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Eigen equations and operators



Eigen equations



Eigen equations

Note that the equation for the simple harmonic oscillator

is of the form
Operator operating on the function y(t) = a constant 
times the function y(t)

where here the operator is
and the constant is 

Note that an “operator” is 
something that turns one function into another function
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Eigen equations

If we denote an operator by A
and functions by y and z respectively

then we can introduce a mathematical notation
where we mean that operator A operating on 
function y gives rise to function z

So instead of
operator operating on the function y(t) = a constant 
times the function y(t)

we can write the equation
for some constant b

y zA
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Eigen equations

The form of equation given by
Operator operating on the function y(t) = a constant 
times the function y(t)

or
is called an eigen equation

Any such constant b for which such an equation holds is
an eigenvalue

and a function that is a solution for that eigenvalue is
an eigenfunction 

associated with that eigenvalue

by yA



Eigen equations

The particular eigen equation 

for our physical problem of a mass on a spring
for a given K and M

physically is only allowed to have one eigenvalue (-K/M ) 
and one eigenfunction 

at least if we allow different amplitudes and phases 
This particular oscillator

the simple harmonic oscillator
is an oscillator that physically only has one mode
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Linear operators



Linear operators

An important point is that the operator  
is what is called a linear operator

A linear operator should obey the following relations
(i)  Operator operating on (b times y) = b times (Operator 
operating on y)

for an arbitrary constant b and a function y
(ii)  Operator operating on ( y1 + y2) = 
(Operator operating on y1) + (Operator operating on y2)

for any two functions y1 and y2

2 2/d dt



Linear operators

In our more abstract notation, these conditions become

and

Our abstract notation for such linear operators 
is exactly the same as matrix and vector notation

We can think of A as a matrix, and entities like x, y, 
and z as being column vectors 

Quite generally
linear operators can be represented by matrices

b bx xA A
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The classical wave equation

Waves are very common in classical 
physics

sound waves through air
waves on the surface of water
electromagnetic waves that we 
exploit for radio and light

and we will also encounter 
quantum mechanical waves

Here, by looking at waves on a string
we introduce a simple example of a 

classical wave equation



Classical wave equation

Imagine a large number of 
identical masses connected 
by a string under a tension T

The string itself is presumed 
to have effectively no mass

Here we look at the jth mass 
and the forces on it

The masses have vertical 
displacements yj at some 
time
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Classical wave equation

A force T sinj pulls mass  j
upwards

A force T sinj-1 pulls mass  j
downwards 

So the net upwards force 
on mass j is
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Classical wave equation

For small angles 

,

So
becomes 
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Classical wave equation

In the limit of small z
the force on the mass j isyj
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Classical wave equation

Note that, with

we are saying that 
the force F is proportional 
to the curvature of the 
“string” of masses 

There is no net vertical 
force if the masses are 
in a straight line  
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Classical wave equation

Think of the masses as 
the amount of mass per 
unit length in the z
direction, that is

the linear mass density 
times z, i.e.,

Then Newton’s second 
law gives
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Classical wave equation

Putting together

and

gives

i.e., 
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Classical wave equation

Rewriting

with

gives

which is a wave equation for a 
wave with velocity
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Wave equation solutions – forward waves

We remember that any function of the form 
is a solution of the wave equation

and is a wave moving to the right with velocity v

 f z vt



Wave equation solutions – forward waves

We remember that any function of the form 
is a solution of the wave equation

and is a wave moving to the right with velocity v

 f z vt



Wave equation solutions – backward waves

We remember that any function of the form 
is a solution of the wave equation

and is a wave moving to the left with velocity v

 g z vt
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Monochromatic waves

Often we are interested in waves oscillating at one specific 
(angular) frequency 

monochromatic waves
i.e., temporal behavior of the form            or 

or any combination of these
For any such combination
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Monochromatic waves

For a monochromatic situation, with

the wave equation

becomes                                  where 

We can think of this function 
as being a “snapshot” of this monochromatic wave

so we take the “total” spatial derivative of this snapshot
giving a “simple” differential equation in one variable 
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This equation for a monochromatic wave 

is called the “Helmholtz wave equation”
here given in its simplest, one-dimensional form

It is essentially the simplest useful wave equation we can 
construct

The Helmholtz wave equation
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Mathematical form of the Helmholtz equation

This equation

is also an eigen equation
with eigenvalue 

though the Helmholtz equation is a differential 
equation in z, not t

Just as before for the simple harmonic oscillator
this equation can be written in the form

A corresponds now to the linear operator d2/dz2
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Mathematical form of the Helmholtz equation

For the simple harmonic oscillator
the eigenvalue was fixed by the choice of the spring 
constant and the mass

For the Helmholtz equation for a string
we may have chosen a definite density 

and a definite tension T
But those only set the wave velocity magnitude v

which only sets the ratio of 2 and k2, i.e.,
so we can choose any frequency 

but we have to make a choice, and that sets k
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Mathematical form of the Helmholtz equation

We note that we can generalize the Helmholtz equation 
from the “one-dimensional” form 

to a “three-dimensional form”

where

We have to use partial derivatives here because we have 
three coordinate directions
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General solution

Just as for the simple harmonic oscillator equation 
for the Helmholtz equation

we similarly have a general solution

where A and B can be any constants
Without further conditions

any such wave could be a solution 
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Standing waves

Now presume that the string is tied 
to rigid posts or walls at either end

Now we are imposing boundary 
conditions

The wave has to be zero at the walls
So we require

for z = 0, L
L0z  z L

  0y z 



Standing waves

Now we know that, at z = 0

and  
So to have              in a solution in 

we require  

L0z  z L

sin sin 0 0kz  
cos cos0 1kz  
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Standing waves

Hence, given our boundary conditions 
solutions are of the form

for some k and A
We also require that  
Now,                requires that   

where n is an integer
So k takes one of the values

where n is an integer 
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1n 

2n 
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Standing waves

So the eigenvalues are
so the resulting eigenfunctions are

n = 0 is a trivial case 
the wave would be 0 everywhere 

Solutions for negative n are 
essentially the same as for positive n

Hence, we set n = 1, 2, 3, … .
The standing waves are the eigen 
functions or “eigenmodes”
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Standing waves

For a density and tension, we know

or equivalently 
So, with

we conclude the allowed (angular) 
frequencies are
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Standing waves

So, for monochromatic wave solutions 
for a string between two rigid posts 

“oscillating modes” only exist for 
specific (eigen) frequencies

which form a harmonic series 
with integer ratios 

In two dimensions
such as cymbals or drum heads

or three dimensions
such as bells 

frequencies may not be in integer ratios

L0z  z L
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Standing waves

We can also view standing waves 
as sums of forward and backward 
propagating waves

The “right going”
and “left going” 

waves are each solutions of the full 
wave equation 

Because this wave equation is linear 
the sum or “superposition” of 
these two waves is also a solution 
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Standing waves

An equal combination of forward and 
backward waves, e.g.,

where 
gives “standing waves”

E.g., for a rope tied to two walls a 
distance L apart

with                and     

     
 

, sin sin

2 cos sin

z t A kz t A kz t

A t kz

 



    


/k v

2 /v L 2 /k L



Standing waves

We can also think of 
the right-propagating wave 
reflecting off the right barrier 

to give the left-propagating 
wave, and 

the left-propagating wave 
reflecting off the left barrier 

to give the right-propagating 
wave



Standing waves

When a wave reflects off a “hard wall” 
the reflected wave is minus the 
incident wave

so the sum always equals zero 
at the position of the barrier

as required for the net wave 
to be zero at the barrier

A wave reflecting from a hard wall
has its phase changed by 180 
degrees






