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A coupled oscillator



Coupled oscillator

Suppose we have two masses 
and three springs
The masses can only move 

side to side
and their movement is 
frictionless

This is like two mass-on-a-
spring oscillators
coupled by an additional 

spring

1x 2x
identical springs

identical masses



Coupled oscillator

We take the two masses to be 
equal
of value m

We take all springs to have the 
same spring constant K

At equilibrium
we presume no net 

stretching or compression 
of any springs

1x 2x
identical springs

identical masses



Coupled oscillator

The position of the left mass 
relative to the equilibrium 

position 
is x1

Similarly the position of the 
right mass
relative to the equilibrium 

position
is x2

1x 2x
identical springs

identical masses



Coupled oscillator

From the stretching of the left 
spring
the restoring force pulling 

the left mass to the left
back to the equilibrium 
position 
is  

1x 2x
identical springs

identical masses1Kx



Coupled oscillator

There is also a force on the left 
mass from the middle spring

The middle spring is stretched 
by an amount
giving a force on the left mass

pulling it to the right
so the net force to the right on 

the left mass is

1x 2x
identical springs

identical masses
 2 1K x x
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Coupled oscillator

Applying Newton’s second law 
to the left mass gives

A similar analysis for the right 
mass gives 

We need to solve these coupled 
equations 

1x 2x
identical springs

identical masses
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Finding the eigenmodes



Finding the eigenmodes

To look for eigenmodes
we presume that everything that is oscillating is 
oscillating at the same frequency

which we now presume to be some (angular) 
frequency 

and we look for solutions
For any solutions oscillating in the form          ,

or any linear combination
we can replace        with   

sin t cos t
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Finding the eigenmodes

Hence the equations

become

which we can rewrite in matrix form as

The top line is the first equation
and the bottom line is the second equation 
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Finding the eigenmodes

If we now choose to write for some variable ,

then

becomes

which is, in abstract mathematical notation,

with 
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K

 

1 12

2 2

2
2

x xK K
m

x xK K


     
         

1 1

2 2

2 1
1 2

x x
x x


     

         

x xA

2 1
1 2

 
  

A = 1

2

x
x
 

  
 

x



Finding the eigenmodes

Hence we have reduced this problem to a matrix 
eigenvalue and eigenvector problem

We want the eigenvalues 
for which               has solutions

and we want the eigenvectors x corresponding 
to each eigenvalue 

x xA



Finding the eigenmodes

Rewriting the equation

as

we know from matrix algebra that 
this only has a solution if the determinant of the 

matrix is zero 
i.e.,

i.e.,  
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Finding the eigenmodes

Solving this quadratic

gives                     or equivalently

i.e.,         or equivalently

and          or equivalently

Substituting each value of  back into

lets us solve for the eigenvectors in each case    
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Finding the eigenmodes

So finally we have

for          (                   ),

i.e., both masses moving in the same direction

for          (                    ),

i.e. both masses moving in the opposite direction
Note the higher frequency of the “opposite direction” 

mode
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Inner products, orthogonality, and basis sets



Mathematical properties of modes

The modes we have looked at so far
describe oscillations at specific 

frequencies
In linear systems 

the mathematics behind modes is 
quite generally useful 
well beyond simple oscillations



Mathematical properties of modes

We can look further at this 
mathematics 
and its use in describing linear 

systems
We use some results from the 

coupled oscillator 
to illustrate these mathematical 

properties 



Inner products and orthogonality



Inner products

We can take the “dot” product between two 
geometrical vectors

for example, in a two-dimensional x-y plane
with unit vectors i and j in the x and y directions

For                  and
remembering the dot product is the sum of the 
products of the components

2 3 a i j 5 4  b i j

 2 5 3 4 2      a b



Inner products

We can multiply two vectors in matrix-vector notation 
provided the “dimensions” of the vectors match

We can multiply a column vector on the “right” 
and a row vector on the “left”

if the column and the row are the same “length” 
Writing a as a row vector and b as a column vector

we would have

   
5
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Inner products and orthogonality

If two geometrical vectors are at right angles
such as                 and

then their dot product is zero

Generally, such products of row and column vectors
even if they are not geometrical vectors

can be called “inner products” 
If the inner product of two non-zero vectors is zero

the vectors are “orthogonal” 
a generalization of vectors being at right angles 

2 3 c i j 3 2  d i j

 2 3 3 2 0      c d



Orthogonality of vectors

Note the coupled-oscillator 
eigenvectors 

and         are orthogonal 

That is,

If we draw out these 
eigenvectors on a plane
they are geometrically 

orthogonal as we expect
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Orthogonality of vectors

This orthogonality is not 
accidental
For a very broad class of 

linear physical problems
including quantum 
mechanical ones
the eigenfunctions or 

(eigen) modes 
are orthogonal in this 

sense
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Functions as vectors



Functions as vectors

We are now thinking of a function as 
a vector in a mathematical space
Any pair of positions of the coupled 

oscillator masses 
can be represented as a vector on 
a plane



Functions as vectors

The function here is a list of two 
numbers
corresponding to the position of 

mass 1
and the position of mass 2

We can represent any function as a 
list of numbers
representing the results when 

mapping from some known list of 
values of the “argument”



Completeness and basis sets



Completeness and basis sets

These eigenfunctions or eigenmodes can be used 
to describe any particular position of the two masses

This property that sets of modes can have 
is called “completeness”

Any particular pair of positions of the two masses
x1 = f  and x2 = g 

can be represented as

or as
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Completeness and basis sets

Because any such pair of positions x1 = f and x2 = g 
can be represented using combinations 

of the (eigen) vectors       and  

we can say this set of eigenvectors is complete 
for representing any possible pair of positions 

of the two masses
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Completeness and basis sets

If a set of vectors can make up any 
vector in the “space” of interest 
here a 2-dimensional “plane”

we can call that set a “basis set” of 
vectors

If those basis vectors are all orthogonal 
to one another
then we call the set an “orthogonal 

basis set” 
or often just an “orthogonal basis” 



Completeness and basis sets

We could represent any point in 
the plane 
in terms of its coordinates

along      and         directions

or along       and       directions

Either pair of vectors is a complete 
orthogonal basis
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Hermitian operators and sets of functions



Hermitian adjoints



Hermitian adjoints

Taking a Hermitian adjoint of a matrix involves 
reflecting a matrix along its leading diagonal 

i.e., taking the transpose of the matrix
and taking the complex conjugate of the 

elements
The Hermitian adjoint is often denoted with the 

“dagger” symbol “  ”

E.g., for a 2 × 2 matrix, we have

†
†a b a c

c d b d

 

 

  
   

   



Hermitian adjoints

We can also have Hermitian adjoints of matrices that are 
not square

such as a vector
In the case of a 2-element vector, for example, we have

Again, we can think of this operation as 
reflecting about a “45°” diagonal line 

i.e., from top left to bottom right 
and taking the complex conjugate of the elements 

†a
a b

b
        



Hermitian adjoints

We can think of the Hermitian adjoint as 
like the idea of a complex conjugate 

but now generalized to matrices or 
operators

A simple number can be thought of 
as a 1 × 1 matrix 

and the Hermitian adjoint of that 
“matrix” 
is simply the complex conjugate of 

the number



Inner product

Now that we may have complex numbers
we need to clarify the definition of the inner product

We must use the Hermitian adjoint vector as the 
one on the left

i.e., the inner product of       and       

is given by

a
b
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Hermitian matrices and 
operators



Hermitian matrices and operators

A Hermitian matrix is 
one that is equal to its own Hermitian adjoint

In abstract operator notation
a Hermitian operator is one for which

† A A



Hermitian matrices

These three matrices are Hermitian

but these three are not
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Hermitian operators and physical 
problems



Hermitian operators and physical problems

For a large number of linear physical 
problems 
e.g., for frictionless or loss-less 

systems
the key linear operators are 
Hermitian
and can be represented by 

Hermitian matrices 



Hermitian operators and physical problems

A large number of the operators in 
quantum mechanics are Hermitian

The eigenfunctions of those 
Hermitian operators are orthogonal
with real eigenvalues

giving a complete basis set for the 
relevant space



Hermitian operators and physical problems

Not only are eigenfunctions and 
eigenmodes interesting for the 
physical behaviors they describe
they can also have remarkable and 

useful mathematical properties
specifically

 orthogonality 
 completeness

so we can use them to describe 
many behaviors of physical 
systems



Standing waves and Fourier 
series



Standing waves and Fourier series

For the standing wave modes on a string
they should be a complete set for describing

any function of position between 0 and L
(and having the value zero at positions 0 and L)

In fact, we know they are complete
because these functions can form a Fourier series

which in this case we could write as

where the an are appropriate numbers (coefficients) 
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Standing waves and Fourier series

In such a Fourier series representation of a function

the set of coefficients an is just as good a way of 
describing the function 

as the list of values of the function for all values of 
z of interest 

Our modes here for standing waves on a string 
are identical to the sine waves used in the Fourier 
series
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Generality of basis sets of 
functions



Generality of basis sets of functions

Such basis sets of functions 
can be used to represent any 

function
even where the physical problem 

is different from the one used in 
deriving the set



Generality of basis sets of functions

For example
we could have a string whose 

density varied along its length
The modes of such a string would 
not be simple sine waves 
but, at any given time, we could 

represent the shape of the 
string 
as a sum of our sine wave 

“modes” or functions



Generality of basis sets of functions

Here, we are using the mathematical 
properties of 
the set of eigenfunctions of an 

operator 
even though that operator may 
not be the one that corresponds 
to the current physical problem



Generality of basis sets of functions

There is an infinite number of 
possible basis sets of functions to 
describe functions in any given 
space
For a given problem

the right choice of basis makes 
the problem simpler to solve 

This notion of multiple different 
possible basis sets 
is central to the mathematics of 

quantum mechanics



Modes as the eigenfunctions of 
operators



Modes as eigenfunctions of operators

The broadest possible definition we 
can have for a mode is

a mode is an eigenfunction of 
an operator that describes a 

physical system



Modes as eigenfunctions of operators

For linear physical systems 
that can be described by a Hermitian 
operator that
can be approximated to any degree 
of accuracy by a finite matrix
 the modes are the 

eigenfunctions of the operator
 they are orthogonal
 they are complete, and
 they have real eigenvalues 



Modes as eigenfunctions of operators

For oscillating modes we can say
in an oscillating mode

everything that is oscillating 
is oscillating at the same 

frequency




