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The Fermi-Dirac distribution



The Fermi-Dirac distribution

Because of Pauli exclusion
states for fermions, such as 

a k state in a semiconductor band
or an orbital in an atom

can only be occupied by 
one electron of a given spin

For such fermions of a given spin
we can derive a form for 

their distribution with temperature
based on the Gibbs factor



The Fermi-Dirac distribution

Suppose system M is in a particular 
state 
for a fermion of a given spin

So, we only have two possibilities for 
N for this state
Either N = 1, with an energy 

or N = 0, with an energy 0



The Fermi-Dirac distribution

The Gibbs factor gives relative 
probabilities 
To get to absolute probability here

we divide by the sum of the 
relative probabilities 
here, for the two different 

possibilities
Then the absolute probabilities add 

up to one



Partition function

Such a sum of relative probabilities over all possible states
is known as a “partition function”, often denoted by Z

For a single state for a fermion
the partition function is particularly simple

It just has two possible terms in it
For energy 0 and N = 0 

the Gibbs factor is   
and for energy  and N = 1 it is 

So
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The Fermi-Dirac distribution

To get the absolute probability 
for occupation of this state of energy 

we divide the relative probability of occupation
which is the Gibbs factor

by the sum of these two relative probabilities 
that is, by the partition function Z

So, the probability that this state is occupied is
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The Fermi-Dirac distribution

Multiplying the top and bottom lines of 

by 
gives the Fermi-Dirac distribution
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The Fermi-Dirac distribution

Conventionally, for electrons 

is written as

The chemical potential for fermions 
is conventionally called the Fermi energy

Note these are exactly the same concept, that is
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Fermi-Dirac distribution

Energy E - EF (in units of kBT)
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0 10-100
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Fermi-Dirac distribution

For states of energies many kBT
below the Fermi level
the probability of occupation 

of any such state 
gradually approaches 1

It cannot exceed 1
because we cannot have 

more than one electron 
in a state Energy E - EF (in units of kBT)
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0 10-100

1
Fermi-Dirac distribution

For a state of energy exactly 
equal to the Fermi level
the probability of occupation is 

½ 
which is sometimes used 

as a practical definition of 
the Fermi level

Energy E - EF (in units of kBT)
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Fermi-Dirac distribution

For states of energies many kBT
above the Fermi level
the probability of occupation 

of any such state 
gradually approaches 0

States within a few kBT of the 
Fermi level
have intermediate probabilities 

of occupation Energy E - EF (in units of kBT)

 FDf E



30 K

Fermi-Dirac distribution

At or close to absolute zero
states below the Fermi level are 

essentially all occupied and 
states above the Fermi level are 

essentially all empty 
With increasing temperature
the curve “softens” 

with a width of the 
“softening” 
of the order of a few kBT
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The Bose-Einstein and Planck distributions



Bose-Einstein distribution

We can follow a similar argument for 
bosons
starting with the Gibbs factor

The partition function is more 
complicated 
because we are not restricted to 

just N = 0 or N = 1



Bose-Einstein distribution

The result is the Bose-Einstein 
distribution
the expected number of bosons 

in a boson mode of energy E per 
boson is
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Bose-Einstein distribution

Energy E - C (in units of kBT)
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(C – chemical potential)
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Bose-Einstein distribution

In its full form with the chemical 
potential

In applications, the Bose-Einstein 
distribution 
is used less often than the Fermi-

Dirac distribution
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Bose-Einstein distribution

This is because most of the bosons in 
device applications 
are photons, phonons, or similar 

quanta 
associated with oscillations

Unlike an atom, they have no excited 
states 
This simplifies the resulting 

distribution



Bose-Einstein distribution

So
exchange of energy between the 

system and the reservoir 
and 

exchange of particles between the 
system and the reservoir 

are the same physical process 



Bose-Einstein distribution

So there is no need for two separate 
parameters
temperature and chemical potential 

to be matched to reach 
equilibrium

We only need one such parameter to 
equilibrate
and by convention we use 

temperature



Planck distribution

Such bosons obey a simpler version of the Bose-Einstein 
distribution

called the Planck distribution
Writing the energy for these bosons in the form 

where  is mode’s angular frequency 
the Planck distribution is

It gives the number of such bosons per mode 
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Planck’s distribution derivation



Planck’s distribution

Now consider a mode for light
e.g, a standing wave in a box

We propose this mode of 
angular frequency 

can be in one of several 
states

separated by an energy
The quanta of energy that 

separate the levels 
can be described as photons

so q photons in the mode
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Planck’s distribution

The energy of such a mode can therefore be described 
as

where q is zero or a positive integer
possibly plus some overall additive constant

which will not matter in the end
We presume that, in equilibrium with a reservoir at  

temperature T
the relative occupation probability of a state of 
energy q compared to a state of energy 0

is given by the Boltzmann factor
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Planck’s distribution

To get the absolute probability of finding the oscillator 
in the state of energy

we need to normalize the relative probability 
by dividing by the sum (the partition function) Z

of all relative probabilities
This sum is a geometric series

which sums to
So the probability of finding the mode in the state with 

energy q is
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Planck’s distribution

The average value of q for this mode 
in thermal equilibrium at temperature T is therefore

Now we can use a mathematical trick, noting that

So
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Planck distribution

So, rearranging
the average number of photons per 

mode 
in thermal equilibrium at 
temperature T is
the Planck distribution
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Planck distribution

We see that the Planck distribution is 

is a Bose-Einstein distribution 
with chemical potential of zero

Note incidentally that       
need not be an integer q
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The Maxwell-Boltzmann distribution



For both the Fermi-Dirac

and Bose-Einstein  
distributions

for 
both of them tend to

where
which is the Maxwell-Boltzmann distribution

Maxwell-Boltzmann distribution
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Maxwell-Boltzmann distribution

This Maxwell-Boltzmann distribution
was originally derived for classical particles

which are presumed to be non-identical 
and that full derivation is quite involved

In practice, in  
A is usually regarded as a number chosen 

to give the correct total number of particles
though it can formally be related to chemical 

potential through
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 MBf EThermal distributions

Non-identical particles
Maxwell-Boltzmann

Identical bosons
Bose-Einstein 

Identical fermions
Fermi-Dirac
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Maxwell-Boltzmann limit

We use the Maxwell-Boltzmann limit 
wherever possible
because its mathematics is much 

simpler
The full Fermi-Dirac distribution is 
difficult to integrate when 
counting particles, for example



Maxwell-Boltzmann limit

At high energies
the Fermi-Dirac, Bose-Einstein and 

Maxwell-Boltzmann distributions 
all are similar 

because the probability of 
occupation is << 1
so issues of counting or 

forbidding multiple particles 
in a state do not arise



Thermal distributions

Identical bosons 
are more likely to be in the 

same mode
than are classical or non-
identical particles 

So the Bose-Einstein distribution 
lies above 

the Maxwell-Boltzmann 
distribution
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Thermal distributions

Identical fermions 
are less likely to be in the same 

single-particle state 
than are classical or non-
identical particles
In fact, they never are in the 

same single-particle state 
So the Fermi-Dirac distribution 

lies below 
the Maxwell-Boltzmann 
distribution 
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Energy E - C (in units of kBT)
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(C – chemical potential 
or Fermi energy)






