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The Fermi-Dirac distribution
e
Because of Pauli exclusion

states for fermions, such as
a k state in a semiconductor band
or an orbital in an atom
can only be occupied by
one electron of a given spin
For such fermions of a given spin
we can derive a form for
their distribution with temperature
based on the Gibbs factor



The Fermi-Dirac distribution

I

Suppose system M is in a particular
state

for a fermion of a given spin

So, we only have two possibilities for
N for this state

Either N =1, with an energy ¢
or N =0, with an energy 0



The Fermi-Dirac distribution

5

The Gibbs factor gives relative
probabilities

To get to absolute probability here

we divide by the sum of the
relative probabilities
here, for the two different
possibilities
Then the absolute probabilities add
up to one



Partition function
5
Such a sum of relative probabilities over all possible states

Is known as a “partition function”, often denoted by Z
For a single state for a fermion
the partition function is particularly simple
It just has two possible terms in it
For energy 0 and N=0
the Gibbs factor is exp[(OxyC —O)/r} =1

and for energy eand N=11tis exp[(lx 7R —g)/r}
So Z :1+exp{(ﬂC _g)}

T




The Fermi-Dirac distribution
.

To get the absolute probability
for occupation of this state of energy &
we divide the relative probability of occupation
which is the Gibbs factor exp[(,uc —g)/r]
by the sum of these two relative probabilities
that is, by the partition function Z
So, the probability that this state is occupied is

e 10 2]




The Fermi-Dirac distribution
N
Multiplying the top and bottom lines of

. exp| (ue —€)/ 7|
1+ exp[(,uC —5)/?]

P(N =1,8)E f(g)
by eXp[(E—ﬂC)/T:l

gives the Fermi-Dirac distribution

1
feo (2) = exp| (e— e )/ 7 |+1




The Fermi-Dirac distribution
.

1
Conventionally, for electrons f_. (&)=
¢ o () exp| (e— e )/ 7| +1
1 p
is written as | f_ (E) =
S
exp +1
- kBT J

The chemical potential for fermions
Is conventionally called the Fermi energy
Note these are exactly the same concept, that is

Er =



Fermi-Dirac distribution
I e |

-10 0 10
Energy E - E (in units of kgT)



Fermi-Dirac distribution
N e |
For states of energies many kgT
below the Fermi level
the probability of occupation
of any such state

gradually approaches 1
It cannot exceed 1

because we cannot have 0 _
more than one electron ~-10 0 10
in a state Energy E - E¢ (in units of kgT)




Fermi-Dirac distribution
N e |
For a state of energy exactly
equal to the Fermi level

the probability of occupation is
2
which is sometimes used

as a practical definition of
the Fermi level

0_10 0 10

Energy E - E (in units of kgT)



Fermi-Dirac distribution
N e |
For states of energies many kgT
above the Fermi level

the probability of occupation
of any such state

gradually approaches 0

States within a few kT of the
Fermi level 0

have intermediate probabilities ~-10 0 10
of occupation Energy E - E (in units of kgT)




Fermi-Dirac distribution
I s 1
At or close to absolute zero

states below the Fermi level are
essentially all occupied and

states above the Fermi level are
essentially all empty

With increasing temperature
the curve “softens” 0
with a width of the -100 0 100

“softening” Energy E - E¢ (in meV)
of the order of a few kgT
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Bose-Einstein distribution
5
We can follow a similar argument for
bosons

starting with the Gibbs factor

The partition function is more
complicated

because we are not restricted to
JustN=0orN=1



Bose-Einstein distribution
5
The result is the Bose-Einstein
distribution
the expected number of bosons
in @ boson mode of energy E per
boson is

1

fBE(E): E_
exp( ﬂcj—l
KgT




Bose-Einstein distribution
I e

1

exp( Ek_fc j—l
B

fBE(E):

0_10 0 10

Energy E - 4 (in units of kgT)
(1 — chemical potential)



Bose-Einstein distribution

I

In its full form with the chemical
potential

fBE(E): :

exp( Ek_fc j—l
B

In applications, the Bose-Einstein
distribution
Is used less often than the Fermi-
Dirac distribution




Bose-Einstein distribution
I
This is because most of the bosons in
device applications

are photons, phonons, or similar
quanta

associated with oscillations
Unlike an atom, they have no excited
states

This simplifies the resulting
distribution



Bose-Einstein distribution
e
So

exchange of energy between the
system and the reservoir

and

exchange of particles between the
system and the reservoir

are the same physical process



Bose-Einstein distribution

5

So there is no need for two separate
parameters

temperature and chemical potential
to be matched to reach
equilibrium
We only need one such parameter to
equilibrate
and by convention we use
temperature



Planck distribution
N

Such bosons obey a simpler version of the Bose-Einstein
distribution

called the Planck distribution
Writing the energy for these bosons in the form E =#w®
where w is mode’s angular frequency
the Planck distribution is

fo(ho)= .

ho
exp (ij -1
B

It gives the number of such bosons per mode
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Planck’s distribution
E
Now consider a mode for light
e.g, a standing wave in a box

We propose this mode of
angular frequency o

can be in one of several
states

separated by an energy fiw

The quanta of energy that
separate the levels

can be described as photons
so g photons in the mode

&y =3hw
&, =2hw
& =hw
& =0

ho

ho

ho




Planck’s distribution
.

The energy of such a mode can therefore be described
as &, =0hv=qhw
where ( Is zero or a positive integer
possibly plus some overall additive constant
which will not matter in the end

We presume that, in equilibrium with a reservoir at
temperature T

the relative occupation probability of a state of
energy g compared to a state of energy 0

IS given by the Boltzmann factor exp(—gq /kBT)



Planck’s distribution
.

To get the absolute probability of finding the oscillator
in the state of energy ¢, = qhw

we need to normalize the relative probability exp(—gq /kBT)
by dividing by the sum (the partition function) Z
of all relative probabilities Z = exp(—qhe/k,T)
This sum is a geometric series 4=0
which sums to Z :1/[1—exp(—ha)/kBT)]
So the probability of finding the mode in the state with

energy &, is exp(—ahiew ! K. T
q P(q): p( qZ B )




Planck’s distribution
.

The average value of g for this mode
In thermal equmbrlum at temperature T is therefore

(q) = ZqP quxp( G/ KT )

qO

Now we can use a mathematical trick, noting that

quer (-ay) ——y{Zexp qy)} d{ = } exp(-Y)

dy| 1-exp(- | 1—exp( y)]2
1 exp(-holkT)  exp(-hwl/kgT)
Z[1-exp(-ha/k,T)|  L-exp(-ha/ksT)

So (q) =



Planck distribution
I
So, rearranging

the average number of photons per
mode

in thermal equilibrium at
temperature T Is

the Planck distribution

()= ——
exp(holk,T)-1



Planck distribution
e
We see that the Planck distribution is

()= ——
exp(holk,T)-1

Is a Bose-Einstein distribution
with chemical potential of zero
Note incidentally that
(q) need not be an integer
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Maxwell-Boltzmann distribution
N

1
For both the Fermi-Dirac f, (E)=
exp| (E— e )/ kT |+1

1
~exp| (E— 2. )/ k.T |-1
distributions p[( ﬂc) ° ]

for E— . > kT c
both of them tend to fyis (E)= Aexp(— . j]

and Bose-Einstein f..(E)

B

where A=exp( . /ksT)

which is the Maxwell-Boltzmann distribution



Maxwell-Boltzmann distribution
N

This Maxwell-Boltzmann distribution
was originally derived for classical particles
which are presumed to be non-identical
and that full derivation is quite involved
In practice, in f, . (E)= Aexp(—E/k,T)
A is usually regarded as a number chosen
to give the correct total number of particles

though it can formally be related to chemical
potential through A=exp( . /ksT)



Thermal distributions
N e |
Non-identical particles

Maxwell-Boltzmann
fMB(E):exp[—(E—yC)/kBT]

|dentical bosons
Bose-Einstein

f.(E)=
o (E) exp| (E - e ) 1 kgT |1 .
Identical fermions -10 0 10
Fermi-Dirac . Energy E - 4 (in units of kgT)
feo (E) (1 — chemical potential

exp| (E— e )/ keT |+1 or Fermi energy)



Maxwell-Boltzmann limit
I
We use the Maxwell-Boltzmann limit
wherever possible
because its mathematics is much
simpler
The full Fermi-Dirac distribution is
difficult to integrate when
counting particles, for example



Maxwell-Boltzmann limit
I
At high energies

the Fermi-Dirac, Bose-Einstein and
Maxwell-Boltzmann distributions
all are similar
because the probability of
occupation is << 1
so issues of counting or
forbidding multiple particles
In a state do not arise



Thermal distributions
I e |
|dentical bosons

are more likely to be in the
same mode

than are classical or non-
identical particles

So the Bose-Einstein distribution
lies above 0

the Maxwell-Boltzmann -10 0 10
distribution Energy E - 4 (in units of kgT)

(1 — chemical potential
or Fermi energy)




Thermal distributions
N e |
ldentical fermions
are less likely to be in the same
single-particle state

than are classical or non-
identical particles
In fact, they never are in the
same single-particle state

So the Fermi-Dirac distribution 0.10 0 10
lies below Energy E - 1 (in units of kgT)
the Maxwell-Boltzmann (1 — chemical potential

distribution or Fermi energy)
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