

Thermal distributions 5

The Fermi-Dirac distribution

Modern physics for engineers

David Miller

The Fermi-Dirac distribution

Because of Pauli exclusion states for fermions, such as a \mathbf{k} state in a semiconductor band or an orbital in an atom can only be occupied by one electron of a given spin. For such fermions of a given spin we can derive a form for their distribution with temperature based on the Gibbs factor.

The Fermi-Dirac distribution

Suppose system M is in a particular state
for a fermion of a given spin

So, we only have two possibilities for N for this state

Either $N = 1$, with an energy ε
or $N = 0$, with an energy 0

The Fermi-Dirac distribution

The Gibbs factor gives relative probabilities

To get to absolute probability here
we divide by the sum of the
relative probabilities
here, for the two different
possibilities

Then the absolute probabilities add
up to one

Partition function

Such a sum of relative probabilities over all possible states
is known as a “partition function”, often denoted by Z

For a single state for a fermion

the partition function is particularly simple

It just has two possible terms in it

For energy 0 and $N = 0$

the Gibbs factor is $\exp[(0 \times \mu_c - 0)/\tau] = 1$

and for energy ε and $N = 1$ it is $\exp[(1 \times \mu_c - \varepsilon)/\tau]$

$$\text{So } Z = 1 + \exp\left[\frac{(\mu_c - \varepsilon)}{\tau}\right]$$

The Fermi-Dirac distribution

To get the absolute probability

for occupation of this state of energy ε

we divide the relative probability of occupation

which is the Gibbs factor $\exp[(\mu_c - \varepsilon)/\tau]$

by the sum of these two relative probabilities

that is, by the partition function Z

So, the probability that this state is occupied is

$$P(N=1, \varepsilon) \equiv f(\varepsilon) = \frac{\exp[(\mu_c - \varepsilon)/\tau]}{1 + \exp[(\mu_c - \varepsilon)/\tau]}$$

The Fermi-Dirac distribution

Multiplying the top and bottom lines of

$$P(N=1, \varepsilon) \equiv f(\varepsilon) = \frac{\exp[(\mu_c - \varepsilon)/\tau]}{1 + \exp[(\mu_c - \varepsilon)/\tau]}$$

by $\exp[(\varepsilon - \mu_c)/\tau]$

gives the Fermi-Dirac distribution

$$f_{FD}(\varepsilon) = \frac{1}{\exp[(\varepsilon - \mu_c)/\tau] + 1}$$

The Fermi-Dirac distribution

Conventionally, for electrons $f_{FD}(\varepsilon) = \frac{1}{\exp[(\varepsilon - \mu_c)/\tau] + 1}$

is written as

$$f_{FD}(E) = \frac{1}{\exp\left(\frac{E - E_F}{k_B T}\right) + 1}$$

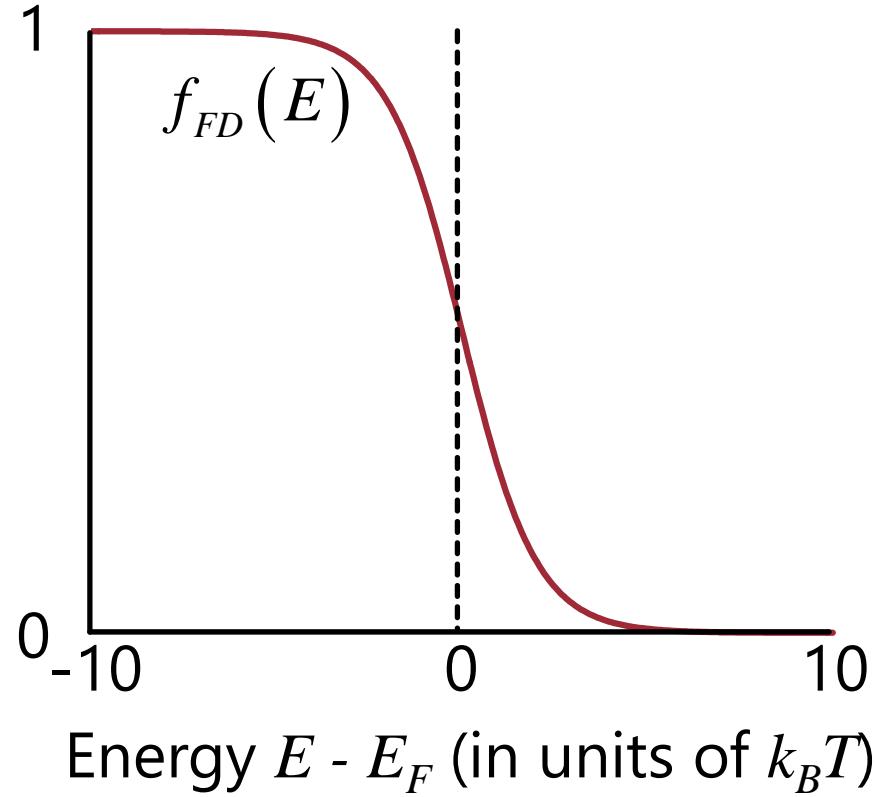
The chemical potential for fermions
is conventionally called the Fermi energy

Note these are *exactly* the same concept, that is

$$E_F \equiv \mu_c$$

Fermi-Dirac distribution

$$f_{FD}(E) = \frac{1}{\exp\left(\frac{E - E_F}{k_B T}\right) + 1}$$

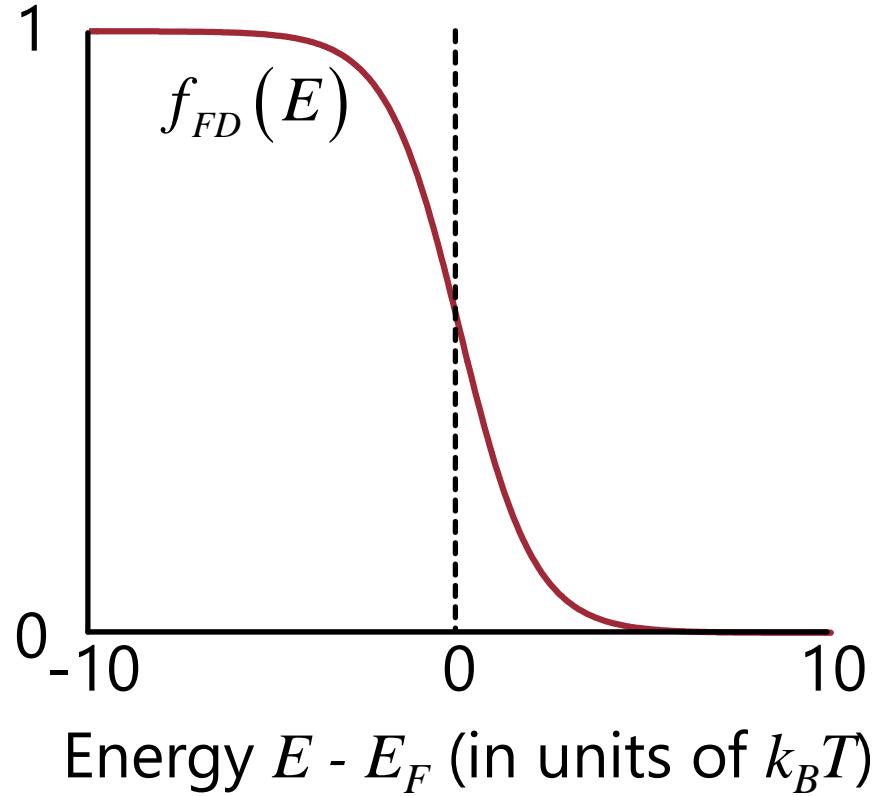


Fermi-Dirac distribution

For states of energies many $k_B T$ below the Fermi level the probability of occupation of any such state gradually approaches 1

It cannot exceed 1

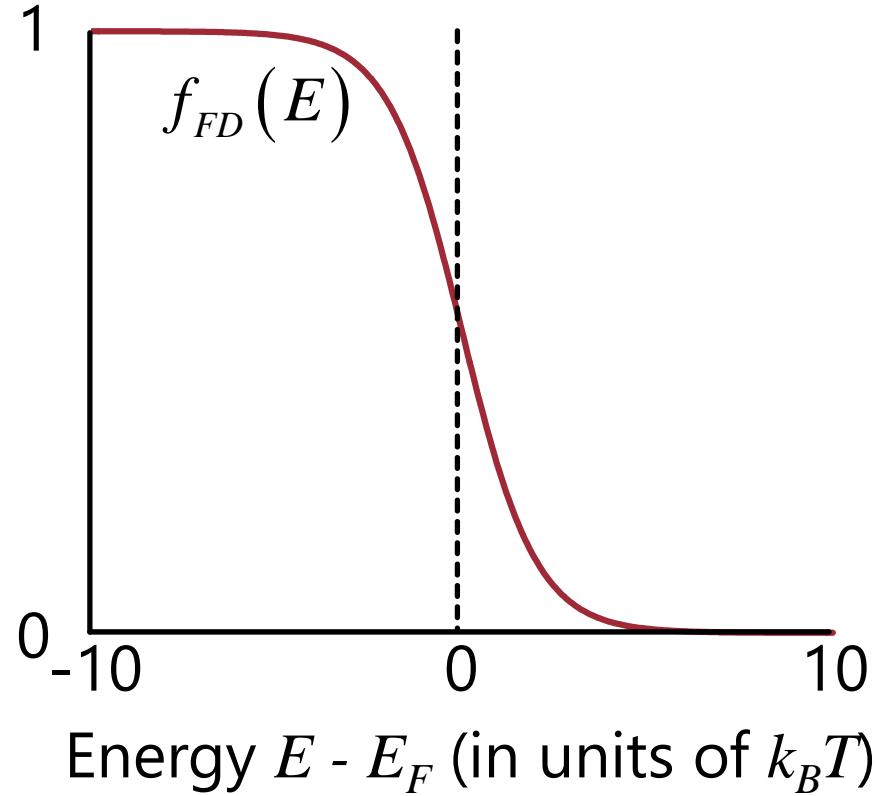
because we cannot have more than one electron in a state



Fermi-Dirac distribution

For a state of energy exactly equal to the Fermi level the probability of occupation is $\frac{1}{2}$

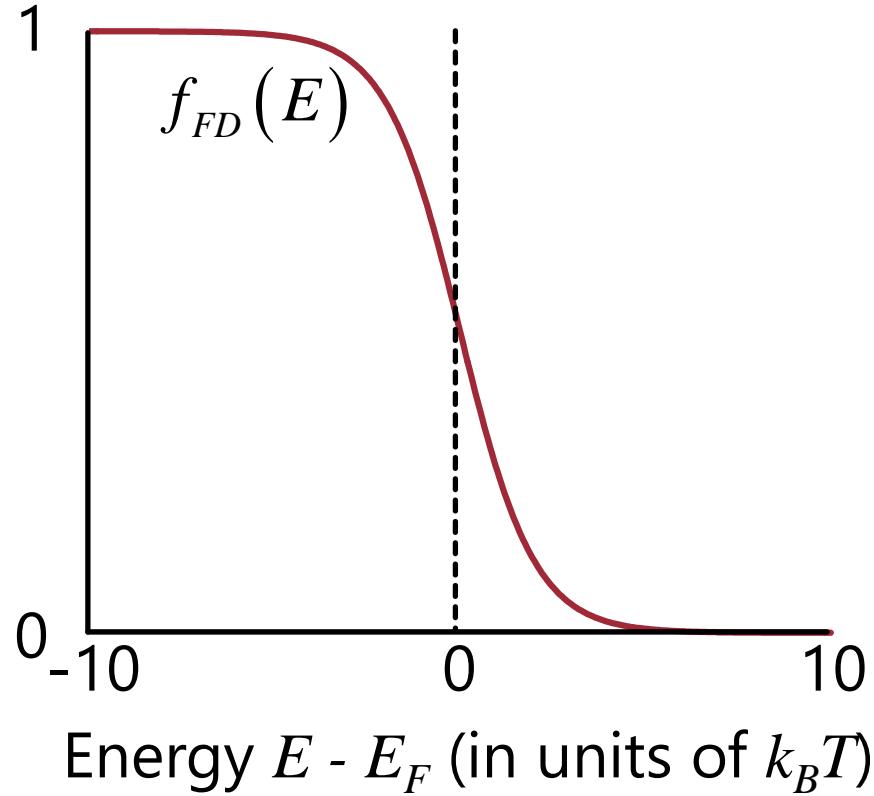
which is sometimes used as a practical definition of the Fermi level



Fermi-Dirac distribution

For states of energies many $k_B T$ above the Fermi level
the probability of occupation of any such state
gradually approaches 0

States within a few $k_B T$ of the Fermi level
have intermediate probabilities of occupation



Fermi-Dirac distribution

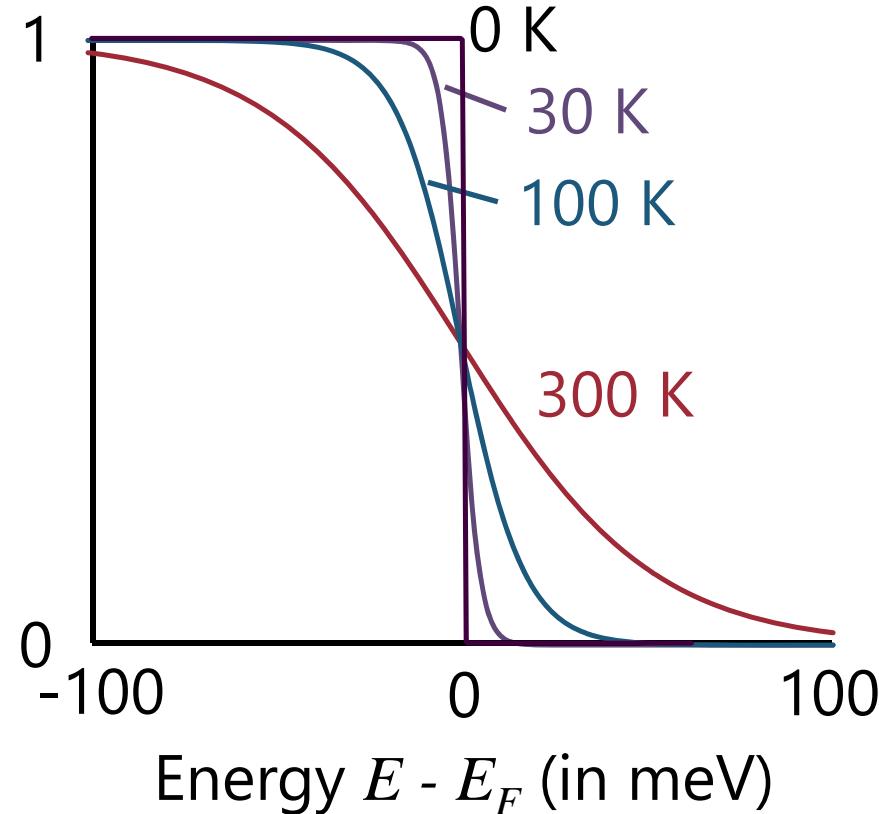
At or close to absolute zero

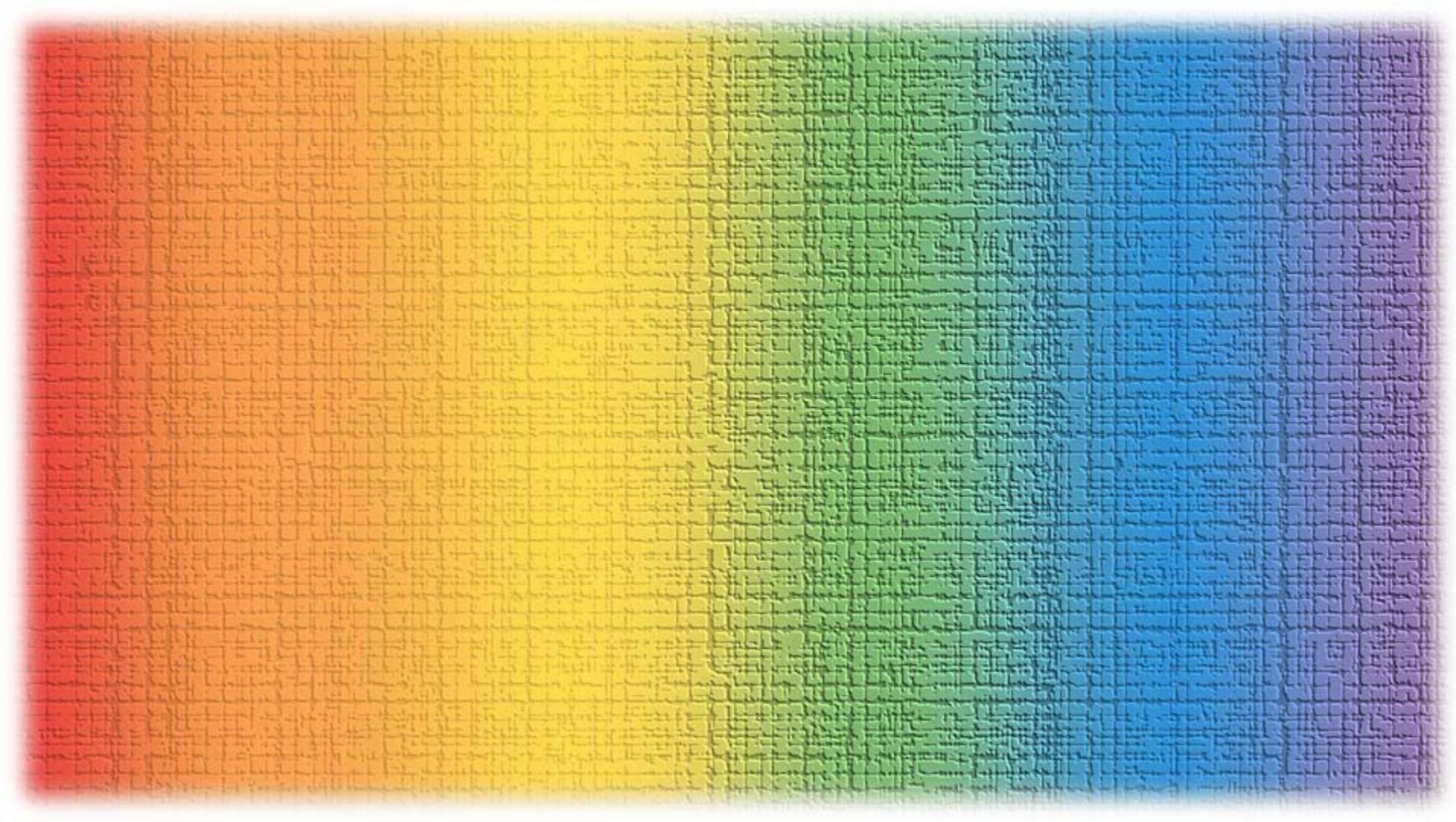
states below the Fermi level are
essentially all occupied and
states above the Fermi level are
essentially all empty

With increasing temperature

the curve “softens”
with a width of the
“softening”

of the order of a few $k_B T$





Thermal distributions 5

The Bose-Einstein and Planck distributions

Modern physics for engineers

David Miller

Bose-Einstein distribution

We can follow a similar argument for
bosons
starting with the Gibbs factor

The partition function is more
complicated
because we are not restricted to
just $N = 0$ or $N = 1$

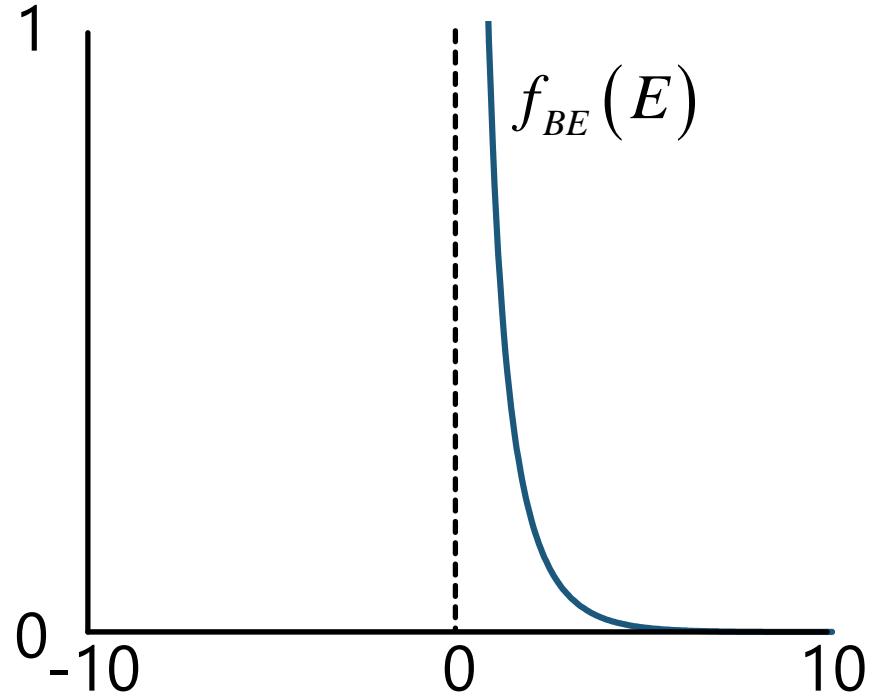
Bose-Einstein distribution

The result is the Bose-Einstein distribution
the expected number of bosons in a boson mode of energy E per boson is

$$f_{BE}(E) = \frac{1}{\exp\left(\frac{E - \mu_c}{k_B T}\right) - 1}$$

Bose-Einstein distribution

$$f_{BE}(E) = \frac{1}{\exp\left(\frac{E - \mu_C}{k_B T}\right) - 1}$$



Energy $E - \mu_C$ (in units of $k_B T$)
(μ_C – chemical potential)

Bose-Einstein distribution

In its full form with the chemical potential

$$f_{BE}(E) = \frac{1}{\exp\left(\frac{E - \mu_C}{k_B T}\right) - 1}$$

In applications, the Bose-Einstein distribution is used less often than the Fermi-Dirac distribution

Bose-Einstein distribution

This is because most of the bosons in device applications are photons, phonons, or similar quanta associated with oscillations

Unlike an atom, they have no excited states

This simplifies the resulting distribution

Bose-Einstein distribution

So

exchange of energy between the system and the reservoir

and

exchange of particles between the system and the reservoir

are the same physical process

Bose-Einstein distribution

So there is no need for two separate parameters

temperature and chemical potential
to be matched to reach
equilibrium

We only need one such parameter to
equilibrate

and by convention we use
temperature

Planck distribution

Such bosons obey a simpler version of the Bose-Einstein distribution

called the Planck distribution

Writing the energy for these bosons in the form $E = \hbar\omega$ where ω is mode's angular frequency

the Planck distribution is

$$f_P(\hbar\omega) = \frac{1}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1}$$

It gives the number of such bosons per mode

Planck's distribution derivation

Planck's distribution

Now consider a mode for light

e.g, a standing wave in a box

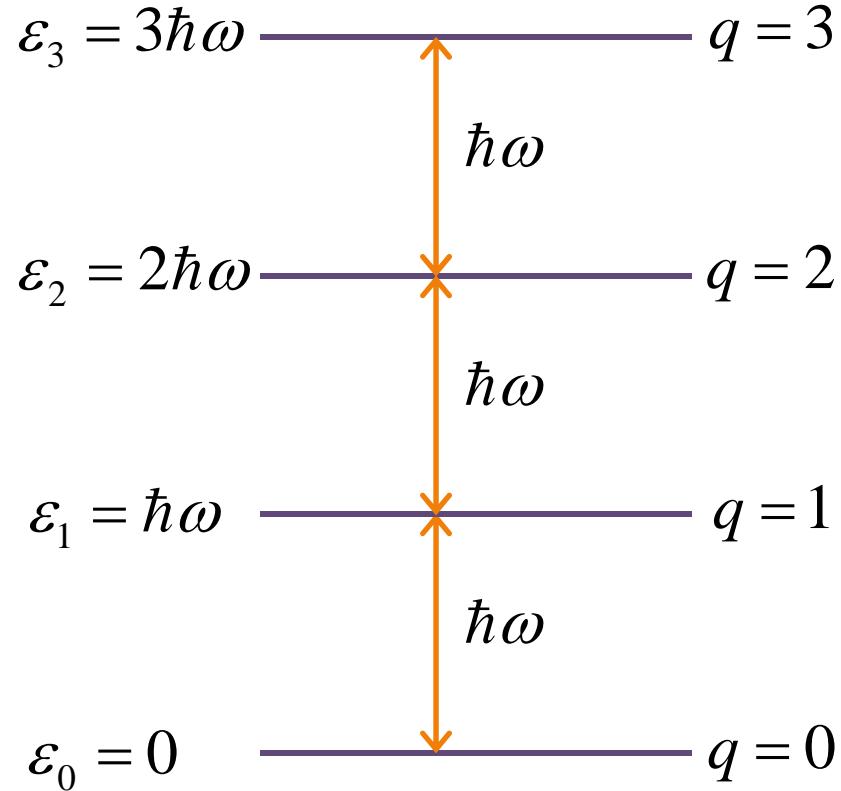
We propose this mode of angular frequency ω

can be in one of several states

separated by an energy $\hbar\omega$

The quanta of energy that separate the levels

can be described as photons so q photons in the mode



Planck's distribution

The energy of such a mode can therefore be described

$$\text{as } \varepsilon_q = q\hbar\nu \equiv q\hbar\omega$$

where q is zero or a positive integer

possibly plus some overall additive constant

which will not matter in the end

We presume that, in equilibrium with a reservoir at temperature T

the relative occupation probability of a state of energy ε_q compared to a state of energy 0

is given by the Boltzmann factor $\exp(-\varepsilon_q / k_B T)$

Planck's distribution

To get the absolute probability of finding the oscillator in the state of energy $\varepsilon_q = q\hbar\omega$

we need to normalize the relative probability $\exp(-\varepsilon_q / k_B T)$ by dividing by the sum (the partition function) Z

of all relative probabilities $Z = \sum_{q=0}^{\infty} \exp(-q\hbar\omega / k_B T)$

This sum is a geometric series

which sums to $Z = 1 / [1 - \exp(-\hbar\omega / k_B T)]$

So the probability of finding the mode in the state with energy ε_q is

$$P(q) = \frac{\exp(-q\hbar\omega / k_B T)}{Z}$$

Planck's distribution

The average value of q for this mode

in thermal equilibrium at temperature T is therefore

$$\langle q \rangle = \sum_{q=0}^{\infty} q P(q) = \frac{1}{Z} \sum_{q=0}^{\infty} q \exp(-q\hbar\omega/k_B T)$$

Now we can use a mathematical trick, noting that

$$\sum_{q=0}^{\infty} q \exp(-qy) = -\frac{d}{dy} \left[\sum_{q=0}^{\infty} \exp(-qy) \right] = -\frac{d}{dy} \left[\frac{1}{1 - \exp(-y)} \right] = \frac{\exp(-y)}{\left[1 - \exp(-y)\right]^2}$$

So $\langle q \rangle = \frac{1}{Z} \frac{\exp(-\hbar\omega/k_B T)}{\left[1 - \exp(-\hbar\omega/k_B T)\right]^2} = \frac{\exp(-\hbar\omega/k_B T)}{1 - \exp(-\hbar\omega/k_B T)}$

Planck distribution

So, rearranging

the average number of photons per mode

in thermal equilibrium at temperature T is
the Planck distribution

$$\langle q \rangle = \frac{1}{\exp(\hbar\omega/k_B T) - 1}$$

Planck distribution

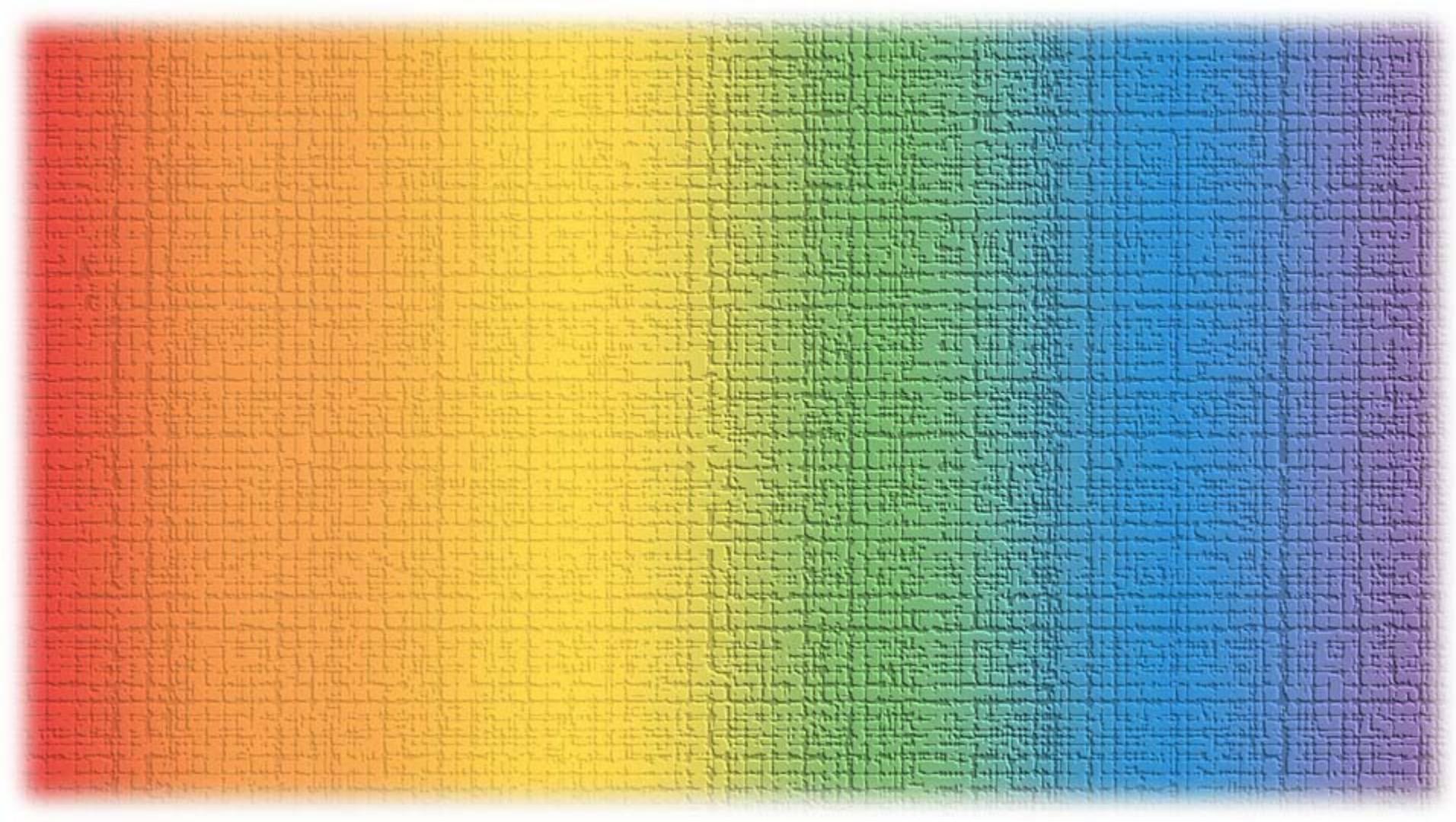
We see that the Planck distribution is

$$\langle q \rangle = \frac{1}{\exp(\hbar\omega/k_B T) - 1}$$

is a Bose-Einstein distribution
with chemical potential of zero

Note incidentally that

$\langle q \rangle$ need not be an integer



Thermal distributions 5

The Maxwell-Boltzmann distribution

Modern physics for engineers

David Miller

Maxwell-Boltzmann distribution

For both the Fermi-Dirac $f_{FD}(E) = \frac{1}{\exp[(E - \mu_C)/k_B T] + 1}$

and Bose-Einstein $f_{BE}(E) = \frac{1}{\exp[(E - \mu_C)/k_B T] - 1}$
distributions

for $E - \mu_C \gg k_B T$

both of them tend to

$$f_{MB}(E) = A \exp\left(-\frac{E}{k_B T}\right)$$

where $A = \exp(\mu_C / k_B T)$

which is the Maxwell-Boltzmann distribution

Maxwell-Boltzmann distribution

This Maxwell-Boltzmann distribution was originally derived for classical particles which are presumed to be non-identical and that full derivation is quite involved

In practice, in $f_{MB}(E) = A \exp(-E/k_B T)$

A is usually regarded as a number chosen to give the correct total number of particles though it can formally be related to chemical potential through $A = \exp(\mu_C / k_B T)$

Thermal distributions

Non-identical particles

Maxwell-Boltzmann

$$f_{MB}(E) = \exp\left[-(E - \mu_C)/k_B T\right]$$

Identical bosons

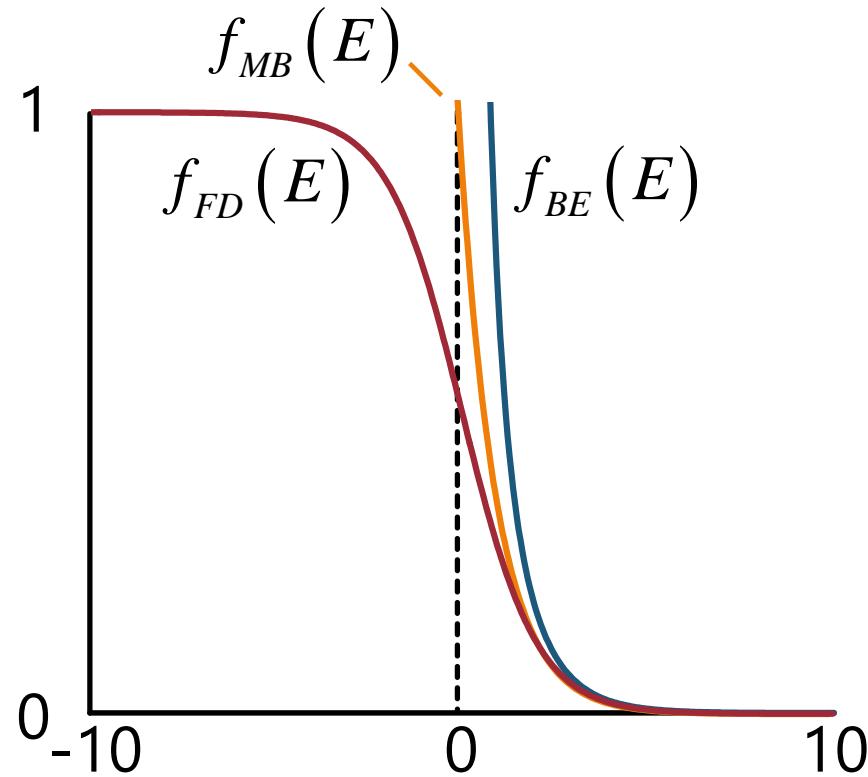
Bose-Einstein

$$f_{BE}(E) = \frac{1}{\exp\left[(E - \mu_C)/k_B T\right] - 1}$$

Identical fermions

Fermi-Dirac

$$f_{FD}(E) = \frac{1}{\exp\left[(E - \mu_C)/k_B T\right] + 1}$$



Energy $E - \mu_C$ (in units of $k_B T$)
(μ_C – chemical potential
or Fermi energy)

Maxwell-Boltzmann limit

We use the Maxwell-Boltzmann limit wherever possible because its mathematics is much simpler

The full Fermi-Dirac distribution is difficult to integrate when counting particles, for example

Maxwell-Boltzmann limit

At high energies

the Fermi-Dirac, Bose-Einstein and
Maxwell-Boltzmann distributions
all are similar

because the probability of
occupation is $\ll 1$

so issues of counting or
forbidding multiple particles
in a state do not arise

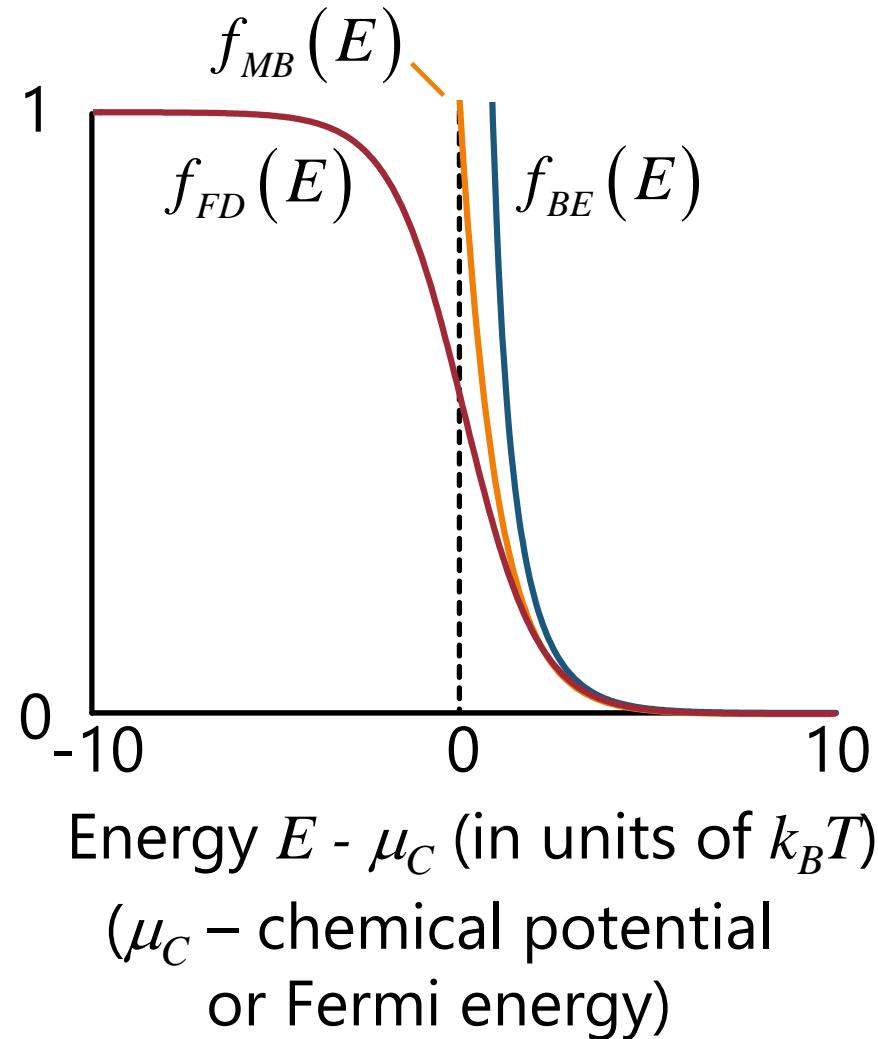
Thermal distributions

Identical bosons

are more likely to be in the same mode

than are classical or non-
identical particles

So the Bose-Einstein distribution
lies above
the Maxwell-Boltzmann
distribution



Thermal distributions

Identical fermions

are less likely to be in the same single-particle state

than are classical or non-
identical particles

In fact, they never are in the same single-particle state

So the Fermi-Dirac distribution

lies below

the Maxwell-Boltzmann distribution

