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Classical mechanics



Introduction

Before moving on
we remind ourselves of basic 

classical mechanics, such as
kinetic energy
momentum
Newton’s second law
potential energy and force

and various relations between these



Introduction

Then we will look at simple oscillators
such as a mass on a spring

Finally, we will look at 
waves on a string

including ideas like standing 
waves

We will also introduce the important 
idea of “modes”



Momentum and kinetic energy



Momentum and kinetic energy

For a particle of mass m
the classical momentum

which is a vector 
because it has direction

is
where v is the (vector) velocity

The kinetic energy
the energy associated with motion

is 

mp v
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Momentum and kinetic energy

In the kinetic energy expression

we mean

i.e., 
the vector dot product of p with itself 

2p  p p
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Potential energy



Potential energy

Potential energy is defined as
energy due to position

It is usually denoted by V in quantum 
mechanics
even though this potential energy

in units of Joules
might be confused with the idea of 

voltage
in units of Joules/Coulomb

and even though we use voltage 
often in quantum mechanics



Potential energy

 V r

M

Since it is energy due to position
it can be written as

We can talk about potential 
energy 

if that energy only 
depends on where we 
are

not how we got there



Potential energy

M

Classical “fields” with this 
property are called

“conservative” or “irrotational”
the change in potential 

energy round any closed 
path is zero

Not all fields are conservative
e.g., going round a vortex

but many are conservative
gravitational, electrostatic 



Energy origin

The “zero” or “origin” we use for 
potential energy is always arbitrary
We can choose it to be what we 

want 
as long as we are consistent

There is no absolute origin for 
potential energy 



Energy origin

We only really work with differences 
in potential energy 
between one position and another

and we can choose any “zero” 
position we want  
as long as we are consistent 



Force and potential energy



Force

In classical mechanics
we often use the concept of force

Newton’s second law relates force and 
acceleration

where m is the mass and a is the 
acceleration

Equivalently

where p is the momentum 

mF a

d
dt


pF



Force and potential energy

We can express the same idea 
by thinking of a force as the 
gradient of a potential

To understand this
suppose we are trying to 
change the potential 
energy of a ball 

by pushing it slowly (and 
frictionlessly) up a hill or 
a slope

push xF

x



Force and potential energy

We get a change V in 
potential energy V

by exerting a force Fpushx
in the x direction up the 

slope
through a distance x

pushxV F x  

push xF

x



Force and potential energy

Equivalently

or in the limit
The force exerted by the 

potential gradient on the ball  
is downhill

so the relation between 
force and potential is

pushx
VF
x





pushx
dVF
dx
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push xF
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Force as a vector

We can generalize the relation between 
potential and force

to three dimensions
with force as a vector

by using the gradient operator

V V VV
x y z
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Modes



Concepts and terminology



Concepts and terminology

“Modes” appear in many physical 
systems
especially those that oscillate

and in wave propagation
including classical applications in
 acoustics
 mechanical structural 

engineering
 the electrical engineering of 

waves, signals, and oscillators



Concepts and terminology

Modes have very useful 
mathematical properties
This mathematics is at the core of 

quantum mechanics
Modes are often not taught as a 

general concept
despite the wide usefulness of the 

idea



Concepts and terminology

The terminology varies between 
fields
In the classical physics of 

oscillations or waves
the term “mode” is common

mechanical oscillating modes 
are also often known as 

normal modes



Concepts and terminology

In the mathematics of modes, they 
are known as 
eigenfunctions or basis functions

and in quantum mechanics 
eigenstates or basis states, and, for 

atoms, orbitals
The underlying concepts are the 

same in all these cases



Examples of modes



Examples of modes

It is difficult to find a broad definition 
of modes in text books
There is a precise mathematical 

answer
but it gives little direct physical 
insight
so we postpone it



Examples of modes

Systems showing a simple oscillating 
mode include
 a mass on a spring
 a pendulum
 a wine bottle “resonator” 

(Helmholtz resonator)
also in string instruments and 
loudspeaker design



Helmholtz resonators – a “wine 
bottle”



Helmholtz resonators – an 
ocarina



Examples of modes

A guitar string has a fundamental 
mode, and also harmonics
as do wind instruments such as the 

flute
These are “standing wave” resonators



“Standing wave” resonators – a 
guitar string



“Standing wave” resonators – a 
flute or “penny whistle”



Examples of modes

More two-dimensional bodies, such 
as a gong or a cymbal
or three-dimensional structures, 

such as a bell or a girder bridge
have a complicated set of modes

There are also electromagnetic 
resonators 
metal cavities, with specific 

resonant modes 
and optical resonant cavities, 
formed with mirrors



Examples of modes

Oscillating modes or resonances have at least two 
common features

First feature
Each resonance or mode corresponds to a distinct 

way in which the object oscillates
the pattern of oscillation is unique to a given 

mode
the way in which the patterns of oscillation 
are different from one another is quite 
specific mathematically



Examples of modes

Second feature
For each such resonance or mode, there is one well 
defined numerical quantity associated with it

usually the frequency
At least for “loss-less” and “small amplitude” 

idealizations of the mode 
once excited the oscillation would stay exactly the 
same form

and everything that was oscillating would be 
oscillating at the same frequency in that mode



Examples of modes

There are also “propagating modes” that arise with 
waves

One notion essentially is that the wave stays the 
same shape as it moves 

Essentially then, every point that propagates 
propagates with the same “phase velocity” 
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The simple harmonic oscillator



Simple oscillators

All sorts of things vibrate, such as 
musical instruments and 

loudspeakers
Many electronic circuits oscillate, 

such as 
the devices that drive microwave 

ovens 
or that create the radio waves in 

many wireless remote controls



Simple oscillators

A classic and simple example is 
the so-called simple harmonic 

oscillator
which is the kind of oscillator we 
get if we have 
a mass on a spring



Mass on a spring

Perhaps the simplest system we can think 
of to illustrate modes is a simple 
harmonic oscillator 

consisting of a mass on a spring
We imagine the mass can only move up 

and down, not sideways 
we presume it cannot twist or rotate in 
any way

and we presume that there is no 
friction 

S

Mass M



Mass on a spring

The common dictionary definition of 
“mode” that is relevant here is that of a 
“manner” or “way” 

There is only one “way” in which this 
mass can move

which is to oscillate up and down 
with a specific frequency 

S

Mass M



S

Mass on a spring

A simple spring will have a restoring 
force F acting on the mass M

proportional to the amount y by which 
it is stretched

For some “spring constant” K

The minus sign is because this is 
“restoring”

It is trying to pull y back towards zero
This gives a “simple harmonic oscillator”

F Ky 

y

Mass M
Force F

Spring 
constant 

K



Mass on a spring

From Newton’s second law

i.e.,

where we define
we have oscillatory solutions of 

angular frequency
e.g.,  S

2
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d yF Ma M Ky
dt
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d y K y y
dt M
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2 /K M 

/K M 

siny t

angular frequency , in 
“radians/second” = 2 f
where f is frequency in 

Hz



Simple harmonic oscillator

A physical system described by an equation 
like

is called a simple harmonic oscillator
Many examples exist
 mass on a spring

in many different forms
 electrical resonant circuits
 “Helmholtz” resonators in acoustics
 linear oscillators generally
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