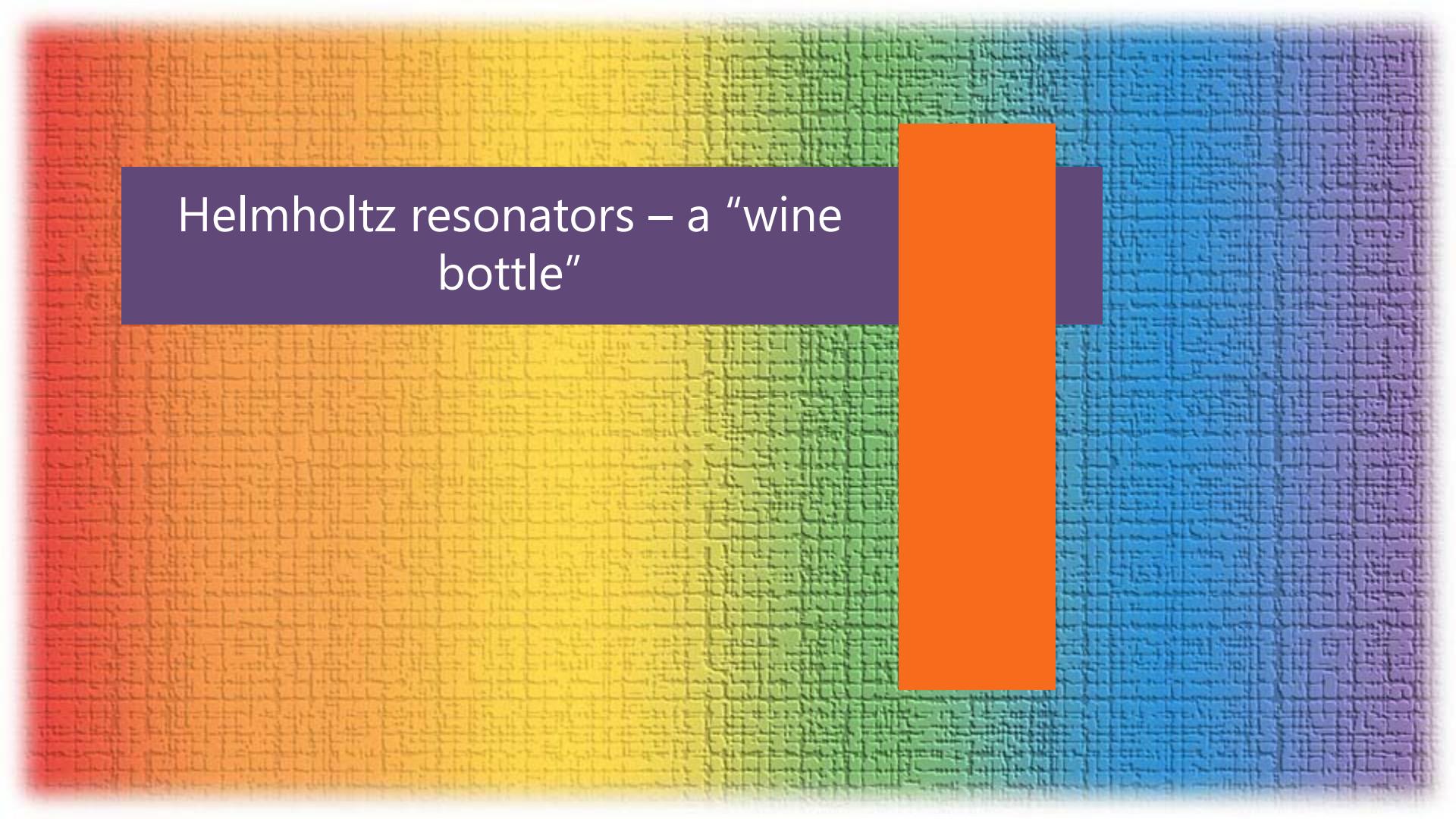
so we postpone it

Examples of modes

Systems showing a simple oscillating mode include

- a mass on a spring
- a pendulum
- a wine bottle “resonator”
(Helmholtz resonator)

also in string instruments and
loudspeaker design



Helmholtz resonators – a “wine bottle”

Helmholtz resonators – an ocarina

Examples of modes

A guitar string has a fundamental mode, and also harmonics as do wind instruments such as the flute

These are “standing wave” resonators

“Standing wave” resonators – a
guitar string

“Standing wave” resonators – a
flute or “penny whistle”

Examples of modes

More two-dimensional bodies, such as a gong or a cymbal or three-dimensional structures, such as a bell or a girder bridge have a complicated set of modes

There are also electromagnetic resonators

metal cavities, with specific resonant modes

and optical resonant cavities, formed with mirrors

Examples of modes

Oscillating modes or resonances have at least two common features

First feature

Each resonance or mode corresponds to a distinct way in which the object oscillates

the pattern of oscillation is unique to a given mode

the way in which the patterns of oscillation are different from one another is quite specific mathematically

Examples of modes

Second feature

For each such resonance or mode, there is one well defined numerical quantity associated with it
usually the frequency

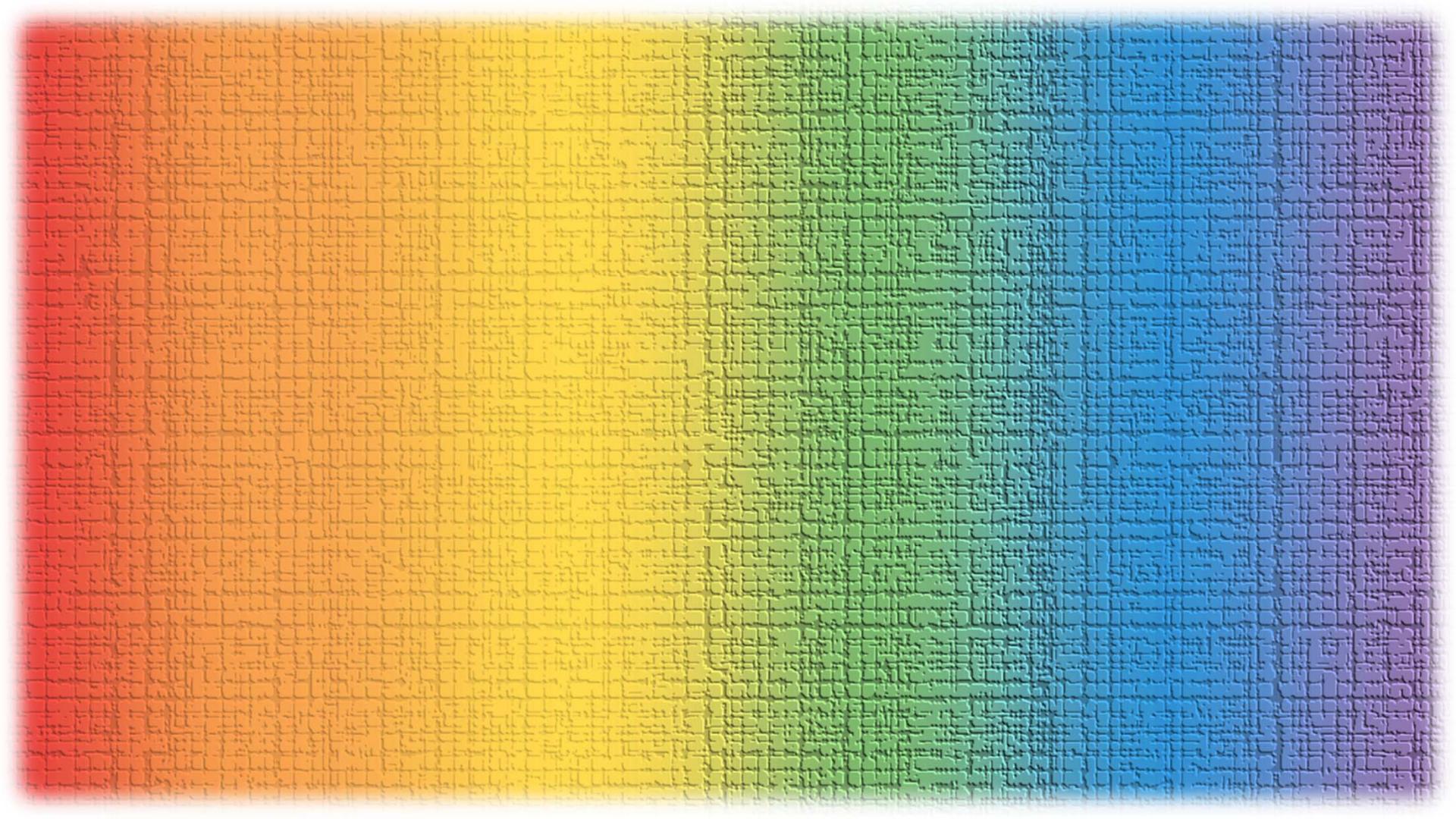
At least for “loss-less” and “small amplitude” idealizations of the mode
once excited the oscillation would stay exactly the same form
and everything that was oscillating would be oscillating at the same frequency in that mode

Examples of modes

There are also “propagating modes” that arise with waves

One notion essentially is that the wave stays the same shape as it moves

Essentially then, every point that propagates propagates with the same “phase velocity”



Oscillations and waves 1

The simple harmonic oscillator

Modern physics for engineers

David Miller

Simple oscillators

All sorts of things vibrate, such as
musical instruments and
loudspeakers

Many electronic circuits oscillate,
such as
the devices that drive microwave
ovens
or that create the radio waves in
many wireless remote controls

Simple oscillators

A classic and simple example is
the so-called simple harmonic
oscillator

which is the kind of oscillator we
get if we have
a mass on a spring

Mass on a spring

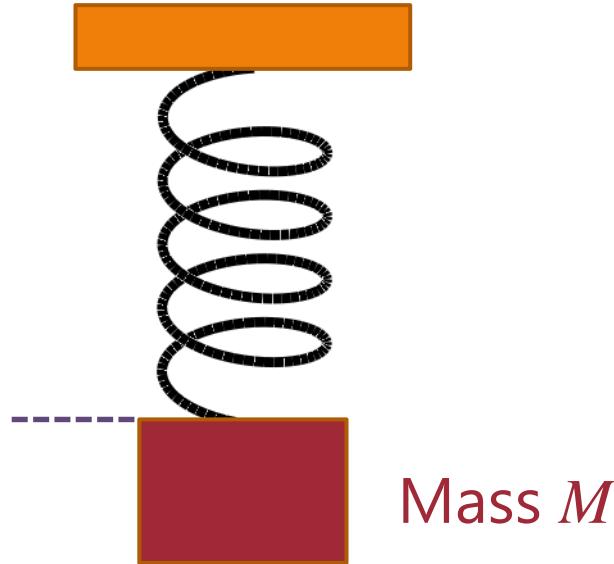
Perhaps the simplest system we can think of to illustrate modes is a simple harmonic oscillator

consisting of a mass on a spring

We imagine the mass can only move up and down, not sideways

we presume it cannot twist or rotate in any way

and we presume that there is no friction

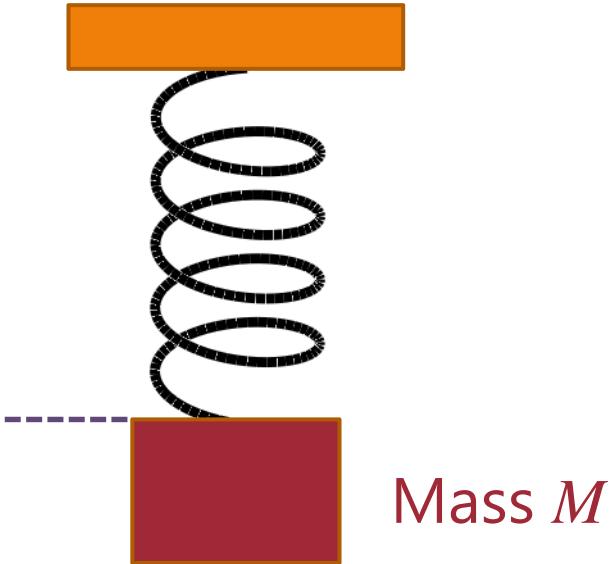


Mass on a spring

The common dictionary definition of “mode” that is relevant here is that of a “manner” or “way”

There is only one “way” in which this mass can move

which is to oscillate up and down with a specific frequency



Mass on a spring

A simple spring will have a restoring force F acting on the mass M

proportional to the amount y by which it is stretched

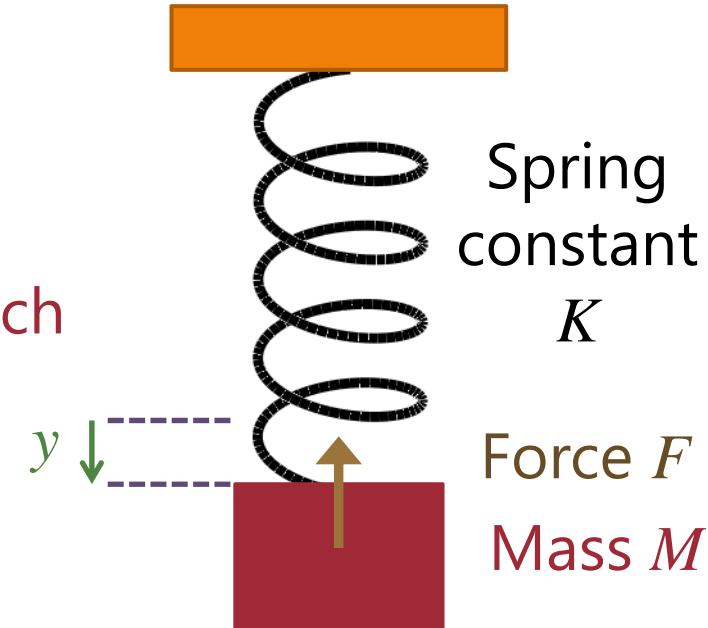
For some “spring constant” K

$$F = -Ky$$

The minus sign is because this is “restoring”

It is trying to pull y back towards zero

This gives a “simple harmonic oscillator”



Mass on a spring

From Newton's second law

$$F = Ma = M \frac{d^2 y}{dt^2} = -Ky$$

i.e., $\frac{d^2 y}{dt^2} = -\frac{K}{M} y = -\omega^2 y$

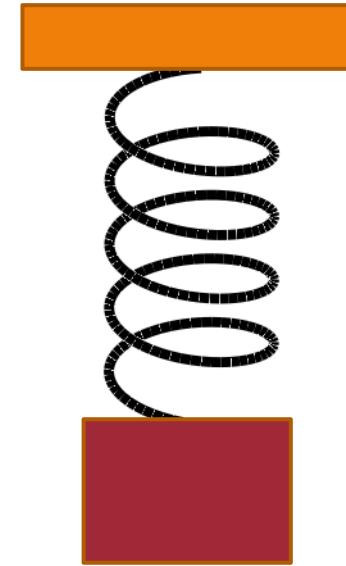
where we define $\omega^2 = K / M$

we have oscillatory solutions of

angular frequency $\omega = \sqrt{K / M}$

e.g.,

$$y \propto \sin \omega t$$



angular frequency ω , in
"radians/second" = $2\pi f$
where f is frequency in
Hz

Simple harmonic oscillator

A physical system described by an equation

like

$$\frac{d^2y}{dt^2} = -\omega^2 y$$

is called a simple harmonic oscillator

Many examples exist

- mass on a spring
 - in many different forms
- electrical resonant circuits
- “Helmholtz” resonators in acoustics
- linear oscillators generally

