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Eigen equations
.
Note that the equation for the simple harmonic oscillator

d’y K 2
= = —Q)
i M’ Y
is of the form

Operator operating on the function y(t) = a constant
times the function y(t)

where here the operator is d* / dt*
and the constant is —@° =-K /M
Note that an “operator” is
something that turns one function into another function




Eigen equations
5
If we denote an operator by A
and functions by y and z respectively
then we can introduce a mathematical notation Ay =z

where we mean that operator A operating on
function y gives rise to function z

So instead of

operator operating on the function y(t) = a constant
times the function y(t)

we can write the equation Ay =Dby
for some constant b



Eigen equations
S 1
The form of equation given by

Operator operating on the function y(t) = a constant
times the function y(t)

or Ay =hy
Is called an eigen equation
Any such constant b for which such an equation holds is
an eigenvalue
and a function that is a solution for that eigenvalue is
an eigenfunction
associated with that eigenvalue



Eigen equations
!
d’y K
VA
dt M
for our physical problem of a mass on a spring
for a given Kand M
physically is only allowed to have one eigenvalue (-K/M)
and one eigenfunction
at least if we allow different amplitudes and phases
This particular oscillator
the simple harmonic oscillator

Is an oscillator that physically only has one mode

The particular eigen equation
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Linear operators
N

An important point is that the operator d*/dt*
Is what is called a linear operator
A linear operator should obey the following relations
() Operator operating on (b times y) = b times (Operator
operating on y)
for an arbitrary constant b and a functiony
(i) Operator operating on (y; +VY,) =
(Operator operating on y,) + (Operator operating ony,)
for any two functions y, and y,



Linear operators
N

In our more abstract notation, these conditions become
AbXx = bAX
and
A(X, +X,) = AX, + AX,
Our abstract notation for such linear operators
Is exactly the same as matrix and vector notation

We can think of A as a matrix, and entities like X, v,
and z as being column vectors

Quite generally
linear operators can be represented by matrices
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Modern physics for engineers




The classical wave equation
5
Waves are very common in classical
physics
sound waves through air
waves on the surface of water

electromagnetic waves that we
exploit for radio and light

and we will also encounter
gquantum mechanical waves

Here, by looking at waves on a string

we introduce a simple example of a
classical wave equation



Classical wave equation
N
1Y Imagine a large number of
Tyj identical masses connected
— by a string under a tension T
The string itself is presumed
to have effectively no mass

ANz Az Here we look at the jth mass
and the forces on it

The masses have vertical
displacements y; at some
time

N
VvV
N
VvV



Classical wave equation
I

1Yi A force Tsing pulls mass ]
Tyj upwards
ot Aforce Tsing,,; pulls mass
downwards

So the net upwards force
on mass j Is

Fo=T (sin 0, —sin Gj_l)



Classical wave equation
I

Tyj+1 For small angles

Yi — v Ly
T | Sing. = Yin ™Y, ,SIng, , = Yi = Yia
F J Az AZ
So F;=T(sing,; —sing,, )
becomes

y'+ _y' y'_y'_
szT{ JlA J_( j Jlﬂ
Z AZ

:T{yjﬂ_zyi T yjl}

AZ



Classical wave equation
I

Tyj+1 In the limit of small Az
Tyj the force on the massj is

E_T yj+1_2yj TYia
Az

i Yia—2Y;+ Y4
(Az)°

o’y
0z°

=TAZ

=TAZ



Classical wave equation
I
Y1 Note that, with
: . aZy
oz°
we are saying that

the force F is proportional
to the curvature of the
“string” of masses

There is no net vertical
force if the masses are
in a straight line

F=TAz




Classical wave equation
I

[Yi1  Think of the masses as
Tyj the amount of mass per
o unit length in the z
direction, that is

the linear mass density p
times Az, i.e., M= pAz
Then Newton's second

law gives
0%y 0%y
F=m—=pAz—=
oz o



Classical wave equation
I

Tyj+1 Putting together

Tyj £ 2 2
P oy oy
- F=TAz—= and F = pAz—=-

0z° p ot*

gives
2
TAz % = PAZ—-

l.e., 62y _ p azy
oz¢ T ot°




Classical wave equation
I

0’y po’y
oz° T ot
with ,
vi=T/p
gives
o’y 120% 0
oz° v° ot

which is a wave equation for a
wave with velocity v= T/ p



Wave equation solutions — forward waves
N

We remember that any function of the form f(z-vt)
Is a solution of the wave equation

and is a wave moving to the right with velocity v



Wave equation solutions — forward waves
N

We remember that any function of the form f(z-vt)
Is a solution of the wave equation

and is a wave moving to the right with velocity v



Wave equation solutions — backward waves
N

We remember that any function of the form g(z +vt)
Is a solution of the wave equation

and is a wave moving to the left with velocity v
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Monochromatic waves
e

Often we are interested in waves oscillating at one specific
(angular) frequency @
monochromatic waves
l.e., temporal behavior of the form sin(wt) or cos(wt)
or any combination of these
For any such combination
oy __

E o



Monochromatic waves
N
T .. 0%
For a monochromatic situation, with Fo —0°y
o’y 10°
Z T2 2/ =0
oz V- ot

the wave equation

2 2
becomes d dy(zz) +k2y(z):0 where k* :a)_2
Z V

We can think of this function y(z)
as being a “snapshot” of this monochromatic wave
so we take the “total” spatial derivative of this snapshot
giving a “simple” differential equation in one variable



The Helmholtz wave equation
N 1

This equation for a monochromatic wave

Ldzy(zz) +k?y(z)= O]

dz

iIs called the “"Helmholtz wave equation”
here given in its simplest, one-dimensional form

It is essentially the simplest useful wave equation we can
construct



Mathematical form of the Helmholtz equation
N

2
This equation d y(Z)+k2y(z):0

Z2

Is also an eigen equation
with eigenvalue —k*
though the Helmholtz equation is a differential
equation in z, not t
Just as before for the simple harmonic oscillator
this equation can be written in the form Ay =—k°y
A corresponds now to the linear operator d?/dz?



Mathematical form of the Helmholtz equation

For the simple harmonic oscillator

the eigenvalue was fixed by the choice of the spring
constant and the mass

For the Helmholtz equation for a string
we may have chosen a definite density p
and a definite tension T
But those only set the wave velocity magnitude v 2
T o

which only sets the ratio of @2 and k2, i.e., v* = %
0

so we can choose any frequency
but we have to make a choice, and that sets k



Mathematical form of the Helmholtz equation
N

We note that we can generalize the Helmholtz equation
from the "one-dimensional” form
to a “three-dimensional form”
Vzw(r)+ kzgy(r) =0
where 2 g g
Vz = 2 T 2 + 2
ox- oy oz
We have to use partial derivatives here because we have
three coordinate directions
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General solution
e

Just as for the simple harmonic oscillator equation
for the Helmholtz equation
d”y(z)
dz’

+k?y(z)=0

we similarly have a general solution

y = Asinkz + Bcoskz

where A and B can be any constants
Without further conditions
any such wave could be a solution



Standing waves

Now presume that the string is tied
to rigid posts or walls at either end

Now we are imposing boundary
conditions

The wave has to be zero at the walls
So we require

y(z)=0forz=0,L

| =g



Standing waves
B

Now we know that, atz=0
sinkz=sin0=0
and coskz=cos0=1
So to havey(0) =0 in a solution in

y = Asinkz + Bcoskz
we require B=0

| =g

Il_\/



Standing waves
B
Hence, given our boundary conditions

solutions are of the form
y(z)= Asinkz

for some k and A

We also require that y(L)=0
Now, sind=0 requires thatd=nx
where n is an integer

So k takes one of the values
k. =nz/L Z
where n is an integer

\\.\.
|| ==pm=m= BN

| =¥



Standing waves
_
So the eigenvalues are k. =nz /L

so the resulting eigenfunctions are

y,(2)= Asin(n—fzj

n=0Iis a trivial case
the wave would be 0 everywhere
Solutions for negative n are
essentially the same as for positive n
Hence, wesetn=1,2,3, .... 7 -
The standing waves are the eigen
functions or “eigenmodes”

l
<



Standing waves
N

For a density and tension, we know

or equivalently o =vk
So, with k =nz/L
we conclude the allowed (angular)
frequencies are

nzv
0, = vk, ===




Standing waves
-
So, for monochromatic wave solutions

for a string between two rigid posts
“oscillating modes” only exist for
specific (eigen) frequencies
which form a harmonic series
with integer ratios
In two dimensions
such as cymbals or drum heads
or three dimensions
such as bells
frequencies may not be in integer ratios




Standing waves
B
We can also view standing waves

as sums of forward and backward
propagating waves
The “right going” Asin(kz — wt)
and “left going” Asin(kz + wt)

waves are each solutions of the full
wave equation

Because this wave equation is linear

the sum or “superposition” of
these two waves is also a solution




Standing waves
B

An equal combination of forward and
backward waves, e.qg.,
¥(z,t)= Asin(kz — wt)+ Asin(kz + ot)
=2Acos wtsin(kz)
where k=w/v
gives “standing waves”

E.g., for a rope tied to two walls a
distance L apart

with k=2z/Land o=2zv/L




Standing waves
B

We can also think of
the right-propagating wave
reflecting off the right barrier
to give the left-propagating
wave, and
the left-propagating wave
reflecting off the left barrier
to give the right-propagating
wave




Standing waves
B

When a wave reflects off a “hard wall”

the reflected wave is minus the
iIncident wave

so the sum always equals zero
at the position of the barrier

as required for the net wave
to be zero at the barrier

A wave reflecting from a hard wall

has its phase changed by 180
degrees
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