

Bands and electronic devices

Electrons and holes in bands

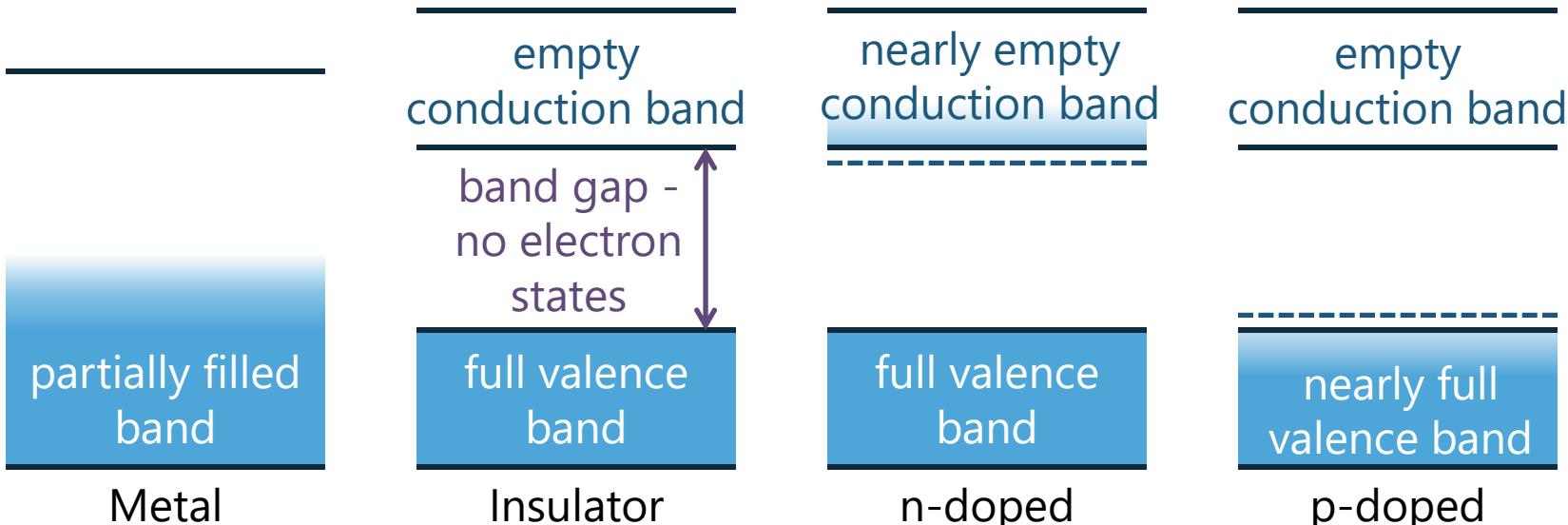
Modern physics for engineers

David Miller

Metals, semiconductors and insulators - revision

Metals, insulators and semiconductors - revision

Electron energy



electrons can move to new states
hence conducts electricity

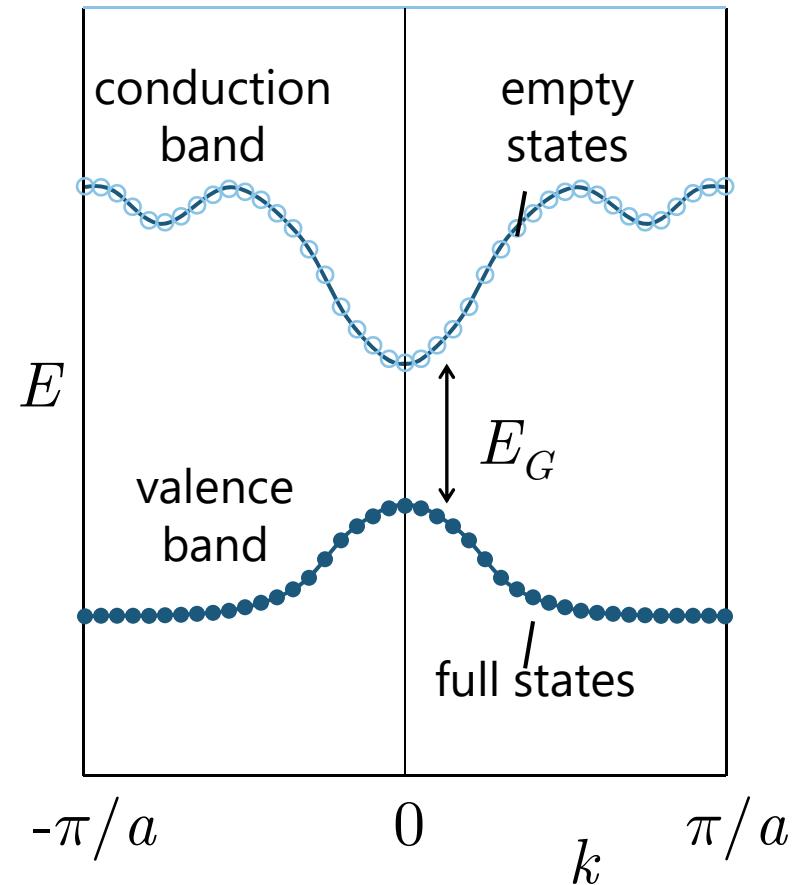
electrons in full bands cannot move to new states
does not conduct

added free electrons in conduction band
conduct

missing free electrons in valence band allow conduction

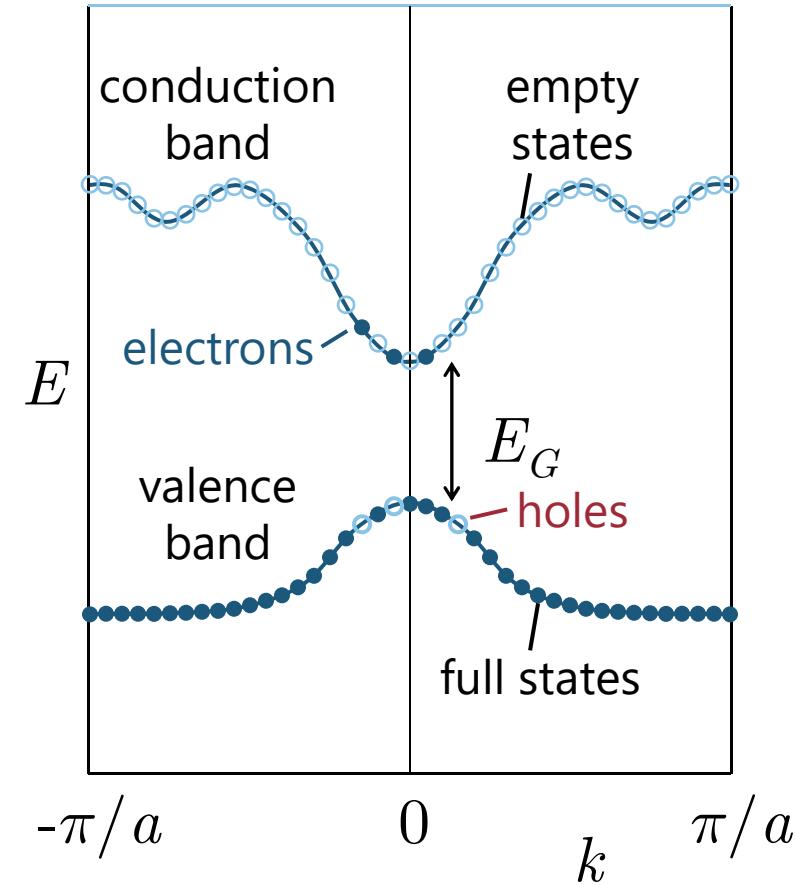
Semiconductors and insulators - revision

Semiconductors and insulators have an (almost) completely full band the valence band separated by a “bandgap” energy E_G from an (almost) completely empty band the conduction band



Semiconductors

Now we look at behaviors of electrons (and holes) in bands for example, for "transport" the movement of charge for conducting electrical current and some of the consequences of thermal distributions of them for devices



Transport in semiconductors

Transport of electrons

For an electron in some parabolic minimum (or maximum)

we can rewrite $E = \frac{\hbar^2 k^2}{2m_{eff}}$

in terms of "crystal" momentum $p_c = \hbar k$ as

$$E = \frac{p_c^2}{2m_{eff}}$$

Then $\frac{dE}{dp_c} = \frac{p_c}{m_{eff}}$

Transport of electrons

With
$$\frac{dE}{dp_C} = \frac{p_C}{m_{eff}}$$

then thinking of a velocity v_g such that $p_C = m_{eff}v_g$
we have for this velocity at which we expect the
particle is moving

$$v_g = \frac{dE}{dp_C}$$

This particular velocity v_g
is called the "group velocity"

Transport of electrons

Suppose we apply an “external” force F to the particle
such as from an electric field

Then the work done in applying the force through a
distance dx is

$$dE = Fdx$$

The distance dx equals
the group velocity v_g times
the time, dt , for which the force is applied
so we have

$$dE = Fdx = Fv_g dt$$

Transport of electrons

Hence

$$F = \frac{1}{v_g} \frac{dE}{dt} = \frac{1}{v_g} \frac{dE}{dp_C} \frac{dp_C}{dt}$$

or, using $v_g = dE / dp_C$

$$F = \frac{dp_C}{dt} \equiv \frac{d(\hbar k)}{dt}$$

So applying a force to an electron leads to
“force is equal to rate of change of (crystal) momentum”

This crystal momentum behaves like the momentum of
an effective particle of mass m_{eff}

In this picture, applying a force
moves the electron steadily through the Brillouin zone

Ballistic transport of electrons

This kind of transport

where the electron is continuously
accelerated by the applied field

is called “ballistic transport”

It does exist in materials like
semiconductors

and is part of device analysis
but it only applies for
very short distances
or very short time-scales

Drift transport of electrons

More typically, the electron is accelerated ("ballistically") for some average or effective "scattering" time t_s then the electron is scattered by some collision with other electrons or crystal vibrations ("phonons") or crystal impurities or defects

Drift transport of electrons

In the “drift” model

the scattering events are random
but so strong that, on the average
the electron velocity is
randomized by them

So the average electron velocity after
the collision is zero

because it could just as well be
going in any direction

Drift transport of electrons

Specifically, for an electric field of magnitude \mathcal{E}

the magnitude of the force on an electron is $F = e\mathcal{E}$

If we accelerate (from zero velocity)

using such a force for a time t_s

the peak momentum just before scattering will be

$$p_C = \frac{dp_C}{dt} t_s = F t_s = e\mathcal{E} t_s = m_{eff} v_{peak}$$

The average velocity is half this peak value

$$v_{av} = \frac{et_s}{2m_{eff}} \mathcal{E}$$

Drift transport of electrons

So, in drift transport, the average velocity of the electron
is proportional to the applied electric field \mathcal{E}
and the average velocity is called the "drift velocity"

Such transport is often written as

$$v_{av} = \mu_e \mathcal{E}$$

where

$$\mu_e = \frac{e t_s}{2m_{eff}}$$

is called the "mobility"

This gives rise to behavior like Ohm's law
with current proportional to the voltage

Hole transport in semiconductors

Holes

At a maximum at the top of the valence band

the electron effective mass is negative

Electrons would go backwards if pushed

Though counter-intuitive, this is correct

The group velocity can be “backwards”

e.g., in the “wrong” direction when pushed by an electric field

Holes

For a set of electrons in states near such a negative effective mass maximum

but with a state (or wave packet of states) not occupied

that “empty” state or wave packet will move along

in the same “backwards” direction as the electrons do

Holes

This “absence of an electron”
wavepacket
is moving in the wrong direction for
electron electrical current
but in the correct direction for the
electrical current of a positively
charged particle
in this electric field

Holes

So we can pretend this “absence-of-an-electron”

in a “negative electron effective mass” maximum

behaves like a positive charge with a positive mass

going in the “correct” direction

Holes

This “cancellation of two minus signs”
exchanging an absence of negative
charge with a negative mass
for an effective positive charge with
a positive mass (of the same
magnitude)
lets us define the idea of a “hole”
with positive charge and mass
Hole transport otherwise obeys the
same behaviors as electron transport

Hole energies

Holes

We can think of the hole kinetic energy as being positive if we look at the band diagram upside down just as we can similarly think of positive hole energies in the hole Fermi-Dirac distribution when looking at the band diagram upside down

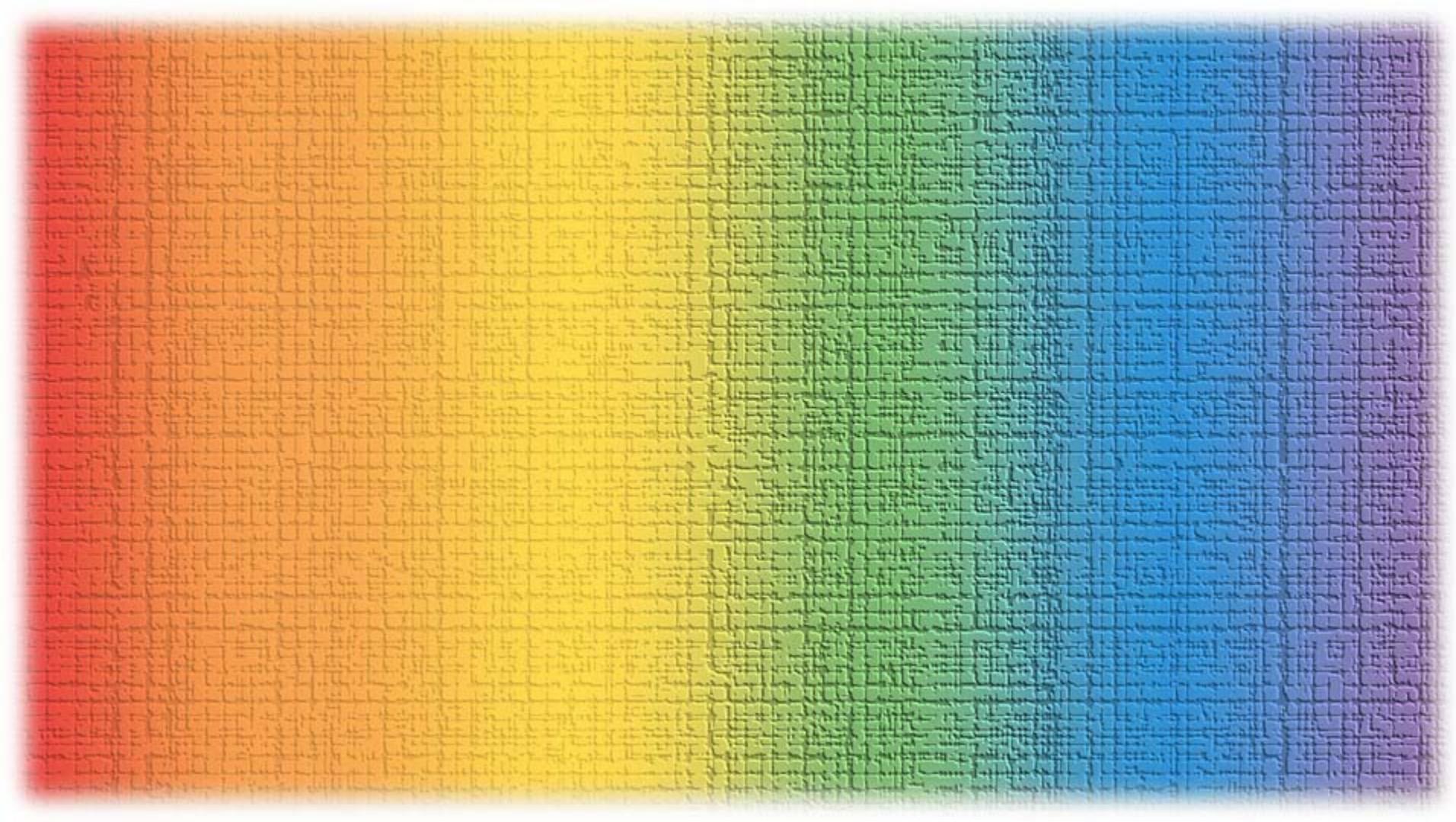
Holes

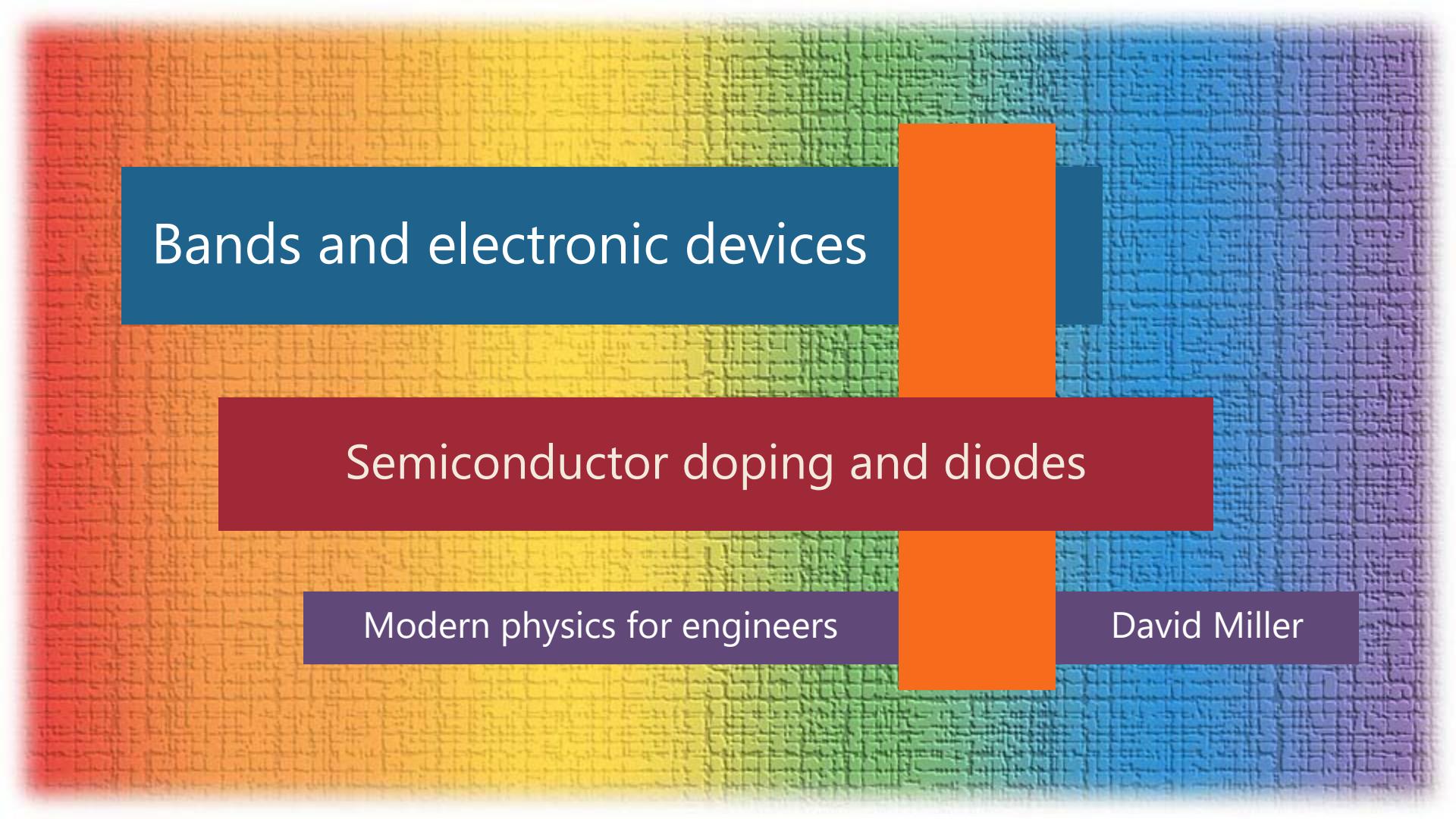
Generally, for holes

we "stand on our heads" in looking
at energy diagrams

just as we would for thinking
about

the energy of bubbles in a liquid
which is a higher energy for a
bubble "deeper" in the liquid





Bands and electronic devices

Semiconductor doping and diodes

Modern physics for engineers

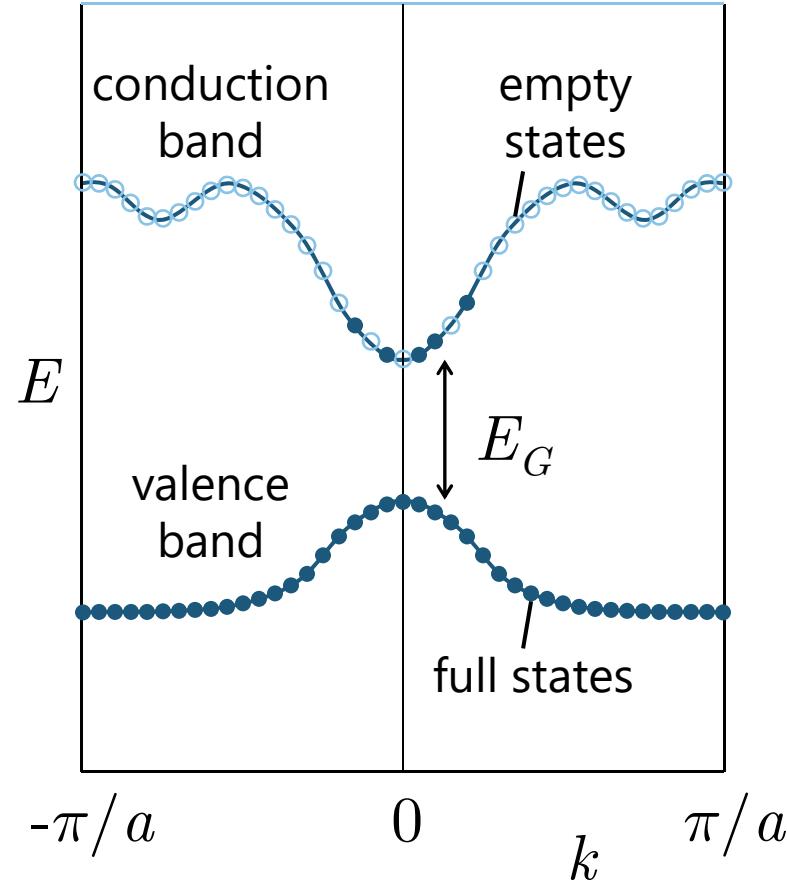
David Miller

Doping in semiconductors

Doping semiconductors

Substituting a few atoms with more electrons

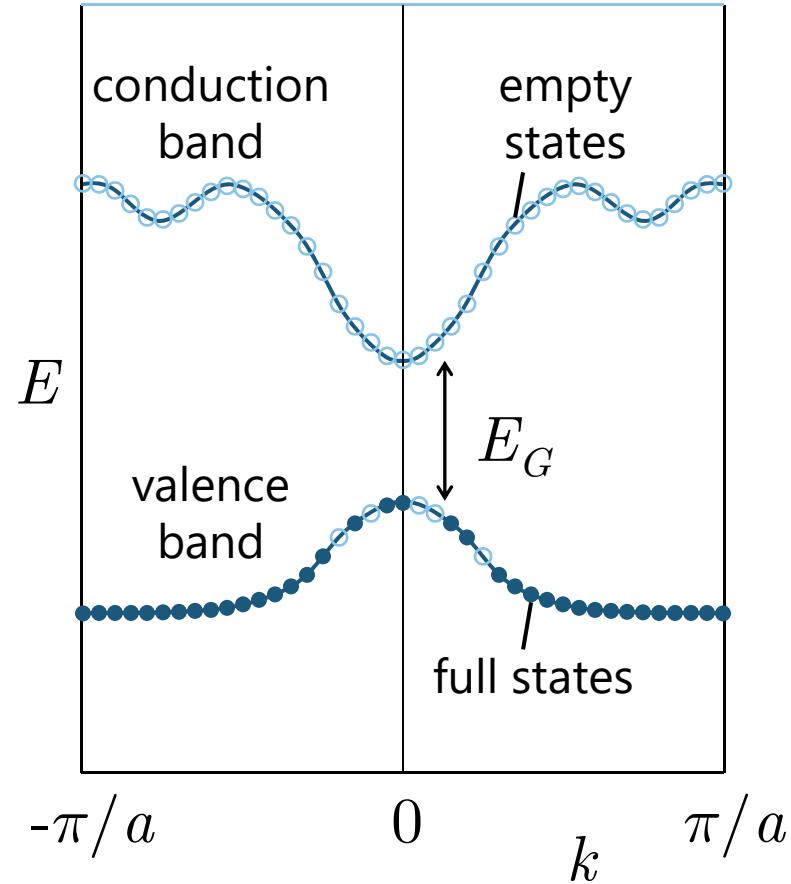
e.g., a Group V element like phosphorus in a Group IV semiconductor like silicon known as n-type doping makes the material conduct more using these additional electrons



Doping semiconductors

Substituting a few atoms with fewer electrons

e.g., a Group III element like boron in a Group IV semiconductor like silicon known as p-type doping makes the material conduct more using these additional "holes"



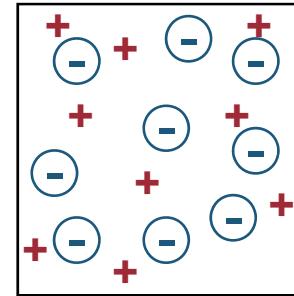
Semiconductor diodes

Semiconductor diode

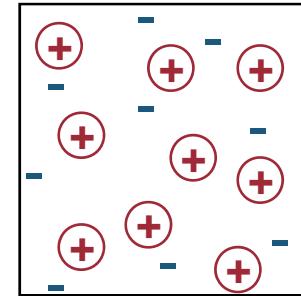
Conceptually, to make a diode
we join

a piece of p-doped
semiconductor
with ionized acceptors
and free holes

to
a piece of n-doped
semiconductor
with ionized donors
and free electrons



p-type



n-type

⊖ ionized acceptor

⊕ free hole

⊕ ionized donor

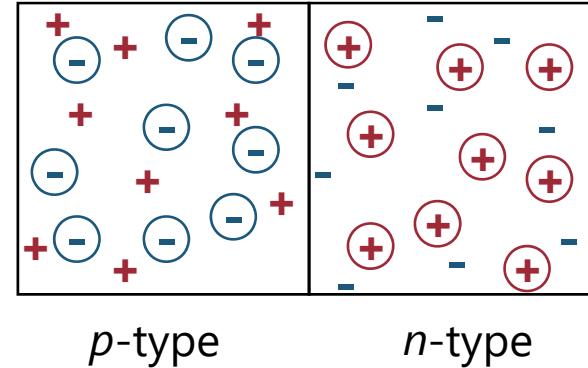
⊖ free electron

Semiconductor diode

Conceptually, to make a diode
we join

a piece of p-doped
semiconductor
with ionized acceptors
and free holes

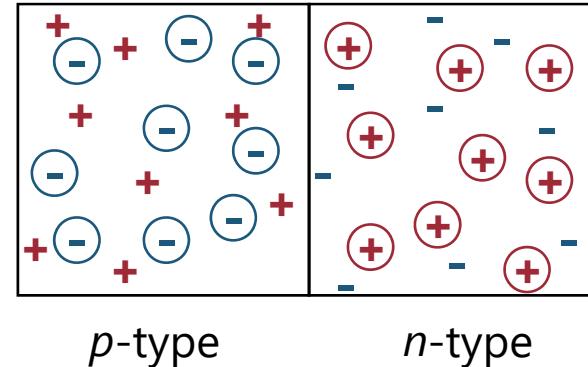
to
a piece of n-doped
semiconductor
with ionized donors
and free electrons



⊖ ionized acceptor ⊕ ionized donor
+ free hole - free electron

Semiconductor diode

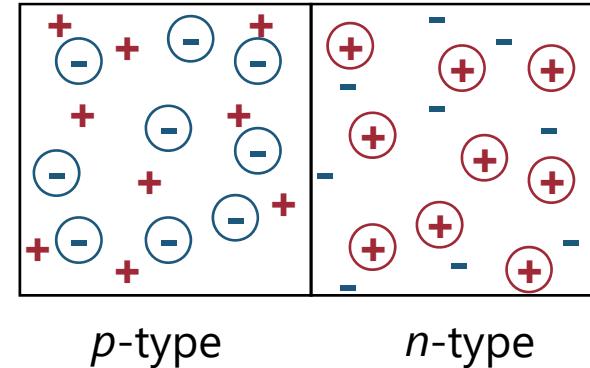
Once they are joined
free electrons move
from the side with more
to the side with less
by “diffusion”
and similarly for free holes



- ⊖ ionized acceptor
- ⊕ ionized donor
- ⊕ free hole
- ⊖ free electron

Semiconductor diode

Diffusion is the process where
as a result of a “random walk”
there is net flow
from regions of high
concentration
to regions of low
concentration
like smoke diffusing through
a room

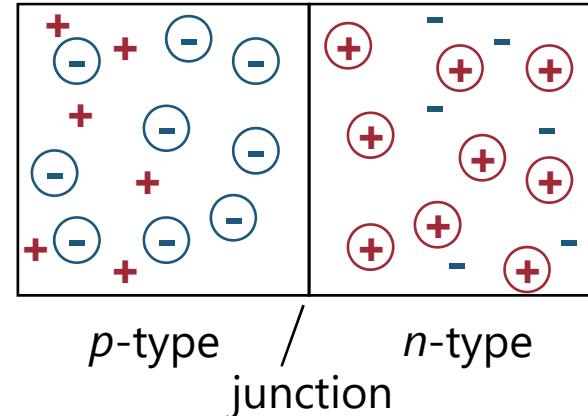


(-) ionized acceptor (+) ionized donor
+ free hole - free electron

Semiconductor diode

Free electrons and free holes

arriving in the same region as
a result of diffusion
effectively “annihilate” one
another by recombination



⊖ ionized acceptor

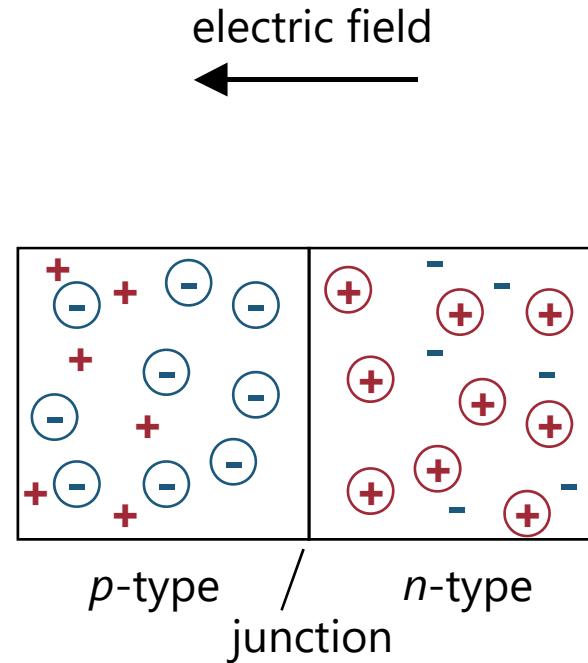
⊕ free hole

⊕ ionized donor

⊖ free electron

Semiconductor diode

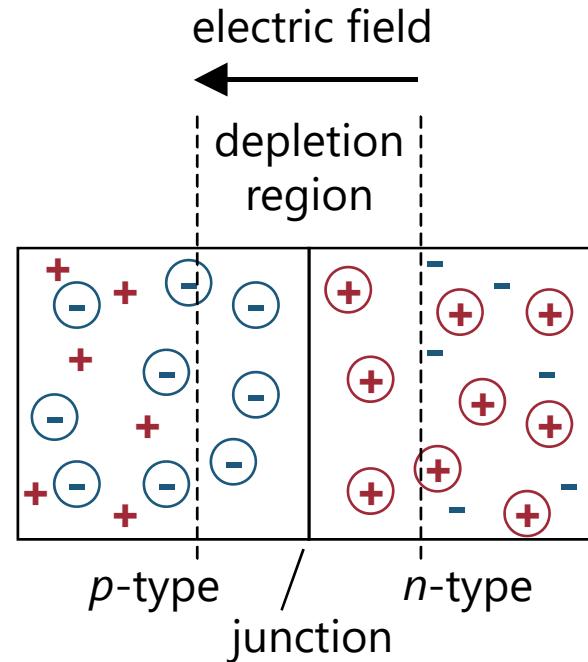
As the electrons and holes move and “annihilate” they leave behind net “bare” fixed charges the ionized donors and acceptors which means an electric field is generated in the direction that opposes the diffusion



- ionized acceptor
- +
- free hole
- +
- ionized donor
-
- free electron

Semiconductor diode

The result is to create a “depletion region” on either side of the junction with essentially no free charges in it and an electric field

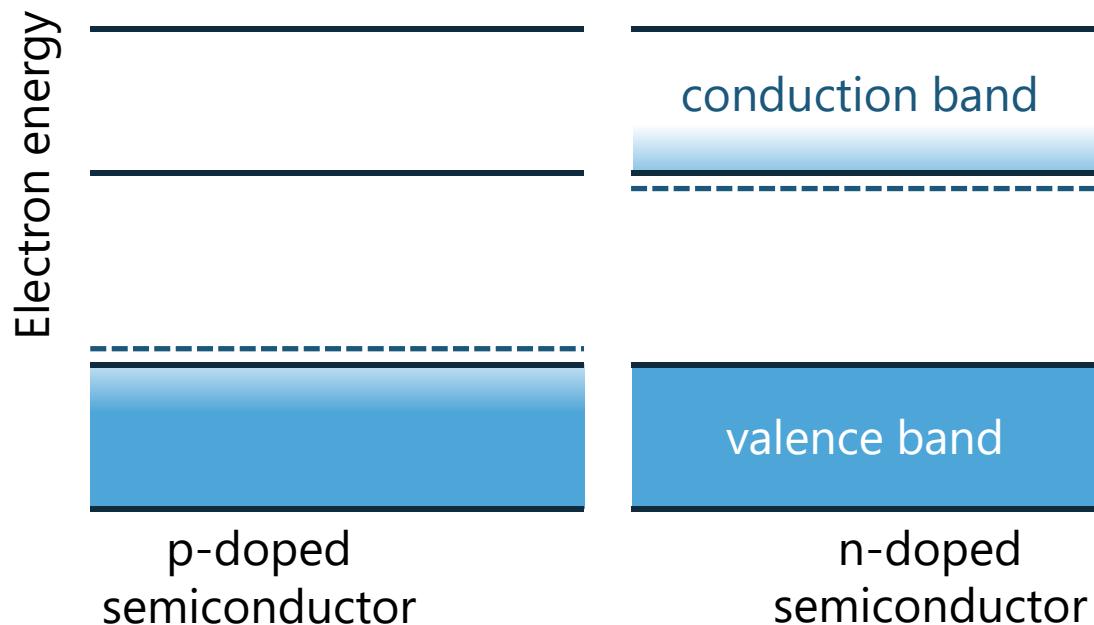


- (-) ionized acceptor (+) free hole
- (+) ionized donor (-) free electron

Semiconductor diode

In terms of bands

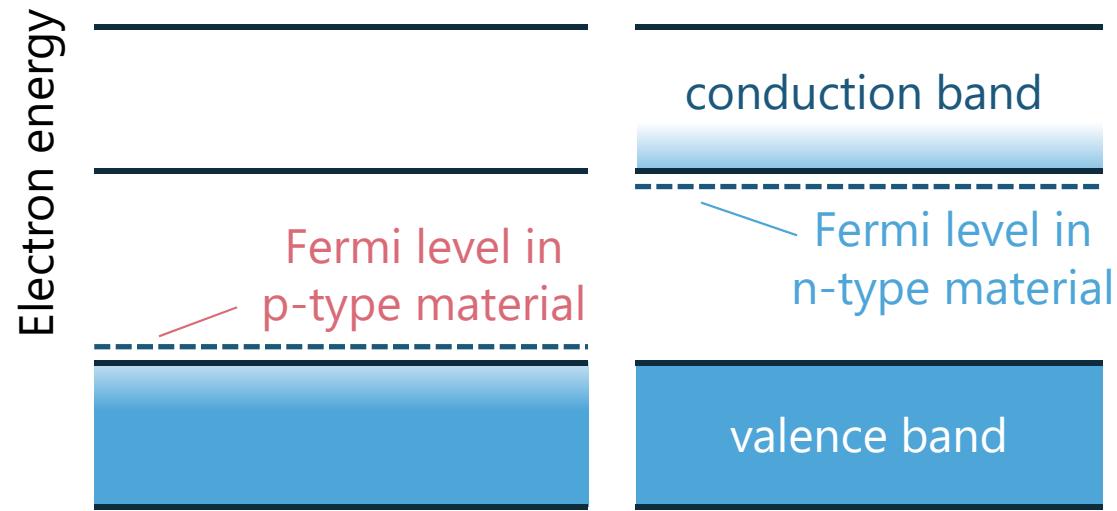
we might view the
bands as being
“lined up” before this
diffusion



Semiconductor diode

Before diffusion, the Fermi level must be near the conduction band edge in n-type material to have many electrons in the conduction band

near the valence band edge in p-type material to have many holes in the valence band



Semiconductor diode

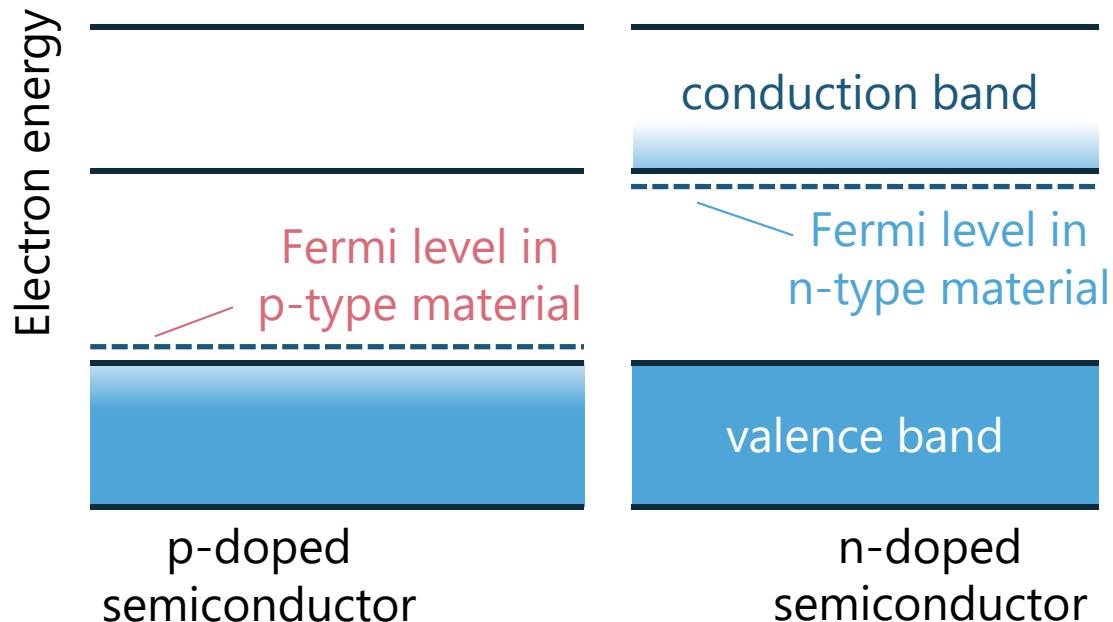
Note that we move the Fermi level

closer to the valence band

by adding p-type dopants

closer to the conduction band

by adding n-type dopants



Semiconductor diode

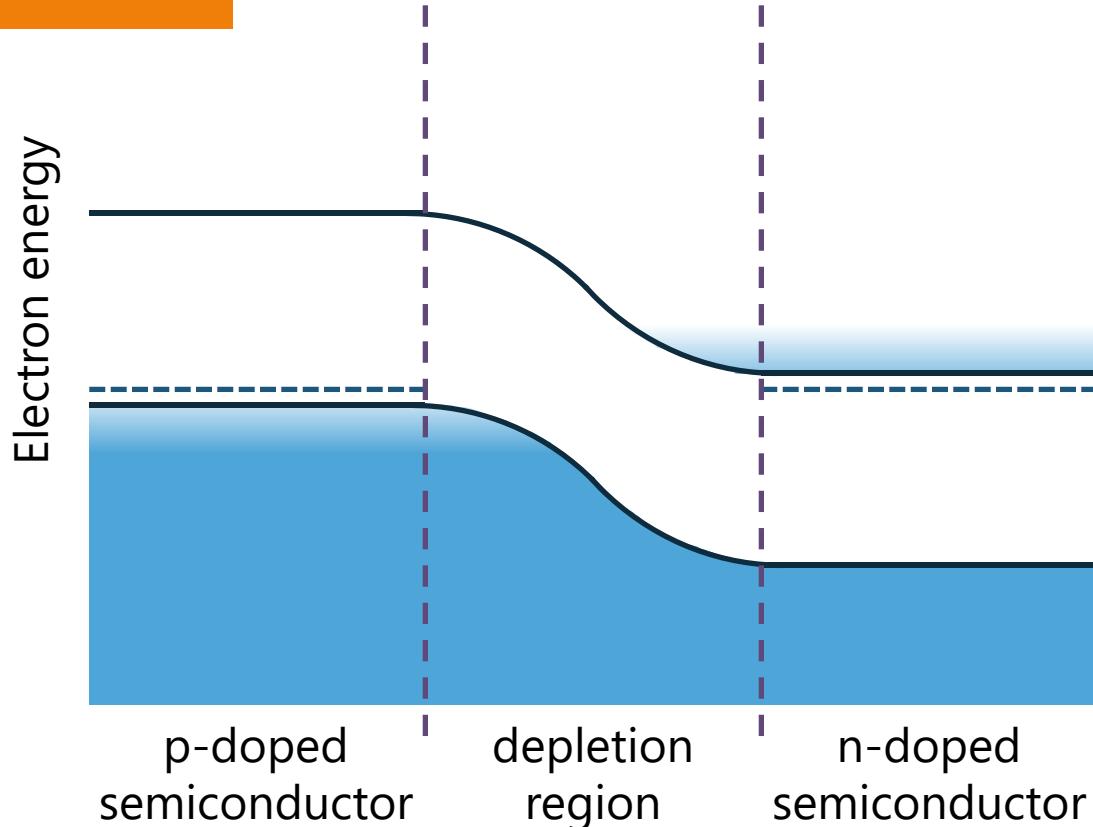
After the diffusion

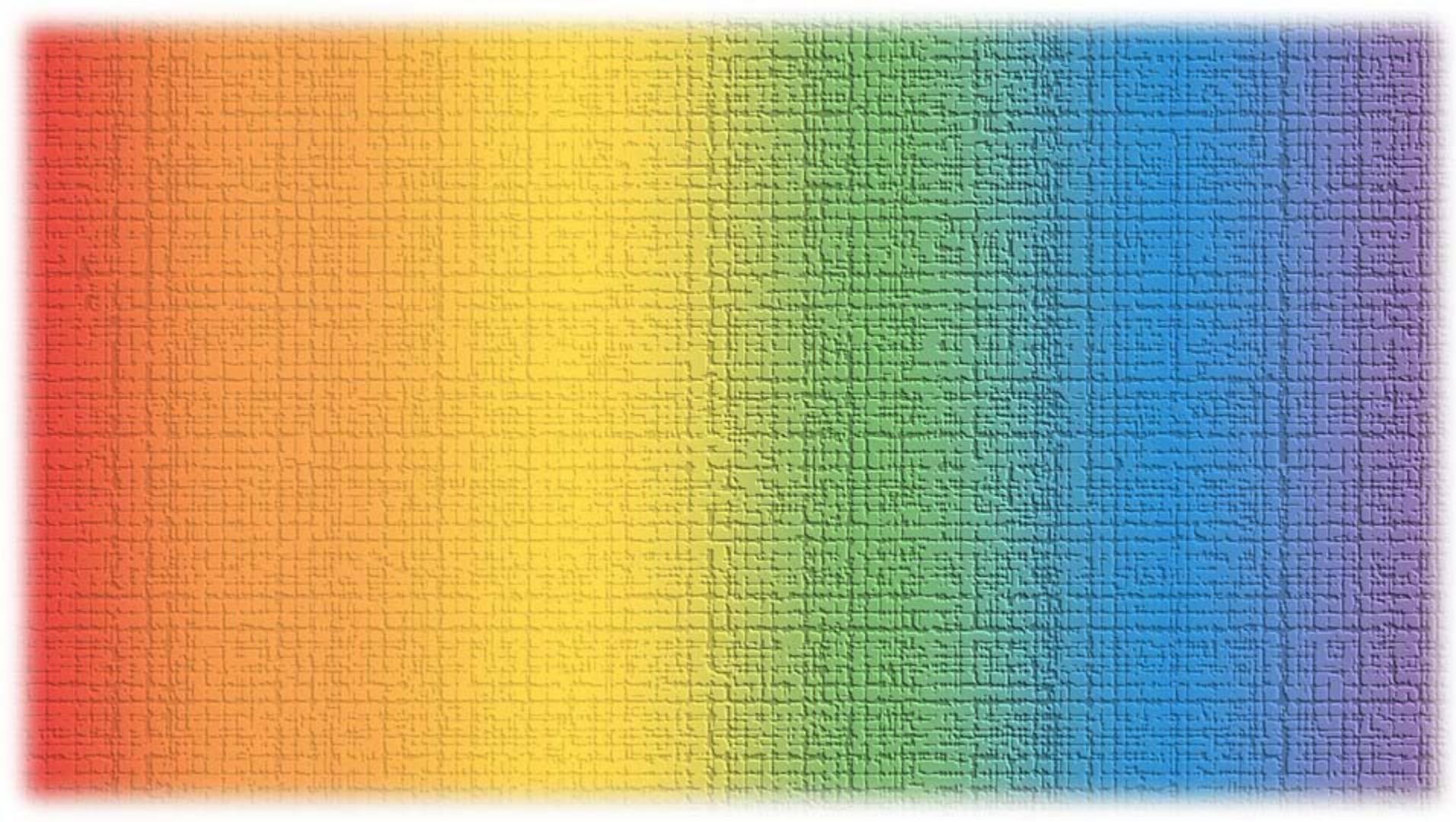
the electrostatic potential
has
“bent” the bands

Formally

once the diffusion is
finished

the “Fermi levels” or
“chemical potentials”
are equalized





Bands and electronic devices

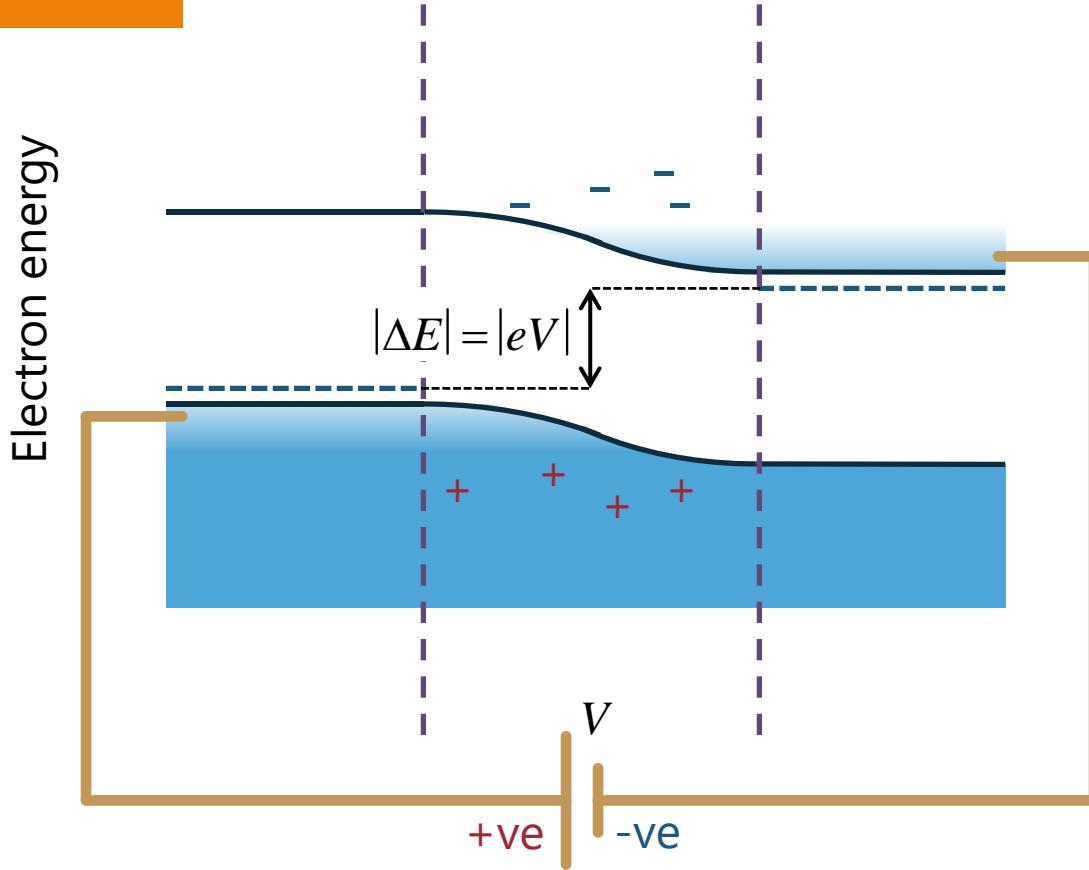
Voltages and Fermi levels

Modern physics for engineers

David Miller

Voltages and Fermi levels

Why is it that
when we apply a
voltage V between the
two sides of a diode
we separate the
Fermi levels
by an amount
 $|\Delta E| = |eV|$?

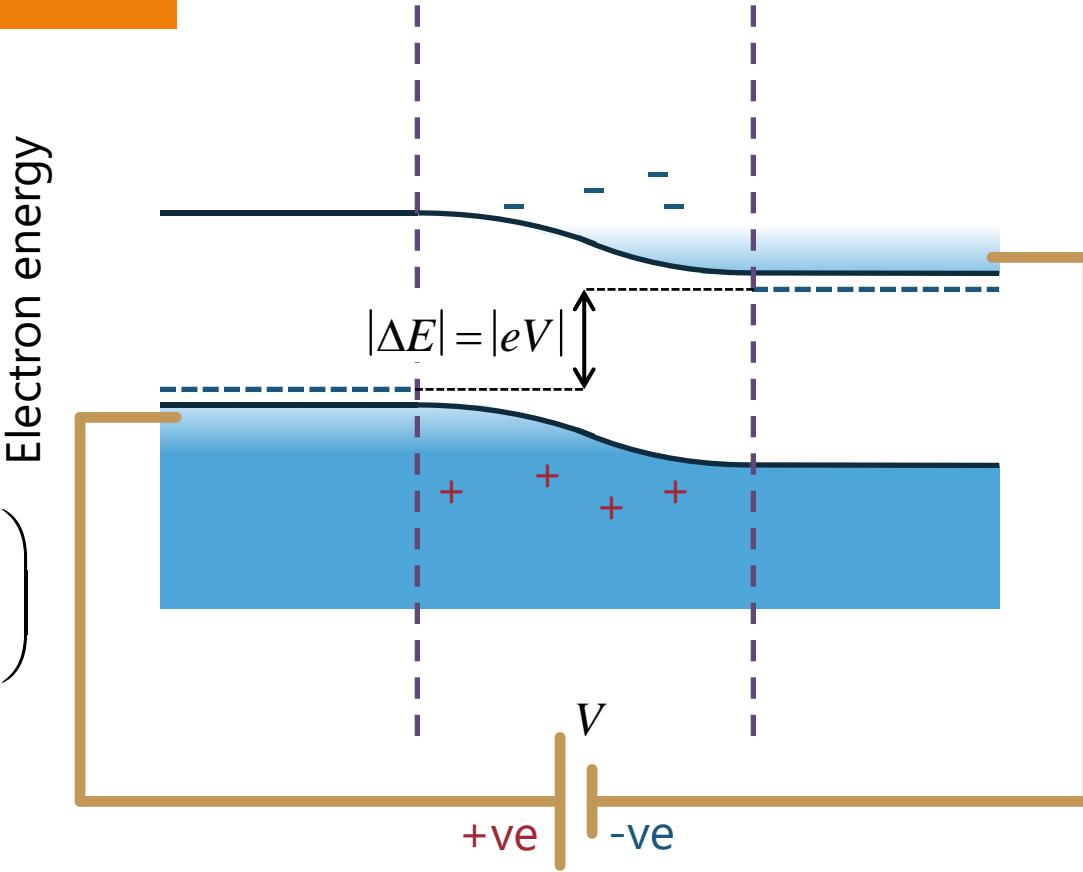


Voltages and Fermi levels

To understand this
we need an alternate
but equivalent
definition of chemical
potential

$$\mu_c = \left(\frac{\partial U}{\partial N} \right) \bigg|_S \quad \left(\equiv -\tau \left(\frac{\partial \sigma}{\partial N} \right) \bigg|_U \right)$$

where U is energy

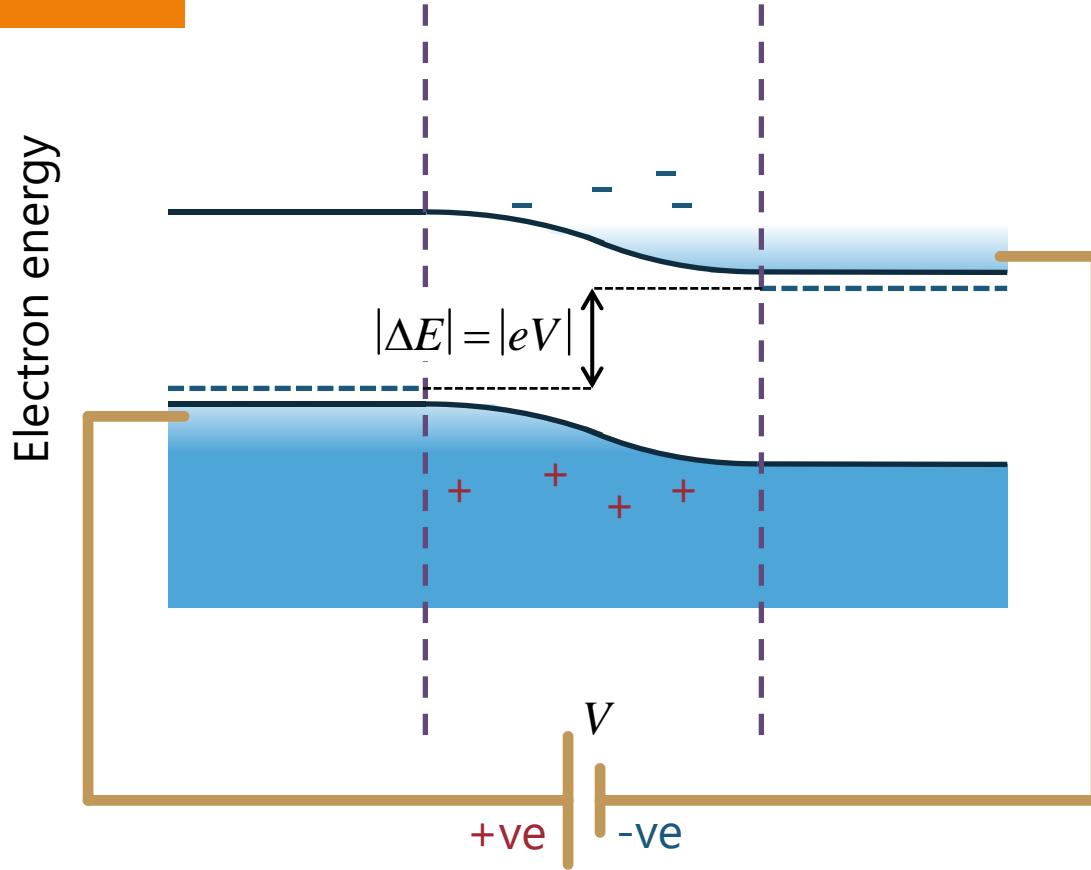


Voltages and Fermi levels

First, we can understand why this alternative form

$$\mu_c = \left(\frac{\partial U}{\partial N} \right) \Big|_s$$

gives the result we need



Voltages and Fermi levels

Note that $\left(\frac{\partial U}{\partial N}\right)_{\!S}$ is

the energy per particle at constant entropy

Adding a potential energy $|\Delta E| = |eV|$ to every electron
by changing the voltage V

changes the energy per particle by $|\Delta E| = |eV|$

without changing the entropy at all

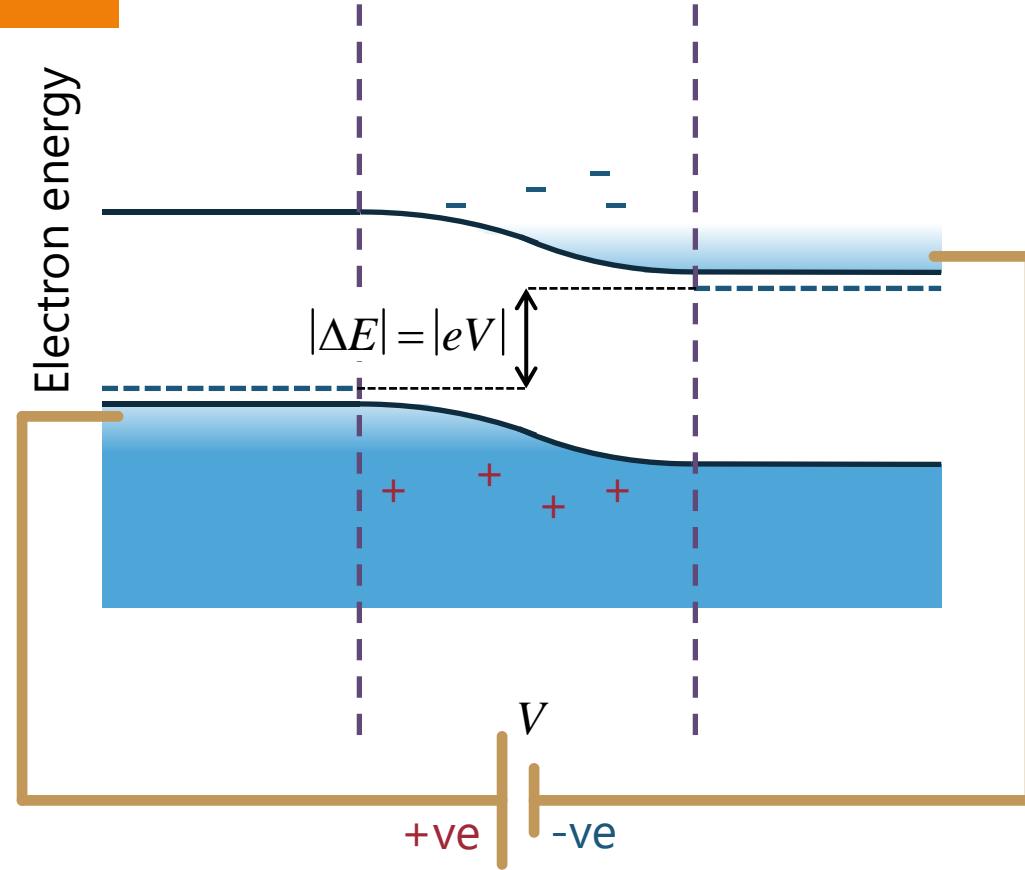
and hence changes the chemical potential

$$\mu_c = \left(\frac{\partial U}{\partial N}\right)_{\!S} \text{ by the same amount}$$

Q.E.D

Voltages and Fermi levels

Hence adding $|\Delta E| = |eV|$ to each electron on the "right" compared to the electrons on the "left" raises the Fermi level (chemical potential) on the "right" by $|\Delta E| = |eV|$ compared to that on the "left"



Proof of equivalence of chemical potential definitions

Consider the differential of entropy $d\sigma$ for a system with energy U and particle number N

Then, considering a situation of constant entropy, we would have

$$d\sigma = \left(\frac{\partial \sigma}{\partial U} \right)_{\!N} dU + \left(\frac{\partial \sigma}{\partial N} \right)_{\!U} dN = 0$$

So, at such a constant entropy, we have

$$\left(\frac{\partial \sigma}{\partial U} \right)_{\!N} dU = - \left(\frac{\partial \sigma}{\partial N} \right)_{\!U} dN$$

Proof of equivalence of chemical potential definitions

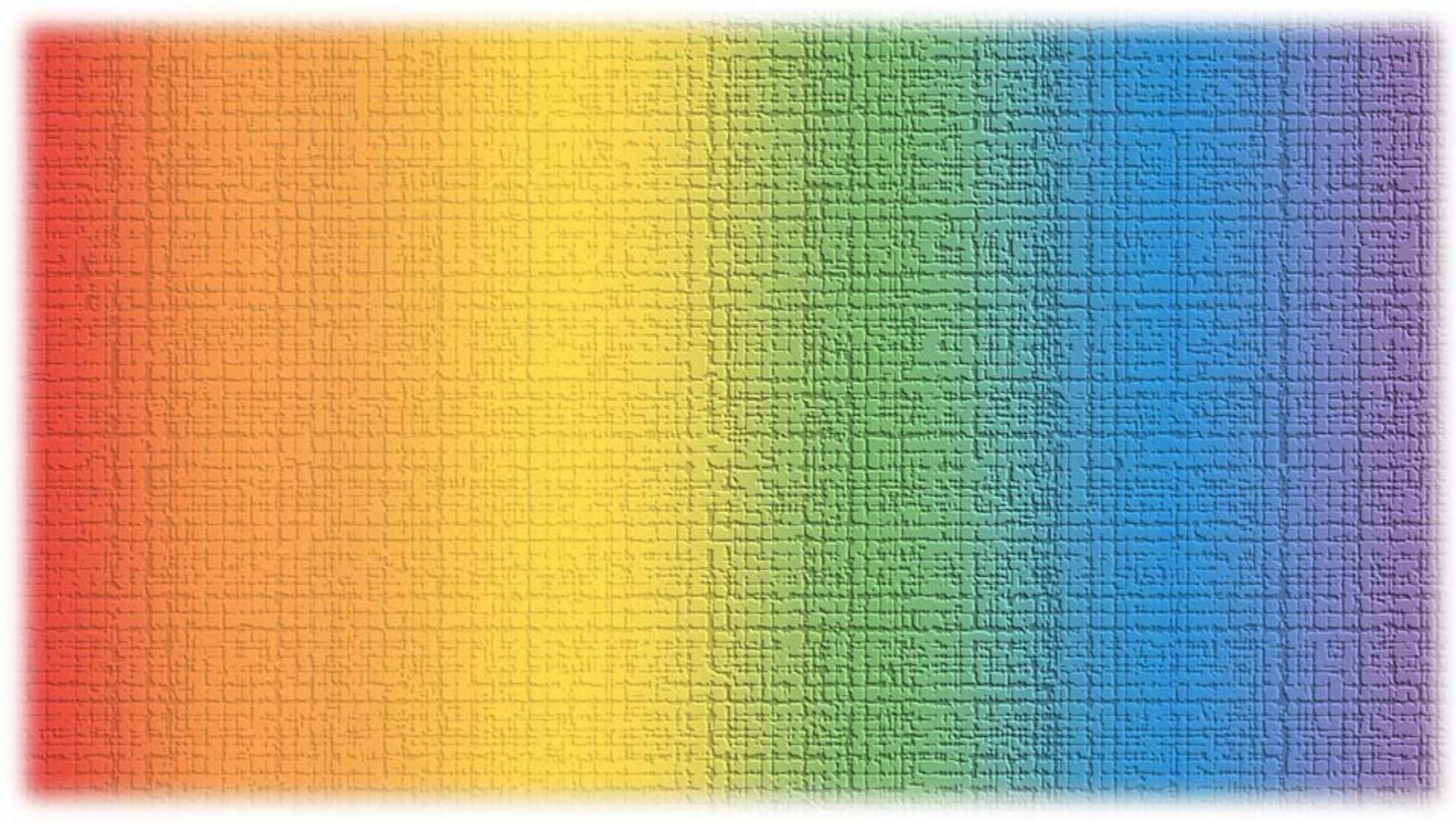
With $\left(\frac{\partial\sigma}{\partial U}\right)_N dU = -\left(\frac{\partial\sigma}{\partial N}\right)_U dN$ at constant entropy

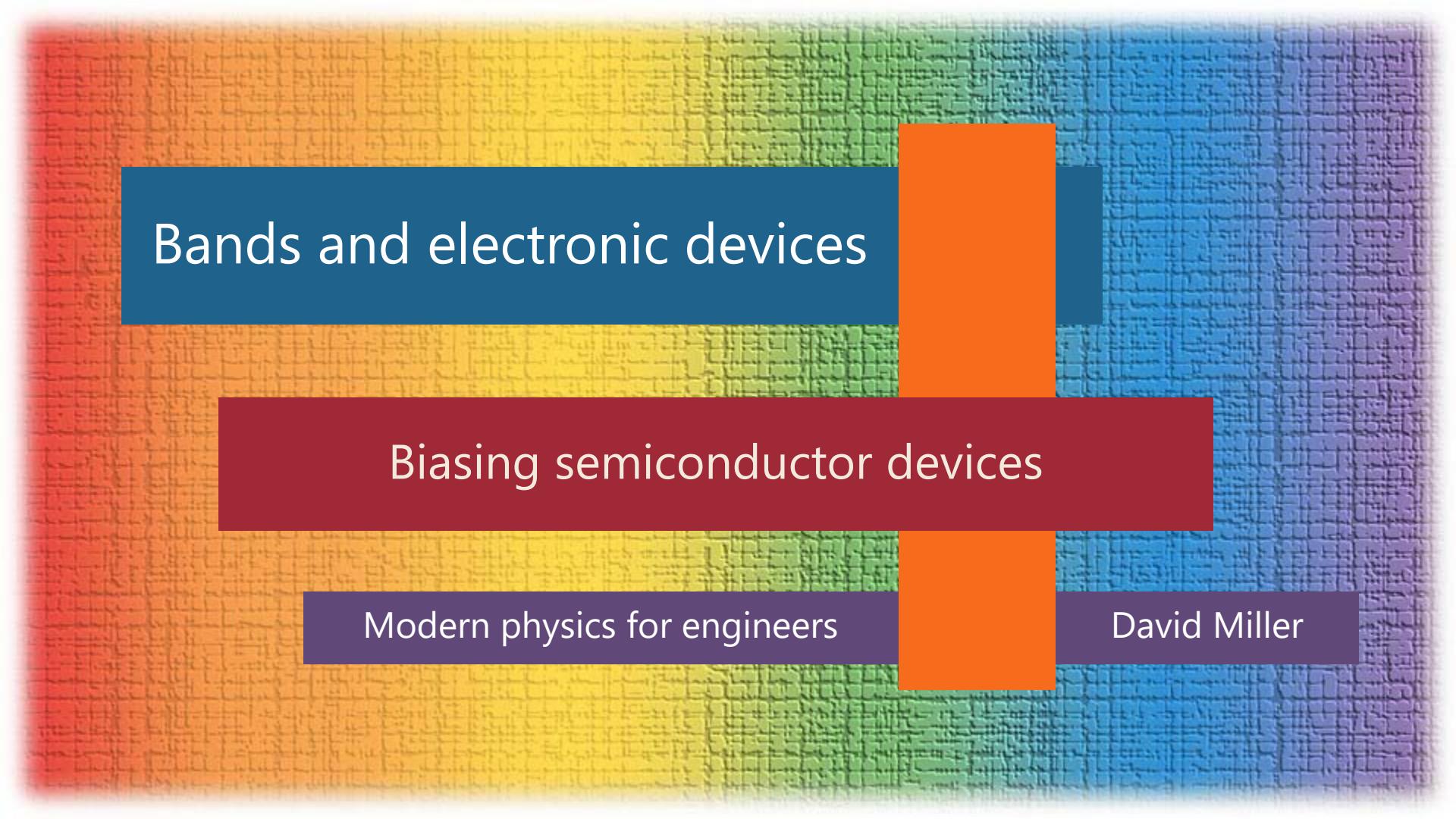
we can therefore write $\left(\frac{\partial\sigma}{\partial U}\right)_N \left(\frac{\partial U}{\partial N}\right)_S = -\left(\frac{\partial\sigma}{\partial N}\right)_U$

But $\left(\frac{\partial\sigma}{\partial U}\right)_N \equiv \frac{1}{\tau}$

So $\left(\frac{\partial U}{\partial N}\right)_S = -\tau \left(\frac{\partial\sigma}{\partial N}\right)_U = \mu_C$

which is the chemical potential – Q. E. D.





Bands and electronic devices

Biassing semiconductor devices

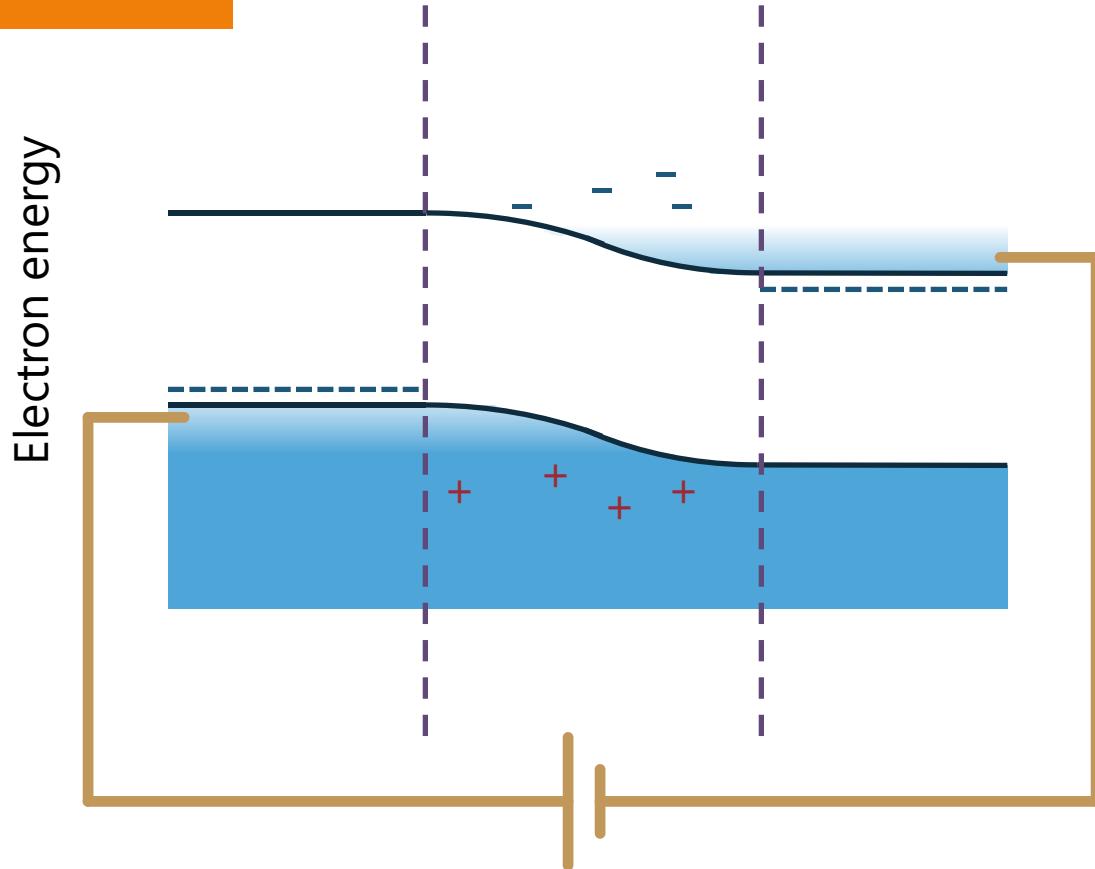
Modern physics for engineers

David Miller

Biassing semiconductor diodes

Semiconductor diode

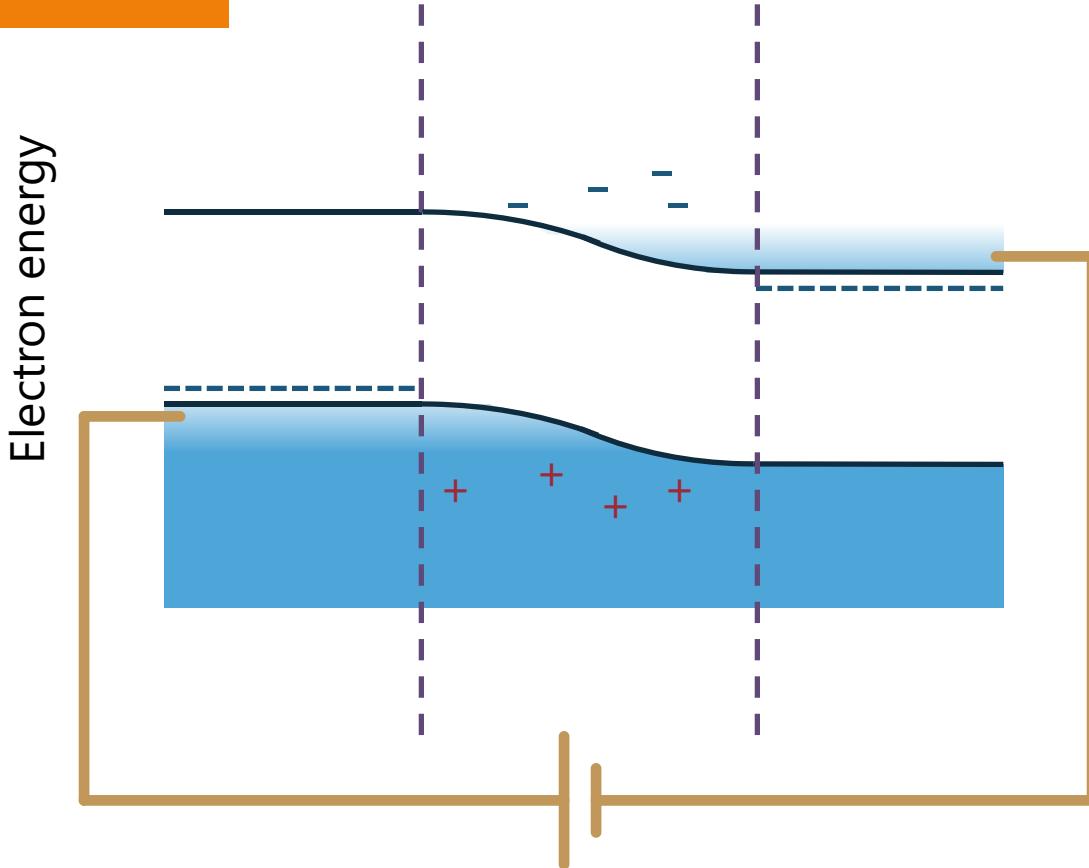
“Forward biasing”
“unbalances” the
diffusion again
allowing electrons
with enough
thermal energy
to diffuse from
right to left
over the
potential



Semiconductor diode

and allowing holes with enough thermal energy to diffuse from left to right “over” the potential

This diffusion current is the normal diode forward current



Reverse-biased diode

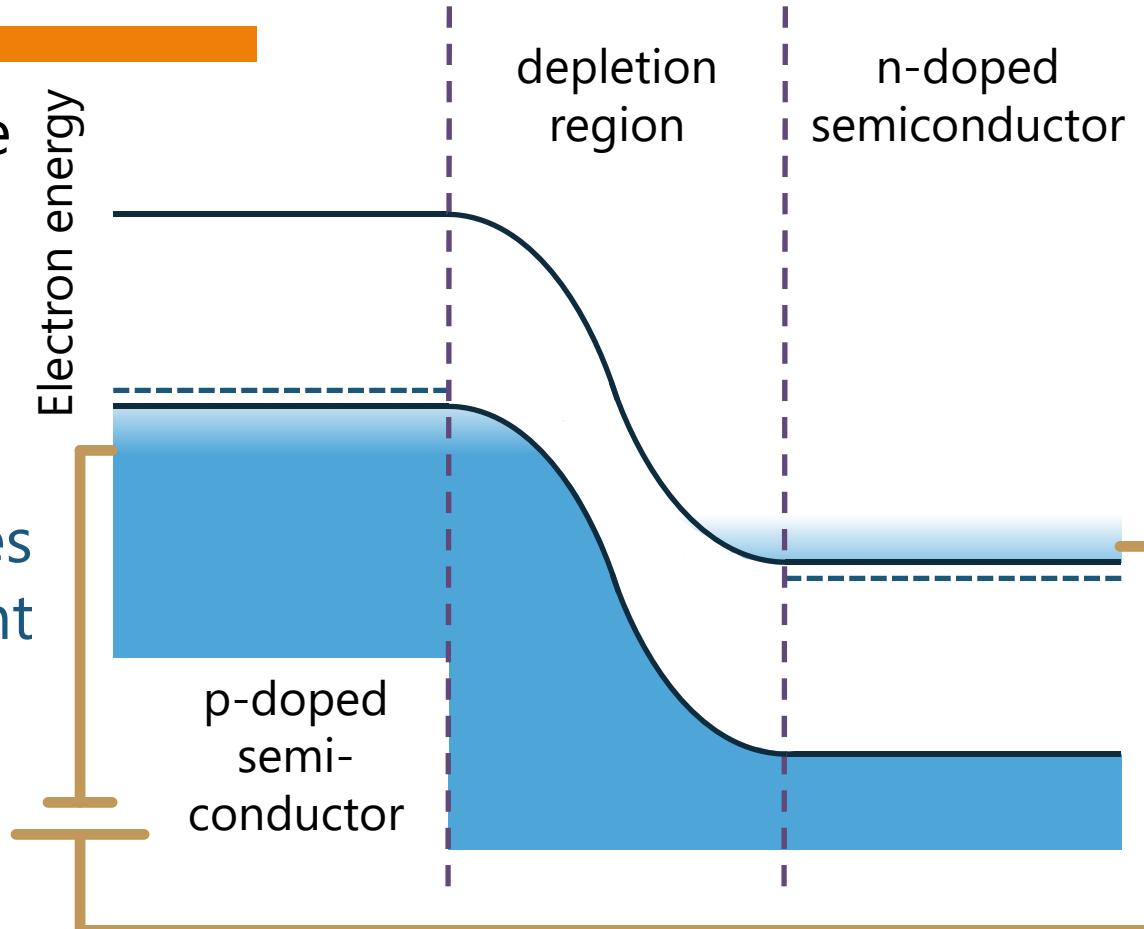
In a reverse-biased diode

the barriers

for conduction band electrons to diffuse to the left, and for valence band holes to diffuse to the right

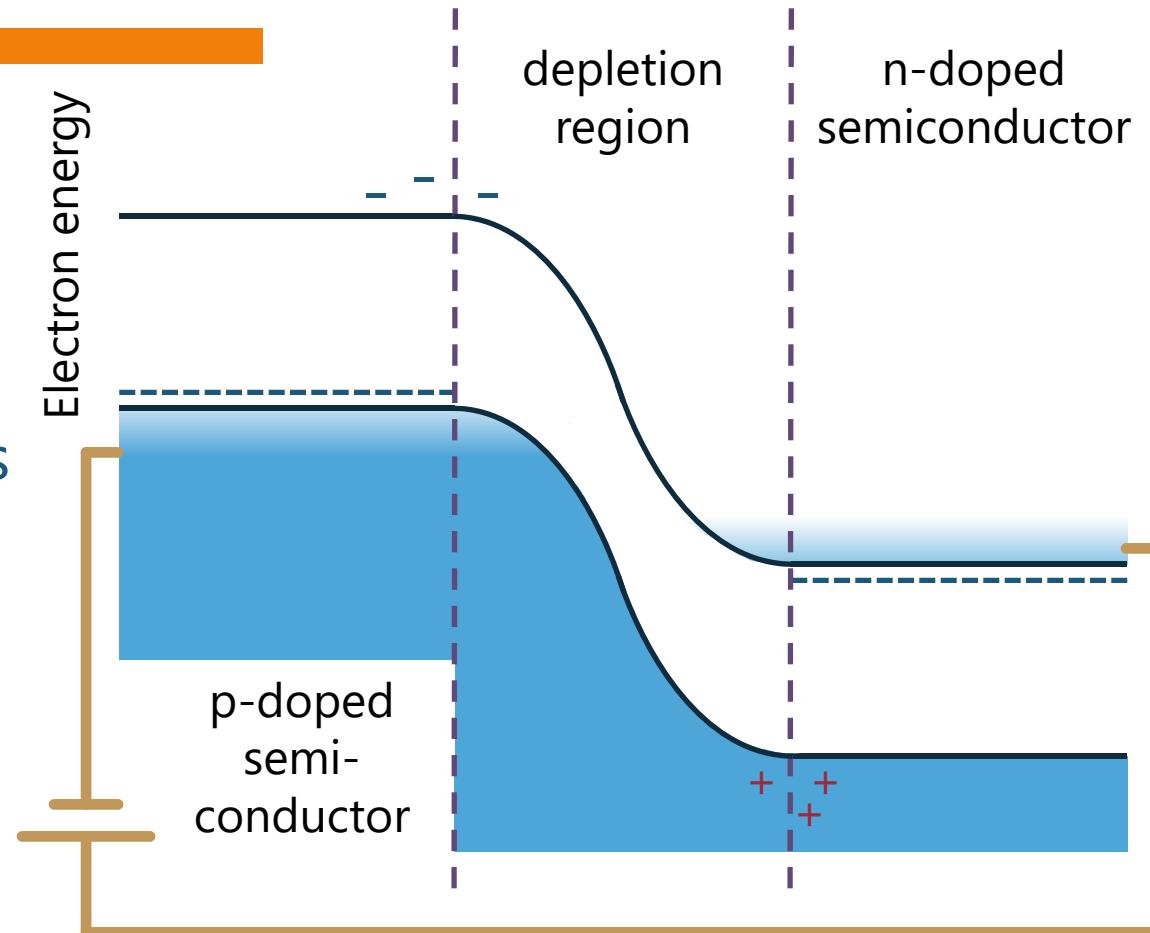
are even higher

turning off forward diffusion current



Reverse-biased diode

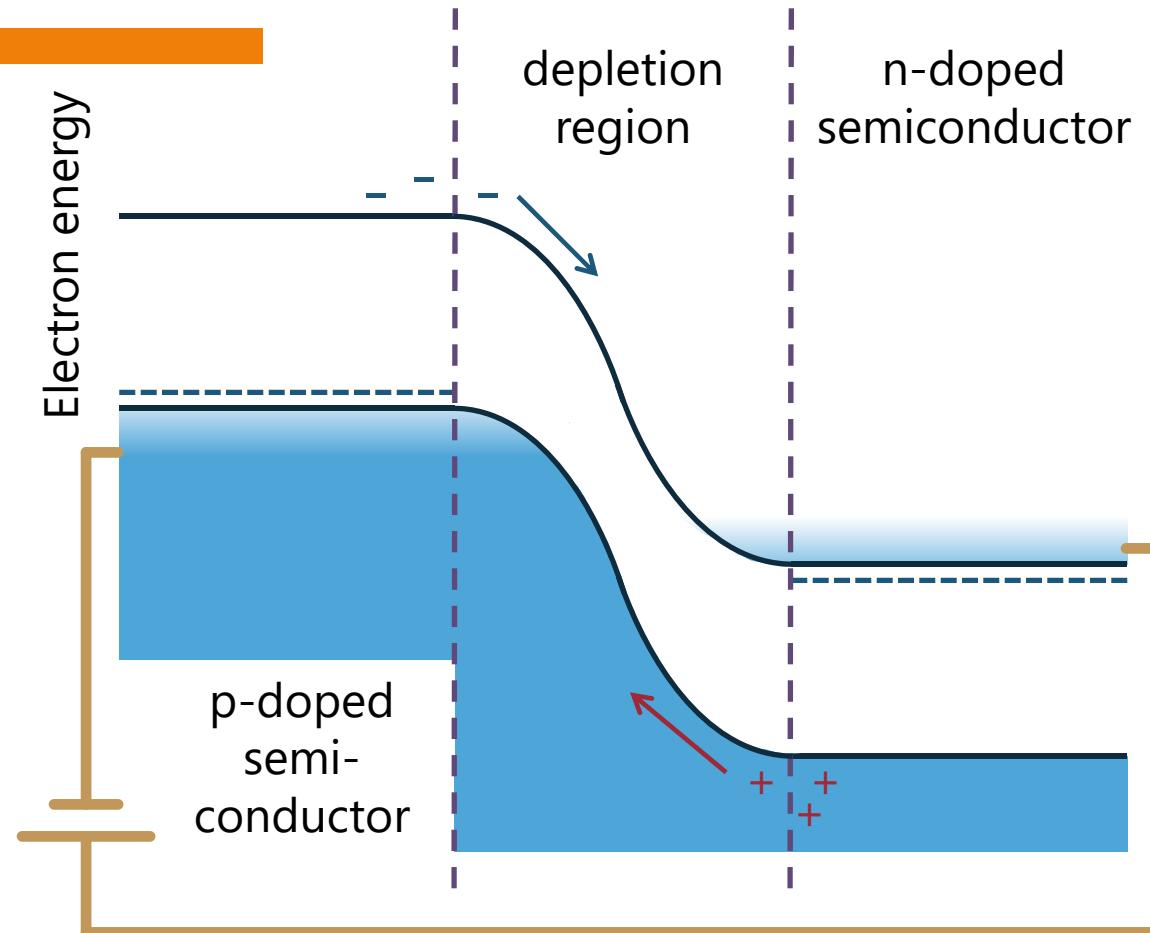
At a finite temperature there are also very small “minority carrier” densities of conduction electrons in the p-semiconductor and valence holes in the n-semiconductor



Reverse-biased diode

These minority carriers
can diffuse into the
depletion region
and drift down-hill

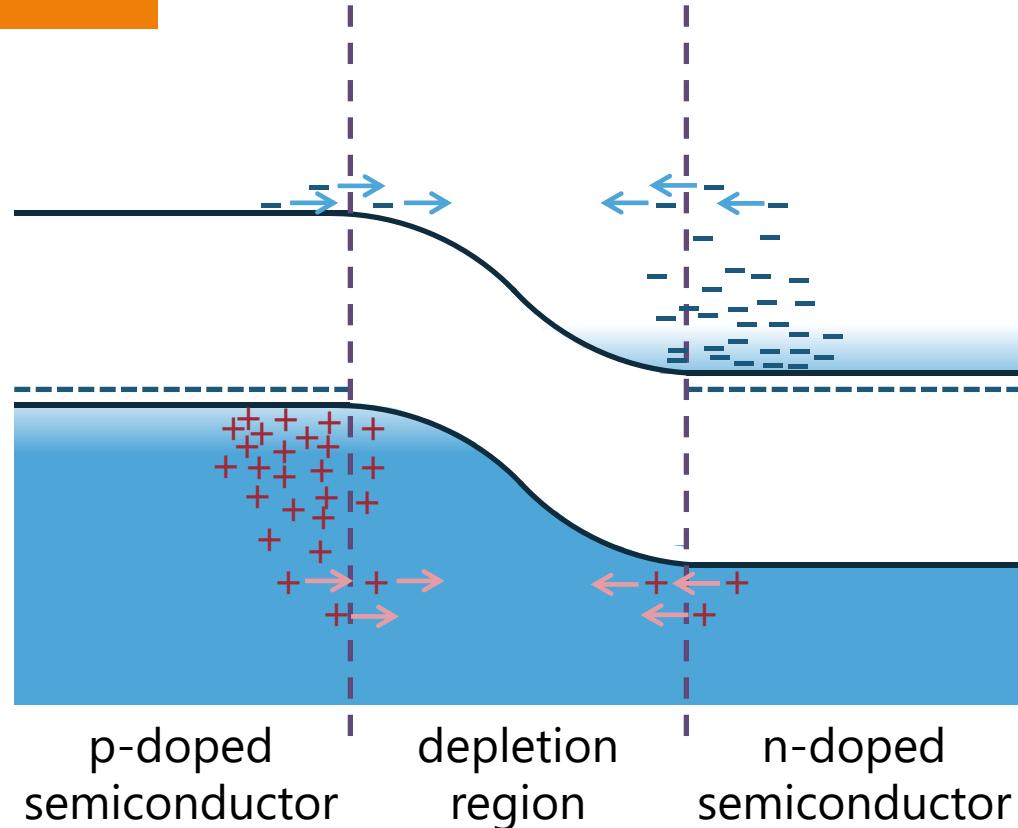
Under reverse bias
this gives reverse
leakage current
of magnitude I_S
present even in an
ideal diode



Semiconductor diode current-voltage characteristic

Current at zero bias voltage

At zero bias voltage
the number of
minority carriers
diffusing in "reverse"
equals the number of
"majority carriers"
diffusing "forwards"
electrons on the n
side
holes in the p side

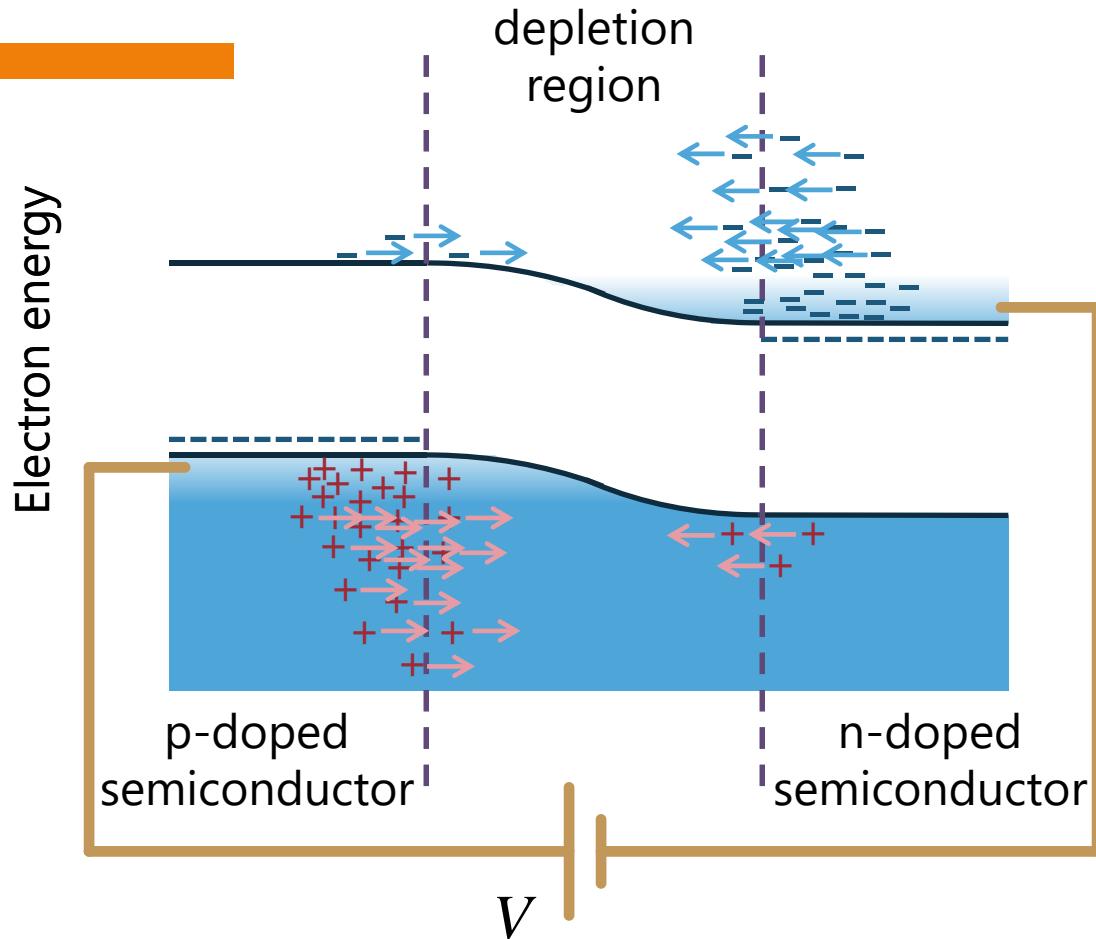


Net forward current

Under forward bias by V volts

the occupation probability of the majority carrier states presuming the Maxwell-Boltzmann approximation has increased by

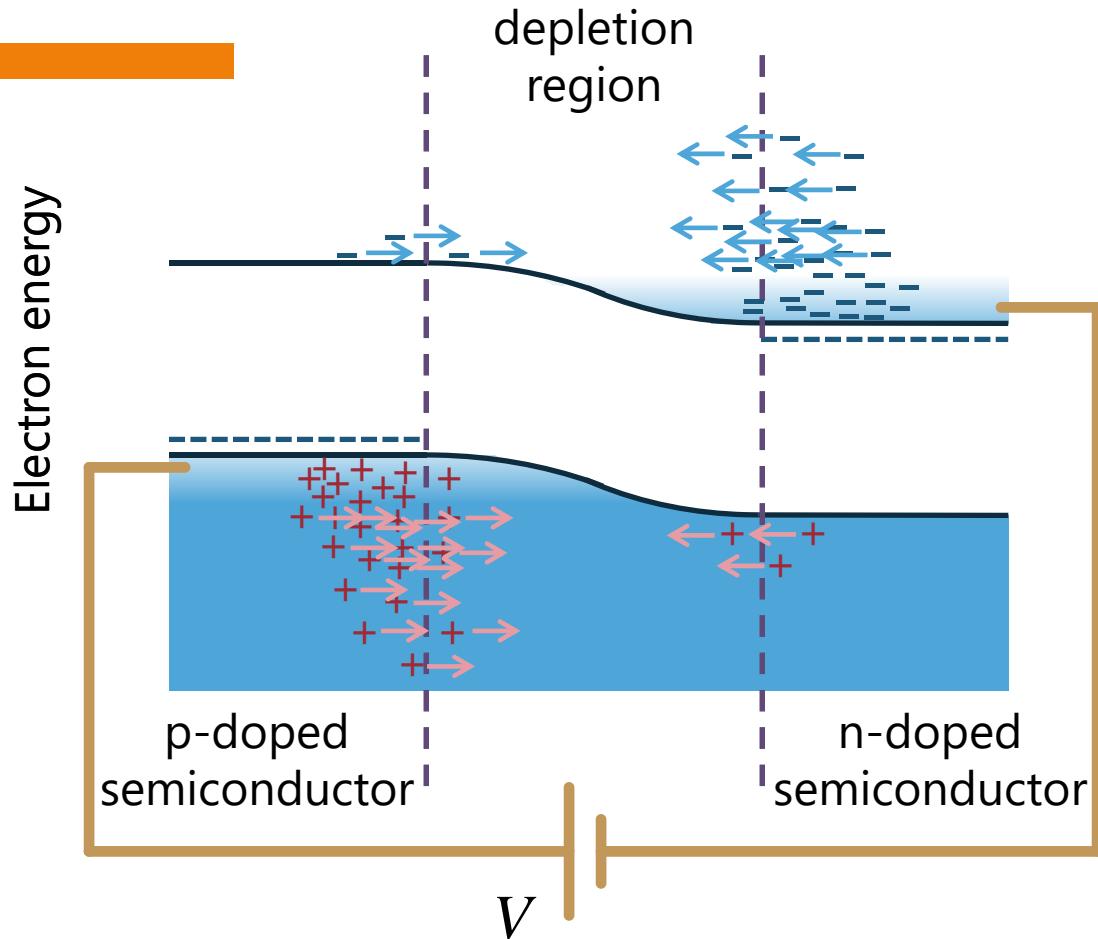
$$\exp(eV / k_B T)$$



Net forward current

So the net forward current I in a diode is the forward diffusion minus the backward "leakage" diffusion

$$I = I_s \left[\exp\left(\frac{eV}{k_B T}\right) - 1 \right]$$



Diode current-voltage (I-V)

Here is current as a function of voltage for an “ideal” diode

At room temperature

$$k_B T / e \simeq 25 \text{ mV}$$

I_S depends on doping levels and material properties

$$I = I_S \left[\exp\left(\frac{eV}{k_B T}\right) - 1 \right]$$

