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A coupled oscillator




Coupled oscillator
B

Suppose we have two masses
and three springs

The masses can only move
side to side

and their movement is
frictionless

This is like two mass-on-a-
spring oscillators

coupled by an additional
spring

identical springs
/ % \ .Xz\

\ /

iIdentical masses




Coupled oscillator
B

We take the two masses to be , , ,
identical springs

equal
of value m / X \ .Xz\
: —> —>
We take all springs to have the ' '
same spring constant K
At equilibrium \ /
we presume no net 1 identical masses

stretching or compression
of any springs

e
A




Coupled oscillator
B
The position of the left mass

relative to the equilibrium
position
IS X,
Similarly the position of the
right mass
relative to the equilibrium
position
IS X,

identical springs

-y

\ /

MO\

N

iIdentical masses



Coupled oscillator
B

From the stretching of the left
spring
the restoring force pulling
the left mass to the left

back to the equilibrium
position
s —KX,

identical springs
ey

\ /

iIdentical masses




Coupled oscillator
B

There is also a force on the left
mass from the middle spring

The middle spring is stretched
by an amount X, — X

giving a force on the left mass
K(x,—x)
pulling it to the right

so the net force to the right on
the left mass is

—Kx, + K (x, —x ) =—2Kx + Kx,

identical springs
/ % \ .Xz\

\ /

iIdentical masses

A
e
e
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e
e
e




Coupled oscillator

B
Applying Newton's second law

to the left mass gives identical springs
d* X
m Olt)z(lz—ZKx1+Kx2 / .ﬁ, \ ._2>\
A similar analysis for the right
mass gives \ /
d°x L
m dt22 — _K (x2 _ X1)— KX, identical masses
= —2KX, + KX,

We need to solve these coupled
equations
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Finding the eigenmodes
N

To look for eigenmodes
we presume that everything that is oscillating is
oscillating at the same frequency
which we now presume to be some (angular)
frequency w
and we look for solutions
For any solutions oscillating in the form sin wt , cos wt

or any linear combination
2

we can replace e with —@°



Finding the eigenmodes
-5
Hence the equations

d*x, d°x
m e —2Kx, + KX, m dt22 = —2KX, + KX,
become
—w’mx, = —2Kx, + KX, —w’mx, = —2Kx, + Kx,

which we can rewrite in matrix form as

el

The top line is the first equation
and the bottom line is the second equation



Finding the eigenmodes

I
2

If we now choose to write for some variable 4, 1= il
2K K [ x, X, | K
= @’m
ther {_K ZK}{XJ X,

2 -1 X,
becomes { Mxl}zi %
-1 2 || X, X,

which is, in abstract mathematical notation, Ax = Ax

with A:{z _1} x:{xl}
-1 2 X,



Finding the eigenmodes
N

Hence we have reduced this problem to a matrix
eigenvalue and eigenvector problem

We want the eigenvalues A
for which Ax= AXx has solutions

and we want the eigenvectors X corresponding
to each eigenvalue 4



Finding the eigenmodes
N

2 -1
Rewriting the equation { }{xl} = l{xl}
-1 2 || X,

2-4 -1 || X
as =0
-1 2=} X
we know from matrix algebra that

this only has a solution if the determinant of the
matrix is zero

e, (2-2)(2-2)-1=0
e, A2—42+3=0



Finding the eigenmodes
N

Solving this quadratic A°-41+3=0

gives A = 2(1J_r1j or equivalently @’ ZZ_K(HEJ
2 m " 2

l.e., A=1orequivalently o=+vK/m
and A1 =3 or equivalently @ =+3K/m

Substituti hvalue of 4 backinto | 2% ~H 1% | =0
u S|U|ngeac value O dCK INTO 1 2_1 X2 =

lets us solve for the eigenvectors in each case



Finding the eigenmodes
N

So finally we have
1
forA=1 (w=+vK/m )’XOCL}
l.e., both masses moving in the same direction

1
forA=3 (w=+3K/m), Xo{ J

l.e. both masses moving in the opposite direction

Note the higher frequency of the “opposite direction”
mode
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Mathematical properties of modes
5
The modes we have looked at so far

describe oscillations at specific
frequencies

In linear systems

the mathematics behind modes is
quite generally useful

well beyond simple oscillations



Mathematical properties of modes
5
We can look further at this
mathematics

and its use in describing linear
systems
We use some results from the
coupled oscillator
to illustrate these mathematical
properties
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Inner products
N 1

We can take the “dot” product between two
geometrical vectors

for example, in a two-dimensional x-y plane
with unit vectors i and j in the x and y directions
For a=2i+3j and b =-5i +4j
remembering the dot product is the sum of the
products of the components

a'b=2><(—5)+3><4:2



Inner products
N 1

We can multiply two vectors in matrix-vector notation
provided the “dimensions” of the vectors match
We can multiply a column vector on the “right”
and a row vector on the “left”
if the column and the row are the same “length”
Writing a as a row vector and b as a column vector
we would have

a-b=[2 3]{;5}:2><(—5)+3x4:2



Inner products and orthogonality
N

If two geometrical vectors are at right angles
such as c=21+3) andd=-3I+2]
then their dot product is zero
c-d=2x(-3)+3x2=0
Generally, such products of row and column vectors
even if they are not geometrical vectors
can be called “inner products”
If the inner product of two non-zero vectors is zero
the vectors are "orthogonal”
a generalization of vectors being at right angles



Orthogonality of vectors
B
Note the coupled-oscillator
elgenvectors

1 1
{ } and { } are orthogonal
1 1

That is, [1 1]{_11} =0

If we draw out these
eigenvectors on a plane
they are geometrically

orthogonal as we expect

|

0
1

|

or

Xy

direction

A

1
{ } direction
v!|1
/

/ > 1 OI’ uxln
\ 0| direction

4
1 ..
{ } direction



Orthogonality of vectors
B
This orthogonality is not
accidental

For a very broad class of
linear physical problems
including quantum

mechanical ones
the eigenfunctions or
(eigen) modes
are orthogonal in this
sense

|

0
1

|

or

Xy

direction

A

1
{ } direction
v!|1
/

/7

/ > 1 Or uxln
\ 0| direction

4
1 ..
{ } direction
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Functions as vectors
5
We are now thinking of a function as
a vector in a mathematical space

Any pair of positions of the coupled
oscillator masses

can be represented as a vector on
a plane



Functions as vectors
N
The function here is a list of two
numbers

corresponding to the position of
mass
and the position of mass 2
We can represent any function as a
list of numbers

representing the results when
mapping from some known list of
values of the “argument”
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Completeness and basis sets
N

These eigenfunctions or eigenmodes can be used
to describe any particular position of the two masses
This property that sets of modes can have
is called “completeness”
Any particular pair of positions of the two masses
Xx,=fandx,=g¢ ¢ 17 To
can be represented as =f| |+
B

e {f}:(fﬂzj){l}r(f—g)_l_

g 2 1 2 -1




Completeness and basis sets
N

Because any such pair of positions x, =f and x, = ¢
can be represented using combinations

1 1
of the (eigen) vectors L} and { J

we can say this set of eigenvectors is complete

for representing any possible pair of positions

of the two masses



Completeness and basis sets
I

If a set of vectors can make up any
vector in the “space” of interest

here a 2-dimensional “plane”

we can call that set a “basis set” of
vectors

If those basis vectors are all orthogonal
to one another

then we call the set an “orthogonal
basis set”

or often just an “orthogonal basis”



Completeness and basis sets

B H or “X,”
We could represent any point in 1] direction .
the plane . u direction
in terms of its coordinates P
1 1] . , o
along| |and directions / 17 or “x.”
1 -1 K > 1
\ 0| direction
1 0] N
or along 0 and . directions 1 N
direction
Either pair of vectors is a complete LJ

orthogonal basis
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Hermitian adjoints
N

Taking a Hermitian adjoint of a matrix involves
reflecting a matrix along its leading diagonal
l.e., taking the transpose of the matrix
and taking the complex conjugate of the
elements

The Hermitian adjoint is often denoted with the
"dagger” symbol “T"

b T * *
E.g. fora 2 x 2 matrix, we have {a } E{a ‘ }



Hermitian adjoints
N

We can also have Hermitian adjoints of matrices that are
not square

such as a vector
In the case of a 2-element vector, for example, we have

Again, we can think of this operation as
reflecting about a “45°" diagonal line
l.e., from top left to bottom right
and taking the complex conjugate of the elements



Hermitian adjoints
I
We can think of the Hermitian adjoint as

like the idea of a complex conjugate

but now generalized to matrices or
operators

A simple number can be thought of
as a1l x 1 matrix

and the Hermitian adjoint of that
"matrix”

is simply the complex conjugate of
the number



Inner product
N 1

Now that we may have complex numbers
we need to clarify the definition of the inner product

We must use the Hermitian adjoint vector as the
one on the left

a C
..e., the inner product of {b} and {d}

IS given by [a* b]{;} =a’'c+b’d
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Hermitian matrices and operators
N 1

A Hermitian matrix is
one that is equal to its own Hermitian adjoint
In abstract operator notation
a Hermitian operator is one for which

A=A



Hermitian matrices
e

These three matrices are Hermitian

0 11 -3

E’ ﬂ {—11 —IJ 1+ —_1 exp(i/+/2)
-3 exp(-i/2) 1

but these three are not

o LR
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Hermitian operators and physical problems
I
For a large number of linear physical
problems

e.g., for frictionless or loss-less
systems
the key linear operators are
Hermitian
and can be represented by
Hermitian matrices



Hermitian operators and physical problems
5
A large number of the operators in
guantum mechanics are Hermitian

The eigenfunctions of those
Hermitian operators are orthogonal

with real eigenvalues

giving a complete basis set for the
relevant space



Hermitian operators and physical problems

5
Not only are eigenfunctions and

eigenmodes interesting for the
physical behaviors they describe

they can also have remarkable and
useful mathematical properties

specifically
= orthogonality
« completeness

so we can use them to describe
many behaviors of physical
systems
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Standing waves and Fourier series
N 1

For the standing wave modes on a string
they should be a complete set for describing
any function of position between 0 and L
(and having the value zero at positions 0 and L)
In fact, we know they are complete
because these functions can form a Fourier series
which in this case we could write as

f(z):gansin(n—?j

where the a, are appropriate numbers (coefficients)



Standing waves and Fourier series
N 1

In such a Fourier series representation of a function
2 . (nxz
f (z):Zansm(%j
n=1

the set of coefficients a, is just as good a way of
describing the function

as the list of values of the function for all values of
Z of interest

Our modes here for standing waves on a string

are identical to the sine waves used in the Fourier
series



Y
@)
%))

-+
)
(V)]

A

(V)]
C
.9
-+
O
(-
D)
Y

Generality of bas




Generality of basis sets of functions
5
Such basis sets of functions

can be used to represent any
function

even where the physical problem

Is different from the one used in
deriving the set



Generality of basis sets of functions
I
For example
we could have a string whose
density varied along its length
The modes of such a string would
not be simple sine waves

but, at any given time, we could
represent the shape of the
string
as a sum of our sine wave
“modes” or functions



Generality of basis sets of functions
5
Here, we are using the mathematical
properties of
the set of eigenfunctions of an
operator
even though that operator may

not be the one that corresponds
to the current physical problem



Generality of basis sets of functions

T
There is an infinite number of

possible basis sets of functions to

describe functions in any given

space

For a given problem

the right choice of basis makes
the problem simpler to solve

This notion of multiple different

possible basis sets

Is central to the mathematics of
quantum mechanics
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Modes as eigenfunctions of operators
5
The broadest possible definition we

can have for a mode is

a mode is an eigenfunction of
an operator that describes a
physical system




Modes as eigenfunctions of operators
5
For linear physical systems

that can be described by a Hermitian
operator that

can be approximated to any degree
of accuracy by a finite matrix

= the modes are the
eigenfunctions of the operator

= they are orthogonal
= they are complete, and
= they have real eigenvalues



Modes as eigenfunctions of operators
5
For oscillating modes we can say

In an oscillating mode
everything that is oscillating

Is oscillating at the same
frequency
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