
David MillerModern physics for engineers

The quantum view of the 
world 2

Electrons and waves



De Broglie’s hypothesis



De Broglie’s hypothesis

In 1924, Louis de Broglie proposed that 
a particle with mass 

also behaves as a wave with wavelength 
now of the particle, not of 

electromagnetic waves 

where p is the particle’s momentum
which can fit with Bohr’s orbital idea
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Matrices and waves

Following from the successful but ad 
hoc Bohr model
and de Broglie’s hypothesis

can we construct a solid 
mathematical approach?



Matrices and waves

Werner Heisenberg (1925)
matrix formulation of quantum 

mechanics
Erwin Schrödinger (1926)

wave equation
More key contributions by

Max Born, Wolfgang Pauli, Paul 
Dirac, John von Neumann, …



Schrödinger’s wave equation



Schrödinger’s equation

The next step in quantum mechanics
Schrödinger’s equation

solves the hydrogen atom
giving us the basis of chemical 

elements
and starting the rest of the 

quantum mechanics of 
materials

How do we get to Schrödinger’s 
equation?



Electrons as waves

de Broglie’s hypothesis is that the electron 
wavelength  is given by  

where p is the electron momentum and
h is Planck’s constant

J s
Now we want to use this to help construct a 

wave equation
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A Helmholtz wave equation

If we are considering only waves of one 
wavelength  for the moment

i.e., monochromatic waves
we can choose a Helmholtz wave equation

with
which we know works for simple waves

with solutions like 
sin(kz), cos(kz), and exp(ikz)
(and sin(–kz), cos(–kz), and exp(–ikz))
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Use and notation for complex exponentials

We will need to use the complex exponential more in 
quantum mechanics

and we will use both notations
We will also use the scientific notation

rather than the j more common in engineering
We remember Euler’s formula

which here would give, for example

 exp eii  
1i  

 exp cos sinikz kz i kz 



A Helmholtz wave equation

In three dimensions, we can write this as

which has solutions like
sin(k  r), cos(k  r), and exp(ik  r)
(and sin(-k  r), cos(-k  r), and exp(-ik  r))

where k and r are vectors

2 2 2
2 2

2 2 2 k
x y z
     

     
  



From Helmholtz to Schrödinger

With de Broglie’s hypothesis
and the definition

then
where we have defined

so
Hence we can rewrite our Helmholtz equation 

or    

/h p 
2 /k  

2 2 2/k p 
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From Helmholtz to Schrödinger

For some particle of mass m (e.g., an electron)
we can divide both sides by the particle mass m

But we know from classical mechanics that

and in general
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 Total energy ( )=Kinetic energy + Potential energy ( )E V r



From Helmholtz to Schrödinger

So

Hence our Helmholtz equation

becomes the Schrödinger equation

or equivalently
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Schrödinger’s time-independent equation

We can postulate a Schrödinger equation for 
any particle of mass m

Formally, this is the
time-independent Schrödinger equation 
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Schrödinger’s time-independent equation

Note that we have not “derived” 
Schrödinger’s equation
We suggested it as an equation that 

agrees with at least one experiment
There is no way to derive Schrödinger’s 

equation from first principles
Schrödinger’s equation has to be 

postulated
The only justification for making such 

a postulate is that it works!
But what does the “wave” mean?



Probability densities

Born’s postulate is that
the probability          of finding an electron 
near any specific point r in space

is proportional to the modulus squared     
of the wave amplitude 

can therefore be viewed as a 
“probability density”

with          called a “probability 
amplitude” 

or a “quantum mechanical amplitude”
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Electron waves and diffraction



Electron waves and diffraction

de Broglie’s hypothesis and 
Schrödinger’s wave equation
were proposed before any evidence 

of electron waves
In 1927, diffraction experiments with 

electrons
from nickel by Clinton Davisson and 

Lester Germer
and with gold films by George 

Thomson
showed clear wave behavior 



Electron waves and diffraction

Diffraction of electrons by crystal surfaces 
is a routine diagnostic technique today

Electron microscopes use the short 
wavelengths of accelerated electrons 
down even to the size scales of atoms 

themselves
Electron wave phenomena

also expose many of the conceptual 
aspects of quantum mechanics
such as the uncertainty principle

and the measurement problem
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Solving Schrödinger’s equation –
a particle in a box



Particle in a box

We consider a particle of mass m
with a spatially-varying potential V(z) in the 
z direction

so we have a Schrödinger equation

where E is the energy of the particle
and  (z) is the wavefunction

       
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Particle in a box

Suppose the potential energy is a 
simple “rectangular” potential well

thickness Lz
Potential energy is constant inside

we choose           there 
rising to infinity at the walls

i.e., at          and  
We will sometimes call this 

an infinite or infinitely deep 
(potential) well

0V 

0z  zz L

0z  zz L
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Particle in a box

Because these potentials at          and 
at            are infinitely high
but the particle’s energy E is 

presumably finite
we presume there is no possibility 
of finding the particle outside

i.e., for         or
so the wavefunction  is 0 there 

so  should be 0 at the walls 
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Particle in a box

With these choices
inside the well

the Schrödinger equation

becomes

with the boundary conditions 
and
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Particle in a box

The general solution to the equation

is of the form 

where A and B are constants 
and

The boundary condition
means           because   
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Particle in a box

With now 
and the condition

kz must be a multiple of , i.e., 

where n is an integer
Since, therefore, 

the solutions are

with

   sinz A kz 
  0zL 

22 / / zk mE n L 

2 2

2
kE
m




  sinn n
z

n zz A
L


 
  

 

22

2n
z

nE
m L

 
  

 



En
er

gy

1E1n 

2E2n 

3E
3n 



Particle in a box

We restrict n to positive integers                  
for the following reasons
Since                              for any real 

number a
the wavefunctions with negative n are 
the same as those with positive n 
within an arbitrary factor, here -1

the wavefunction for          is trivial
the wavefunction is 0 everywhere 
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Normalization and probability



Normalizing wavefunctions

So far, if we integrate the modulus 
squared of the wavefunction
we do not get 1

Specifically

We prefer to “normalize” 
so this integral does give 1

Then             will correspond to 
probability density per unit length
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Normalizing wavefunctions

To have this integral equal 1, i.e.

we choose
Note An can be complex

All such solutions are arbitrary 
within a unit complex factor
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Normalizing wavefunctions

Conventionally 
we choose An real for simplicity

so we choose
Note that in this specific case

the normalization coefficient is the 
same for all states

That will not typically be the case
Normalization coefficients will often 

be different for different states
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Particle in a box solutions

The normalized solutions for the 
particle in a box problem are
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Probability density

We can plot the probability densities
for each state

When we use normalized 
wavefunctions
the area under each such curve is 1
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Probability

For the probability of finding a 
particle in a region
integrate the probability 

density over the region
For a particle in state n = 1 in 

our box
for the probability of finding 

the particle between z1 and z2

integrate the normalized  
between these limits
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The nature of the particle-in-a-box solutions



Eigenvalues and eigenfunctions

As in classical wave problems
solutions with a specific set of 

allowed values of a parameter 
(here energy)
the eigenvalues

and with a particular function 
associated with each such value
the eigenfunctions

can be called eigensolutions
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Eigenvalues and eigenfunctions

Compared to the classical world
at least in this example problem 

asking for solutions with definite 
energy E
leads to the conclusion that 

only very specific, discrete 
values of that energy are 
possible
unlike classical models of 

matter 
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Eigenvalues and eigenfunctions

Here, since the parameter is an energy
we can call the eigenvalues

eigenenergies
the eigenfunctions are

energy eigenfunctions
and we call n a 

quantum number
The eigenenergy, eigenfunction, and 

quantum number 
are attributes of the particle’s “state”
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Parity of wavefunctions

Note these eigenfunctions have definite 
symmetry
the         function is the mirror image on 

the left of what it is on the right
such a function has “even parity”
or is said to be an “even function”

The          eigenfunction is also even
The          eigenfunction 

has “odd parity”
or is said to be an “odd function”
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Zeros in eigenfunctions

Note that 
each successively higher energy 

state 
has one more “zero” in the 
eigenfunction 

This is very common behavior in 
quantum mechanics 
and is a common result of requiring 

mathematically “orthogonal” 
functions
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Probability density

In the lowest state (        ) 
the particle is most likely to be 

found near the center of the box

In higher states 
there are points inside the box 

where the particle will never be 
found
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Quantum confinement

This particle-in-a-box behavior is 
very different from the classical case 
in at least 3 ways
1 – there is only a discrete set of 

possible values for the energy
2 – there is a minimum possible 

energy for the particle
here corresponding to 

here
sometimes called a 

“zero-point energy” 
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Quantum confinement

3 - the particle is not uniformly 
distributed over the box, and 
its distribution is different for 
different energies
It is almost never found very 

near to the walls of the box
The probability obeys a 

standing wave pattern 1n 
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Orders of magnitude

E.g., confine an electron in a 5 Å (0.5 nm) thick box
The first allowed level for the electron is

The separation between the first and second 
allowed energies (                    ) is 

which is a characteristic size of major energy 
separations between levels in an atom

Note that visible photons also have energies in the 
single eV range 

so light-matter interaction is quantum mechanical
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