

The quantum view of the world 2

Electrons and waves

Modern physics for engineers

David Miller

De Broglie's hypothesis

De Broglie's hypothesis

In 1924, Louis de Broglie proposed that
a particle with mass
also behaves as a wave with wavelength λ
now of the particle, not of
electromagnetic waves

$$\lambda = \frac{h}{p}$$

where p is the particle's momentum
which can fit with Bohr's orbital idea

Matrices and waves

Following from the successful but *ad hoc* Bohr model
and de Broglie's hypothesis
can we construct a solid
mathematical approach?

Matrices and waves

Werner Heisenberg (1925)

matrix formulation of quantum
mechanics

Erwin Schrödinger (1926)

wave equation

More key contributions by

Max Born, Wolfgang Pauli, Paul
Dirac, John von Neumann, ...

Schrödinger's wave equation

Schrödinger's equation

The next step in quantum mechanics

Schrödinger's equation

solves the hydrogen atom

giving us the basis of chemical
elements

and starting the rest of the
quantum mechanics of
materials

How do we get to Schrödinger's
equation?

Electrons as waves

de Broglie's hypothesis is that the electron wavelength λ is given by

$$\lambda = \frac{h}{p}$$

where p is the electron momentum and h is Planck's constant

$$h = 6.62606957 \times 10^{-34} \text{ J s}$$

Now we want to use this to help construct a wave equation

A Helmholtz wave equation

If we are considering only waves of one wavelength λ for the moment
i.e., monochromatic waves

we can choose a Helmholtz wave equation

$$\frac{d^2\psi}{dz^2} = -k^2\psi \text{ with } k = \frac{2\pi}{\lambda}$$

which we know works for simple waves
with solutions like

$\sin(kz)$, $\cos(kz)$, and $\exp(ikz)$
(and $\sin(-kz)$, $\cos(-kz)$, and $\exp(-ikz)$)

Use and notation for complex exponentials

We will need to use the complex exponential more in quantum mechanics

and we will use both notations $\exp(i\theta) \equiv e^{i\theta}$

We will also use the scientific notation $i \equiv \sqrt{-1}$

rather than the j more common in engineering

We remember Euler's formula

which here would give, for example

$$\exp(ikz) = \cos kz + i \sin kz$$

A Helmholtz wave equation

In three dimensions, we can write this as

$$\nabla^2 \psi \equiv \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = -k^2 \psi$$

which has solutions like

$\sin(\mathbf{k} \cdot \mathbf{r})$, $\cos(\mathbf{k} \cdot \mathbf{r})$, and $\exp(i\mathbf{k} \cdot \mathbf{r})$

(and $\sin(-\mathbf{k} \cdot \mathbf{r})$, $\cos(-\mathbf{k} \cdot \mathbf{r})$, and $\exp(-i\mathbf{k} \cdot \mathbf{r})$)

where \mathbf{k} and \mathbf{r} are vectors

From Helmholtz to Schrödinger

With de Broglie's hypothesis $\lambda = h / p$

and the definition $k = 2\pi / \lambda$

then $k = 2\pi p / h = p / \hbar$

where we have defined $\hbar \equiv h / 2\pi$

so $k^2 = p^2 / \hbar^2$

Hence we can rewrite our Helmholtz equation

$$\nabla^2 \psi = -\frac{p^2}{\hbar^2} \psi$$

or

$$-\hbar^2 \nabla^2 \psi = p^2 \psi$$

From Helmholtz to Schrödinger

For some particle of mass m (e.g., an electron)

we can divide both sides by the particle mass m

$$-\frac{\hbar^2}{2m} \nabla^2 \psi = \frac{p^2}{2m} \psi$$

But we know from classical mechanics that

$$\frac{p^2}{2m} \equiv \text{kinetic energy of the particle}$$

and in general

$$\text{Total energy } (E) = \text{Kinetic energy} + \text{Potential energy } (V(\mathbf{r}))$$

From Helmholtz to Schrödinger

So Kinetic energy = $p^2 / 2m$
= Total energy (E) - Potential energy ($V(\mathbf{r})$)

Hence our Helmholtz equation $-\frac{\hbar^2}{2m} \nabla^2 \psi = \frac{p^2}{2m} \psi$
becomes the Schrödinger equation $-\frac{\hbar^2}{2m} \nabla^2 \psi = (E - V(\mathbf{r}))\psi$

or equivalently

$$\left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right) \psi = E\psi$$

Schrödinger's time-independent equation

We can postulate a Schrödinger equation for any particle of mass m

$$\left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right) \psi = E\psi$$

Formally, this is the
time-independent Schrödinger equation

Schrödinger's time-independent equation

Note that we have not “derived”
Schrödinger’s equation

We suggested it as an equation that
agrees with at least one experiment

There is no way to derive Schrödinger’s
equation from first principles

Schrödinger’s equation has to be
postulated

The only justification for making such
a postulate is that it works!

But what does the “wave” mean?

Probability densities

Born's postulate is that

the probability $P(\mathbf{r})$ of finding an electron
near any specific point \mathbf{r} in space

is proportional to the modulus squared $|\psi(\mathbf{r})|^2$
of the wave amplitude $\psi(\mathbf{r})$

$|\psi(\mathbf{r})|^2$ can therefore be viewed as a

“probability density”

with $\psi(\mathbf{r})$ called a “probability
amplitude”

or a “quantum mechanical amplitude”

Electron waves and diffraction

Electron waves and diffraction

de Broglie's hypothesis and
Schrödinger's wave equation
were proposed before any evidence
of electron waves

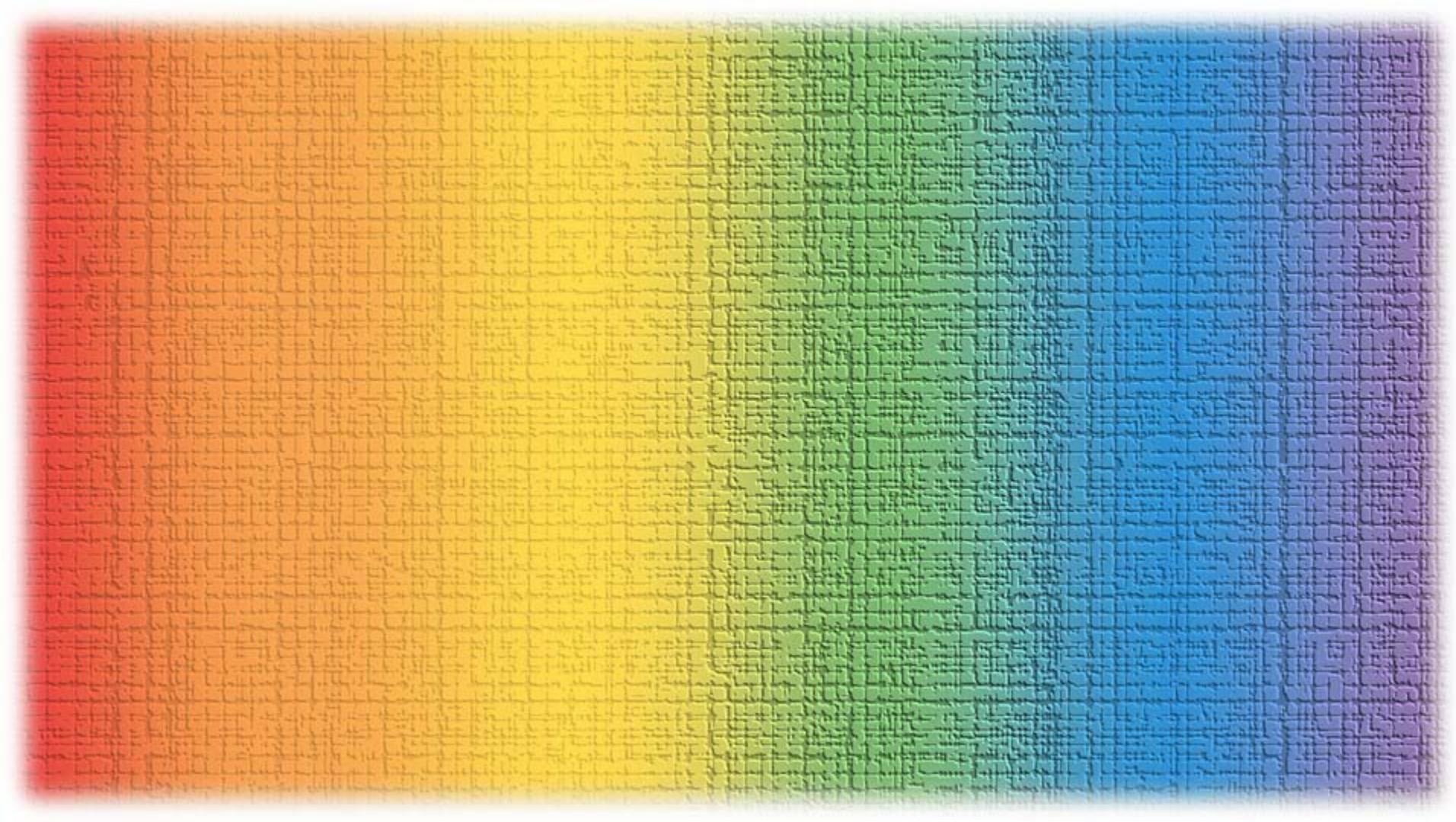
In 1927, diffraction experiments with
electrons
from nickel by Clinton Davisson and
Lester Germer
and with gold films by George
Thomson
showed clear wave behavior

Electron waves and diffraction

Diffraction of electrons by crystal surfaces
is a routine diagnostic technique today

Electron microscopes use the short
wavelengths of accelerated electrons
down even to the size scales of atoms
themselves

Electron wave phenomena
also expose many of the conceptual
aspects of quantum mechanics
such as the uncertainty principle
and the measurement problem



The quantum view of the world 2

Solving Schrödinger's equation –
a particle in a box

Modern physics for engineers

David Miller

Particle in a box

We consider a particle of mass m

with a spatially-varying potential $V(z)$ in the z direction

so we have a Schrödinger equation

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(z)}{dz^2} + V(z)\psi(z) = E\psi(z)$$

where E is the energy of the particle
and $\psi(z)$ is the wavefunction

Particle in a box

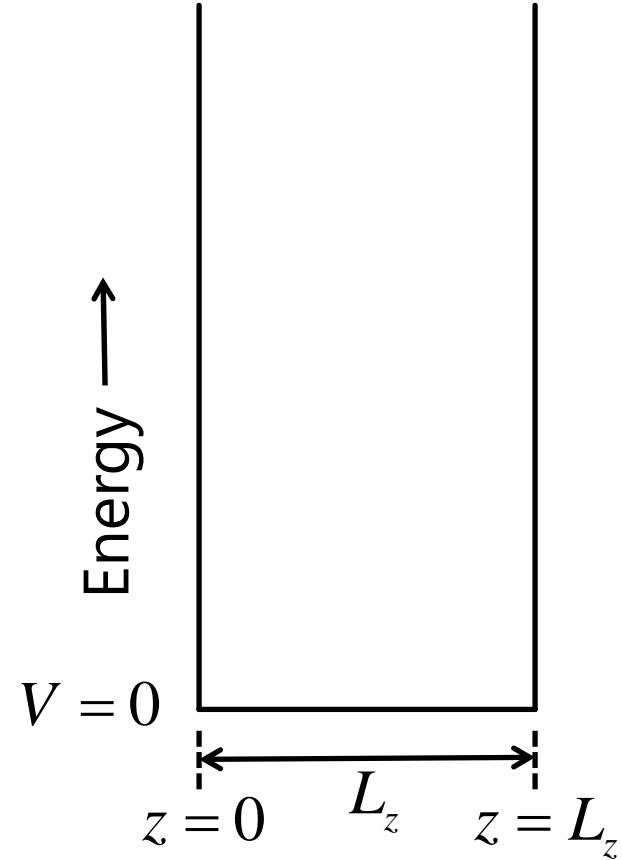
Suppose the potential energy is a simple “rectangular” potential well

thickness L_z

Potential energy is constant inside
we choose $V = 0$ there
rising to infinity at the walls

i.e., at $z = 0$ and $z = L_z$

We will sometimes call this
an infinite or infinitely deep
(potential) well



Particle in a box

Because these potentials at $z = 0$ and at $z = L_z$ are infinitely high

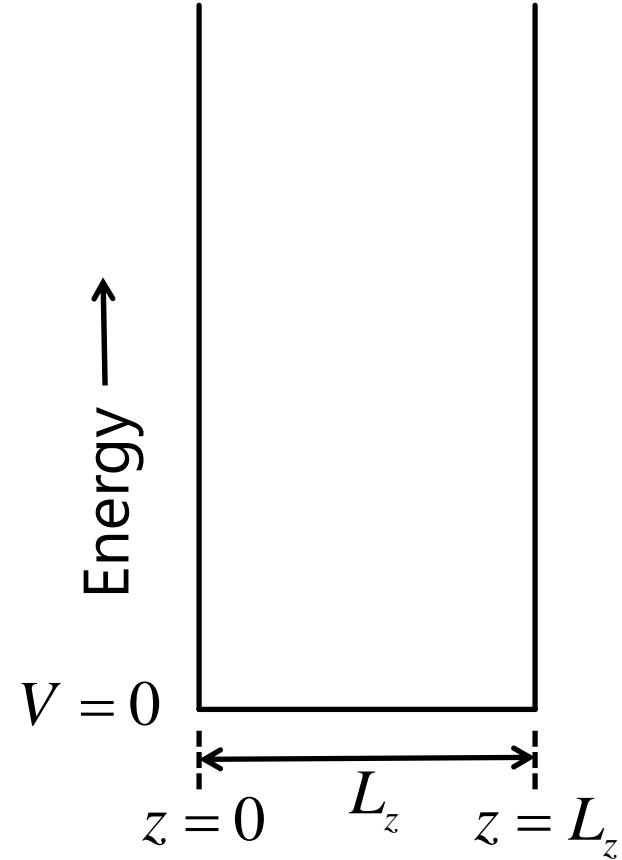
but the particle's energy E is presumably finite

we presume there is no possibility of finding the particle outside

i.e., for $z < 0$ or $z > L_z$

so the wavefunction ψ is 0 there

so ψ should be 0 at the walls



Particle in a box

With these choices
inside the well

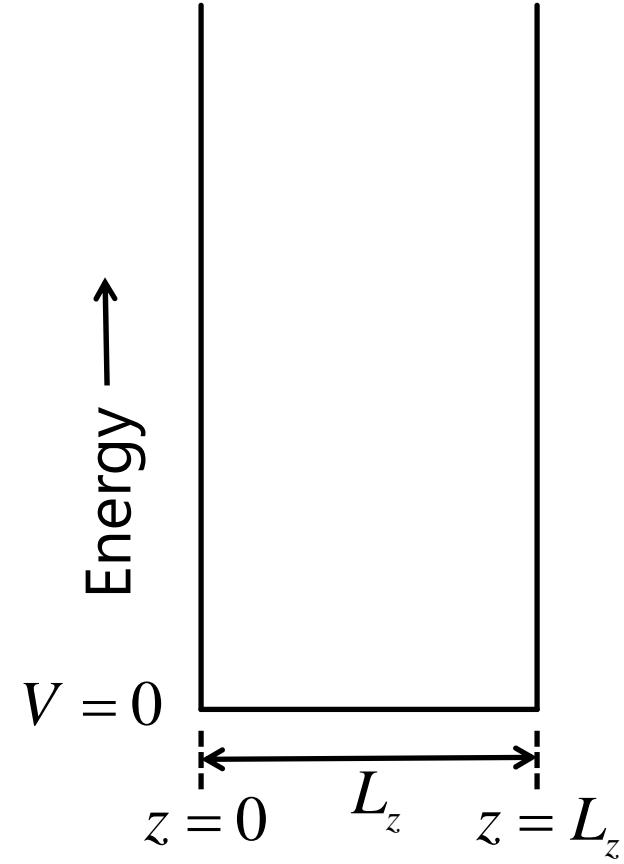
the Schrödinger equation

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(z)}{dz^2} + V(z)\psi(z) = E\psi(z)$$

becomes $-\frac{\hbar^2}{2m} \frac{d^2\psi(z)}{dz^2} = E\psi(z)$

with the boundary conditions

$$\psi(0) = 0 \text{ and } \psi(L_z) = 0$$



Particle in a box

The general solution to the equation

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(z)}{dz^2} = E\psi(z)$$

is of the form

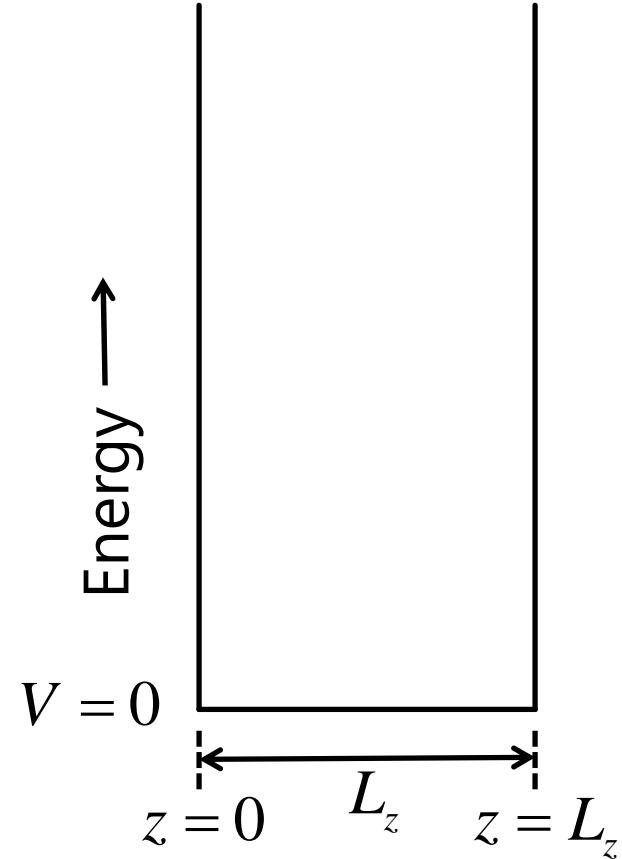
$$\psi(z) = A \sin(kz) + B \cos(kz)$$

where A and B are constants

and $k = \sqrt{2mE / \hbar^2}$

The boundary condition $\psi(0) = 0$

means $B = 0$ because $\cos(0) = 1$



Particle in a box

With now $\psi(z) = A \sin(kz)$

and the condition $\psi(L_z) = 0$

kz must be a multiple of π , i.e.,

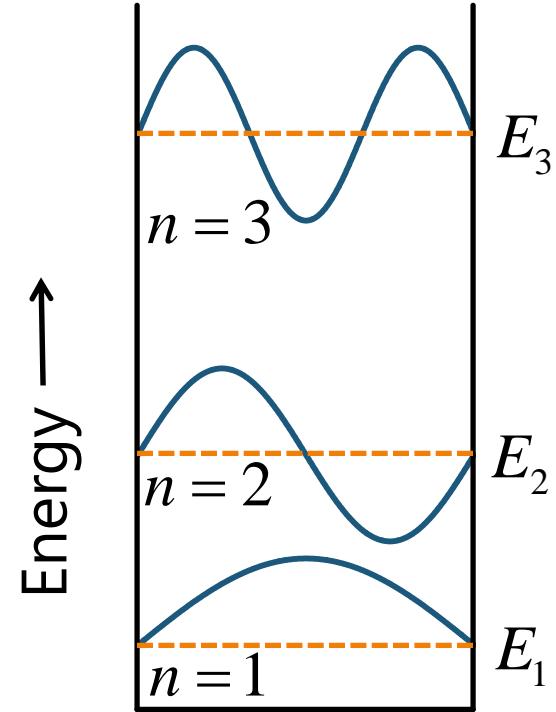
$$k = \sqrt{2mE / \hbar^2} = n\pi / L_z$$

where n is an integer

Since, therefore, $E = \frac{\hbar^2 k^2}{2m}$

the solutions are

$$\psi_n(z) = A_n \sin\left(\frac{n\pi z}{L_z}\right) \text{ with } E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L_z}\right)^2$$

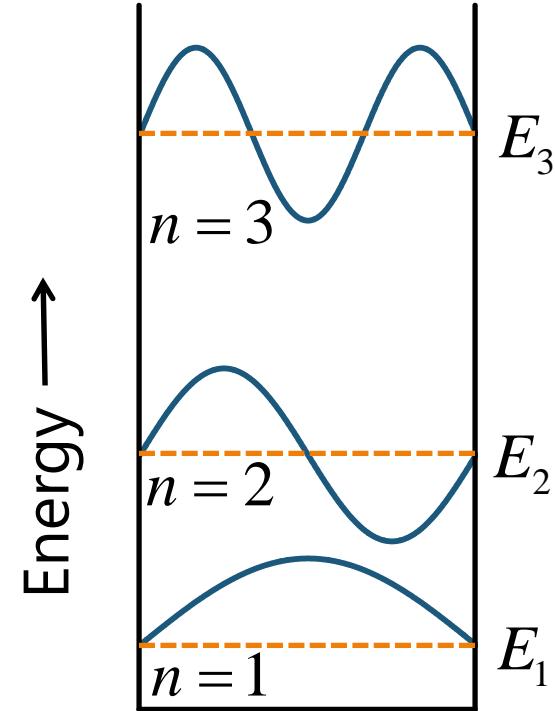


Particle in a box

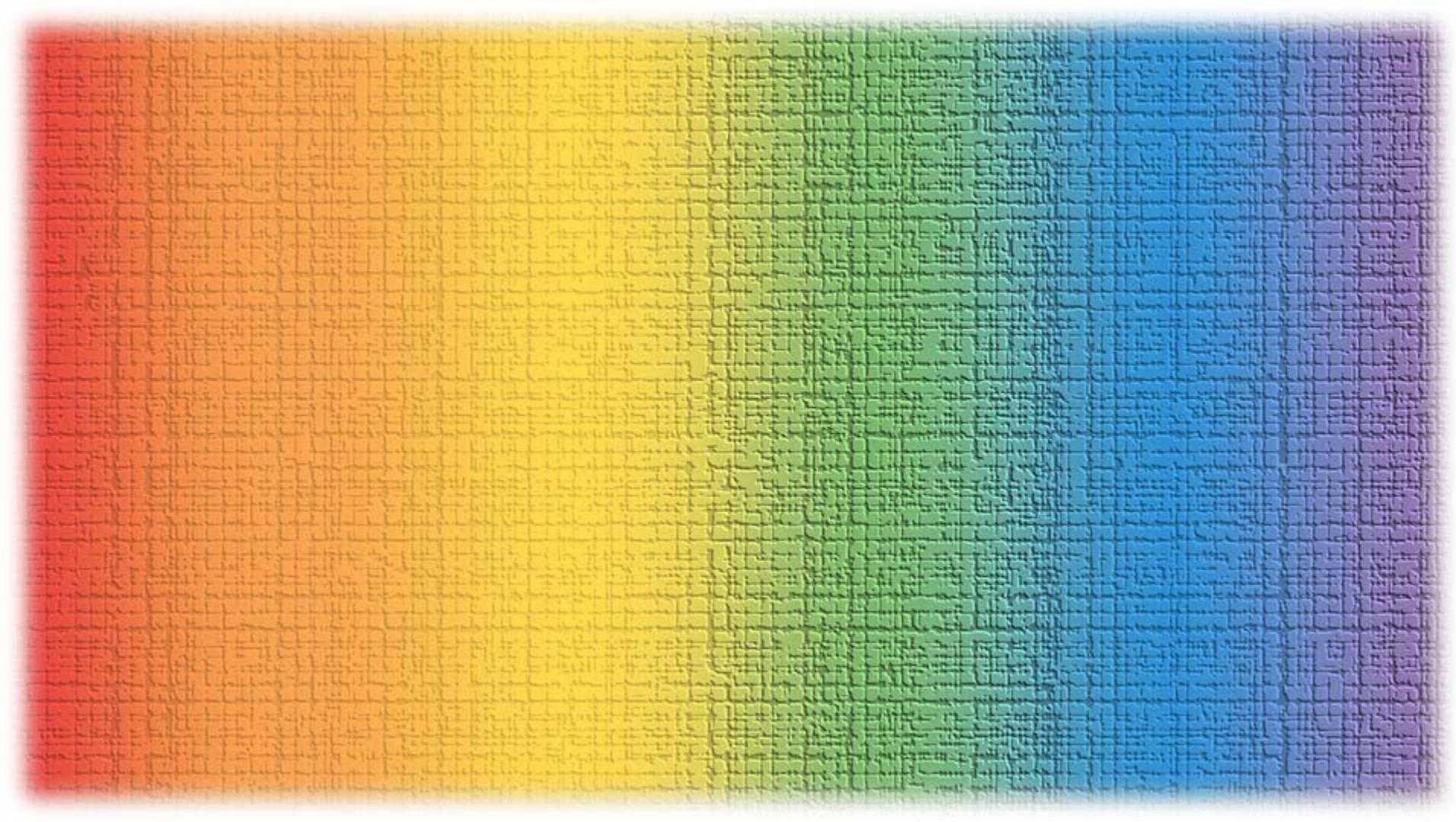
We restrict n to positive integers $n = 1, 2, \dots$ for the following reasons

Since $\sin(-a) = -\sin(a)$ for any real number a

the wavefunctions with negative n are the same as those with positive n within an arbitrary factor, here -1
the wavefunction for $n = 0$ is trivial
the wavefunction is 0 everywhere



$$\psi_n(z) = A_n \sin\left(\frac{n\pi z}{L_z}\right)$$



The quantum view of the world 2

Normalization and probability

Modern physics for engineers

David Miller

Normalizing wavefunctions

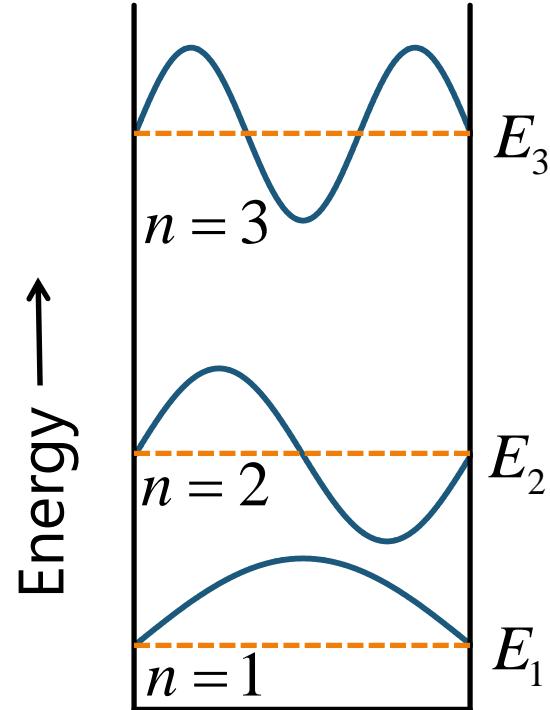
So far, if we integrate the modulus squared of the wavefunction
we do not get 1

Specifically

$$\int_0^{L_z} |\psi_n(z)|^2 dz = \int_0^{L_z} |A_n|^2 \sin^2\left(\frac{n\pi z}{L_z}\right) dz = |A_n|^2 \frac{L_z}{2}$$

We prefer to “normalize”
so this integral does give 1

Then $|\psi_n(z)|^2$ will correspond to
probability density per unit length



Normalizing wavefunctions

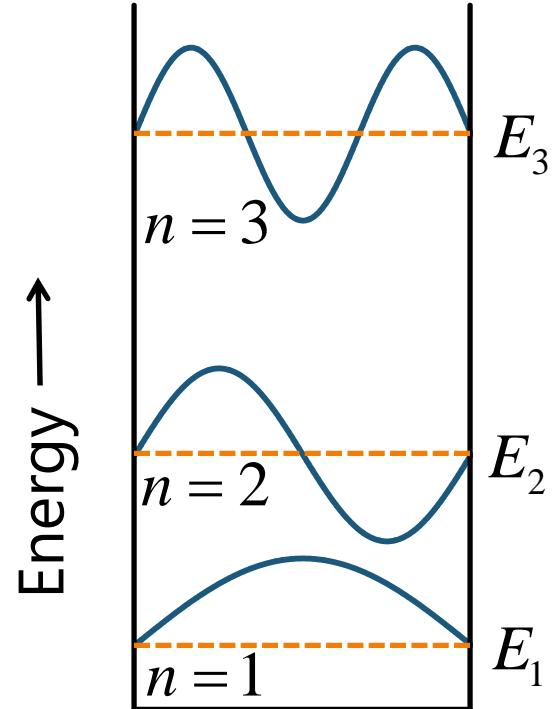
To have this integral equal 1, i.e.

$$\int_0^{L_z} |A_n|^2 \sin^2\left(\frac{n\pi z}{L_z}\right) dz = |A_n|^2 \frac{L_z}{2} = 1$$

we choose $|A_n| = \sqrt{2/L_z}$

Note A_n can be complex

All such solutions are arbitrary
within a unit complex factor



Normalizing wavefunctions

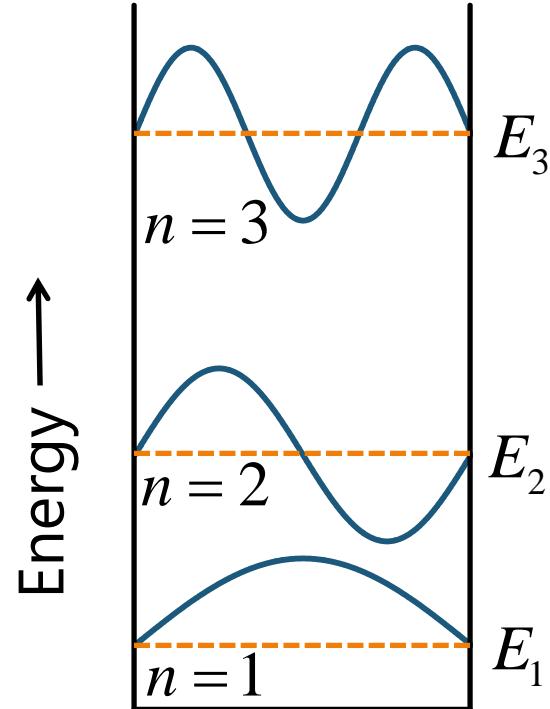
Conventionally

we choose A_n real for simplicity

so we choose $A_n = \sqrt{2/L_z}$

Note that in this specific case
the normalization coefficient is the
same for all states

That will not typically be the case
Normalization coefficients will often
be different for different states



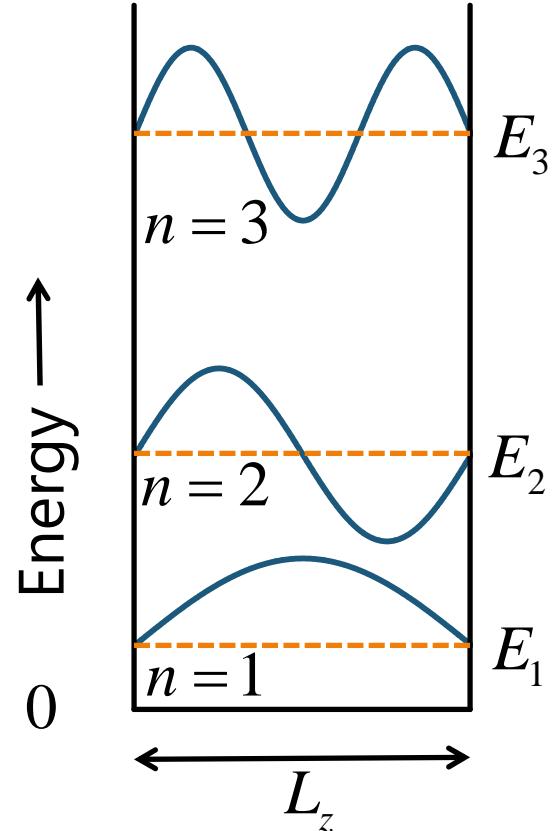
Particle in a box solutions

The normalized solutions for the particle in a box problem are

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L_z} \right)^2$$

$$\psi_n(z) = \sqrt{\frac{2}{L_z}} \sin\left(\frac{n\pi z}{L_z}\right)$$

$$n = 1, 2, \dots$$

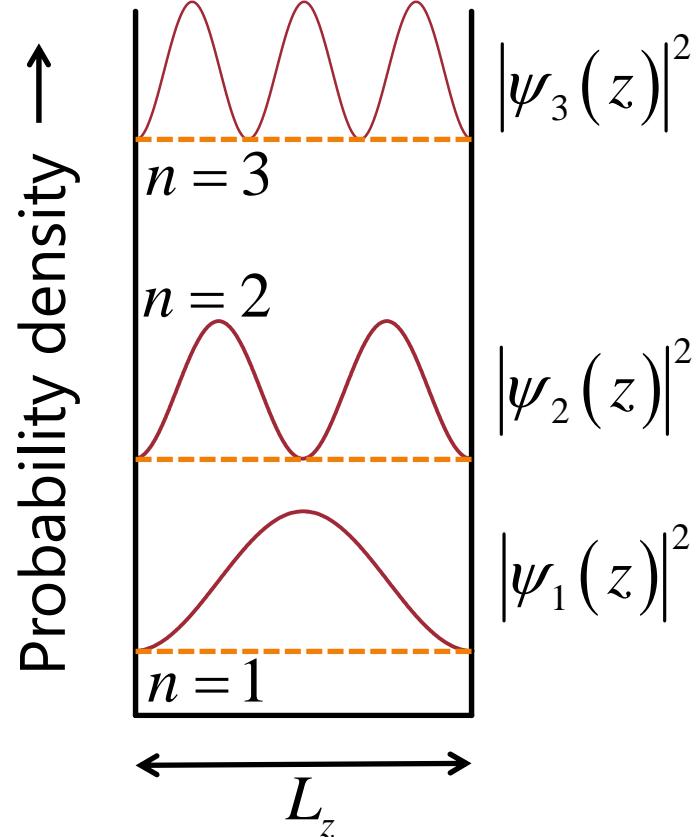


Probability density

We can plot the probability densities
for each state

When we use normalized
wavefunctions

the area under each such curve is 1



Probability

For the probability of finding a particle in a region

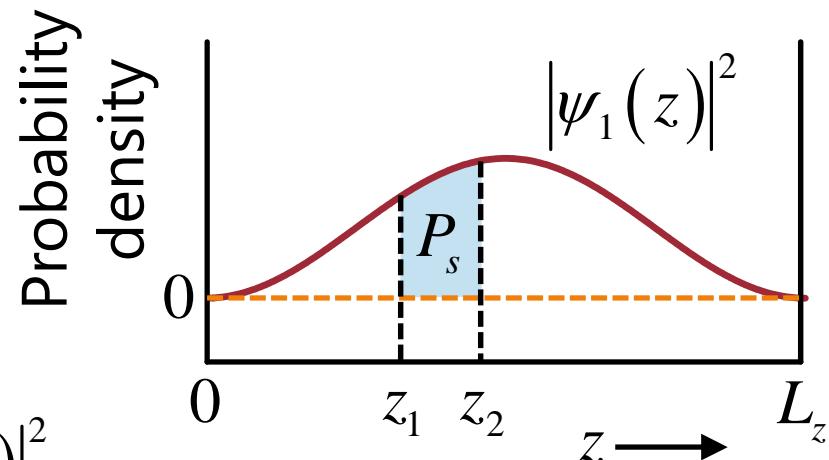
integrate the probability density over the region

For a particle in state $n = 1$ in our box

for the probability of finding the particle between z_1 and z_2

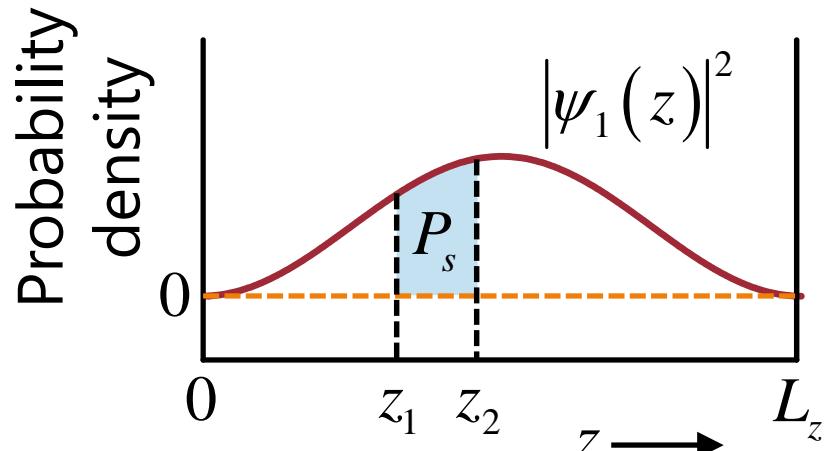
integrate the normalized $|\psi_1(z)|^2$

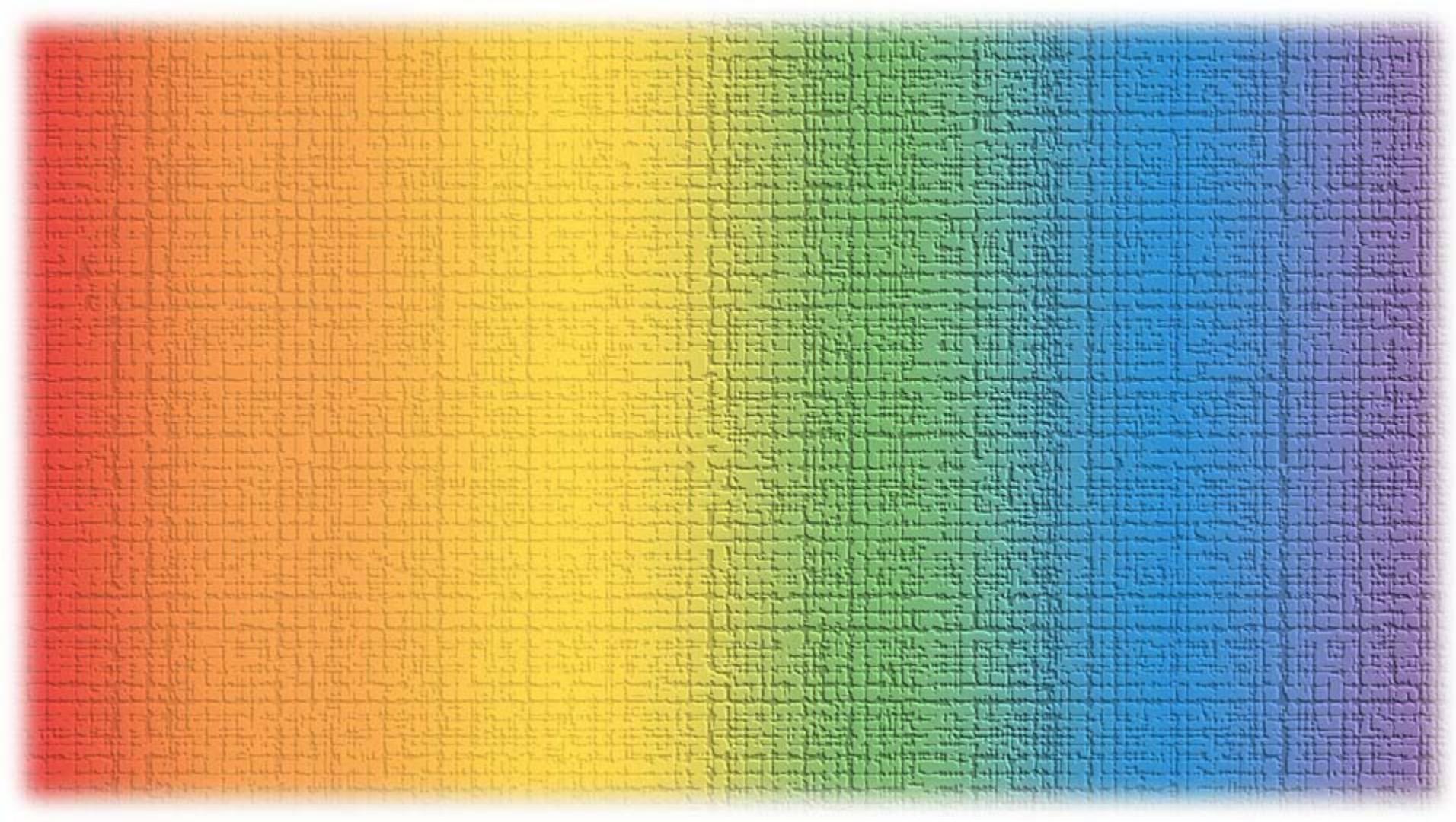
between these limits



Probability

$$\begin{aligned}
 P_s &= \int_{z_1}^{z_2} \left(\sqrt{\frac{2}{L_z}} \right)^2 \sin^2 \left(\frac{\pi z}{L_z} \right) dz = \frac{2}{L_z} \int_{z_1}^{z_2} \frac{1}{2} \left[1 - \cos \left(\frac{2\pi z}{L_z} \right) \right] dz \\
 &= \frac{1}{L_z} \int_{z_1}^{z_2} 1 dz - \frac{1}{L_z} \int_{z_1}^{z_2} \cos \left(\frac{2\pi z}{L_z} \right) dz \\
 &= \frac{1}{L_z} [z]_{z_1}^{z_2} - \frac{1}{L_z} \frac{L_z}{2\pi} \left[\sin \left(\frac{2\pi z}{L_z} \right) \right]_{z_1}^{z_2} \\
 &= \frac{(z_2 - z_1)}{L_z} - \frac{1}{2\pi} \left[\sin \left(\frac{2\pi z_2}{L_z} \right) - \sin \left(\frac{2\pi z_1}{L_z} \right) \right]
 \end{aligned}$$





The quantum view of the world 2

The nature of the particle-in-a-box solutions

Modern physics for engineers

David Miller

Eigenvalues and eigenfunctions

As in classical wave problems

solutions with a specific set of
allowed values of a parameter
(here energy)

the eigenvalues

and with a particular function
associated with each such value

the eigenfunctions

can be called eigensolutions

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L_z} \right)^2$$

$$\psi_n(z) = \sqrt{\frac{2}{L_z}} \sin\left(\frac{n\pi z}{L_z}\right)$$

$$n = 1, 2, \dots$$

Eigenvalues and eigenfunctions

Compared to the classical world
at least in this example problem
asking for solutions with definite
energy E

leads to the conclusion that
only very specific, discrete
values of that energy are
possible

unlike classical models of
matter

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L_z} \right)^2$$

$$\psi_n(z) = \sqrt{\frac{2}{L_z}} \sin\left(\frac{n\pi z}{L_z}\right)$$

$$n = 1, 2, \dots$$

Eigenvalues and eigenfunctions

Here, since the parameter is an energy

we can call the eigenvalues

eigenenergies

the eigenfunctions are

energy eigenfunctions

and we call n a

quantum number

The eigenenergy, eigenfunction, and quantum number

are attributes of the particle's "state"

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L_z} \right)^2$$

$$\psi_n(z) = \sqrt{\frac{2}{L_z}} \sin\left(\frac{n\pi z}{L_z}\right)$$

$$n = 1, 2, \dots$$

Parity of wavefunctions

Note these eigenfunctions have definite symmetry

the $n = 1$ function is the mirror image on the left of what it is on the right

such a function has “even parity”

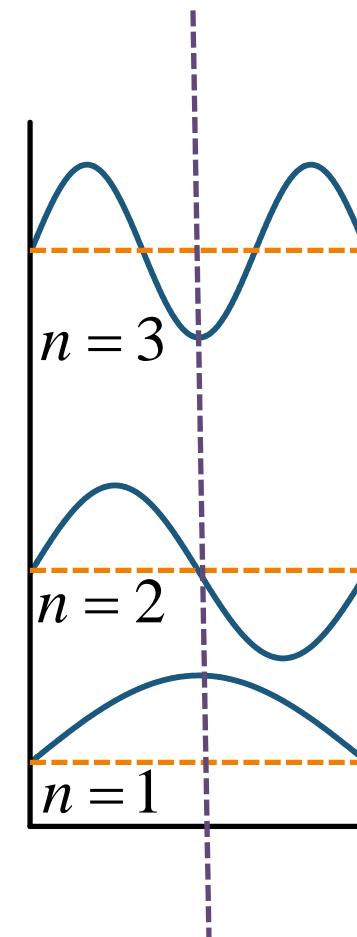
or is said to be an “even function”

The $n = 3$ eigenfunction is also even

The $n = 2$ eigenfunction

has “odd parity”

or is said to be an “odd function”



Zeros in eigenfunctions

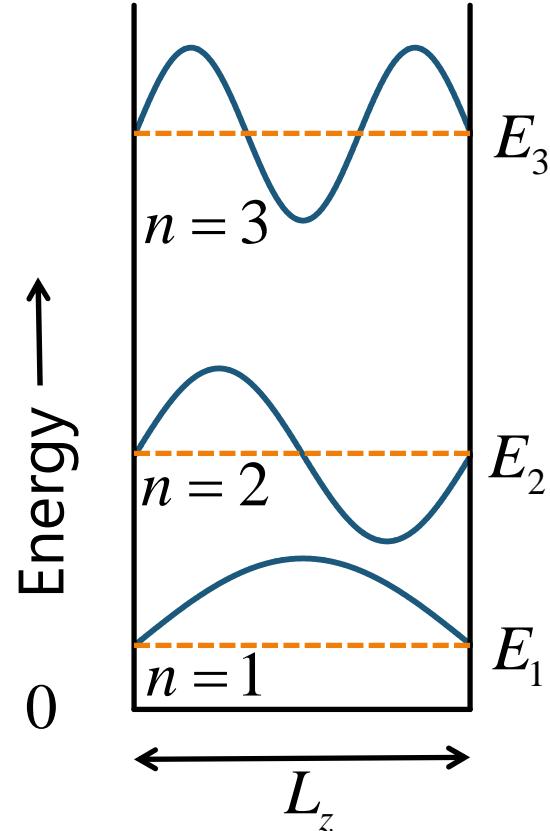
Note that

each successively higher energy state

has one more “zero” in the eigenfunction

This is very common behavior in quantum mechanics

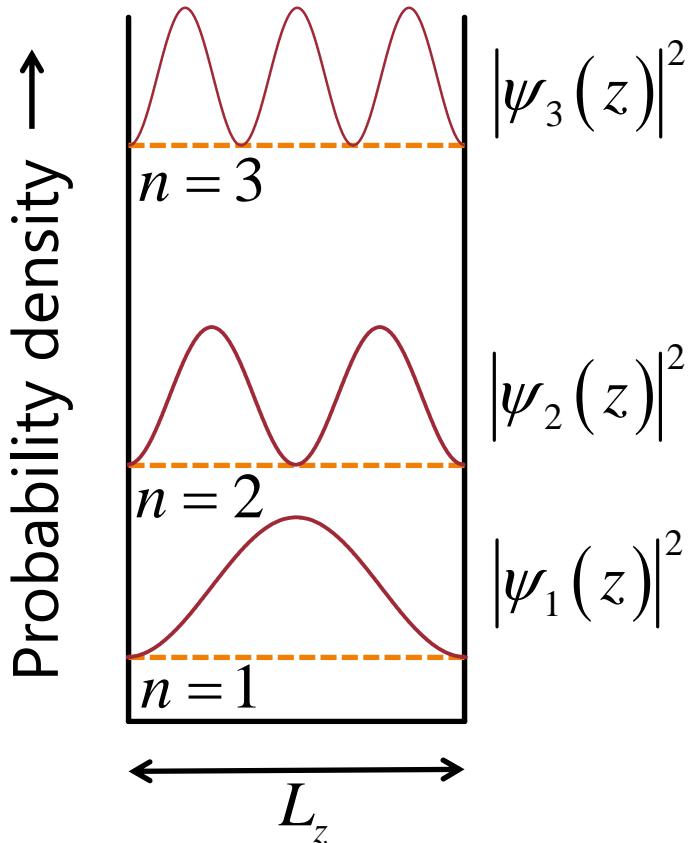
and is a common result of requiring mathematically “orthogonal” functions



Probability density

In the lowest state ($n = 1$)
the particle is most likely to be
found near the center of the box

In higher states
there are points inside the box
where the particle will never be
found



Quantum confinement

This particle-in-a-box behavior is very different from the classical case in at least 3 ways

1 – there is only a discrete set of possible values for the energy

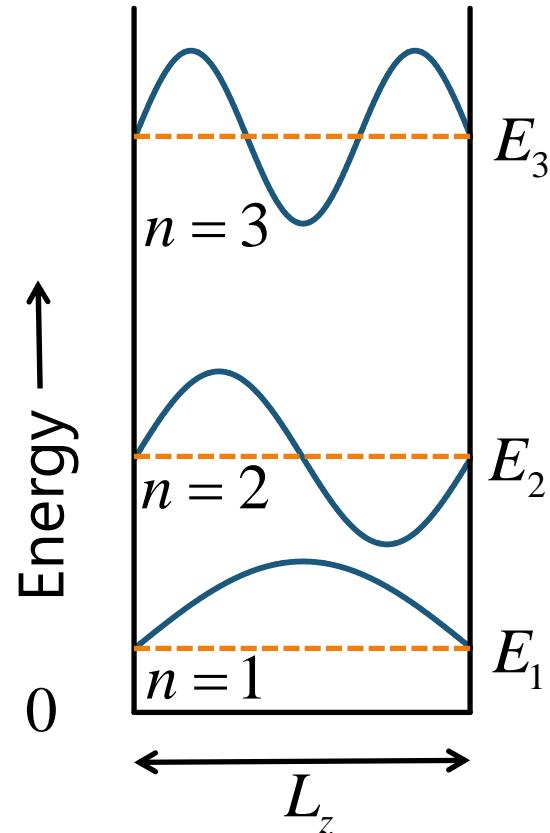
2 – there is a minimum possible energy for the particle

here corresponding to $n = 1$

$$\text{here } E_1 = \left(\frac{\hbar^2}{2m} \right) \left(\frac{\pi}{L_z} \right)^2$$

sometimes called a

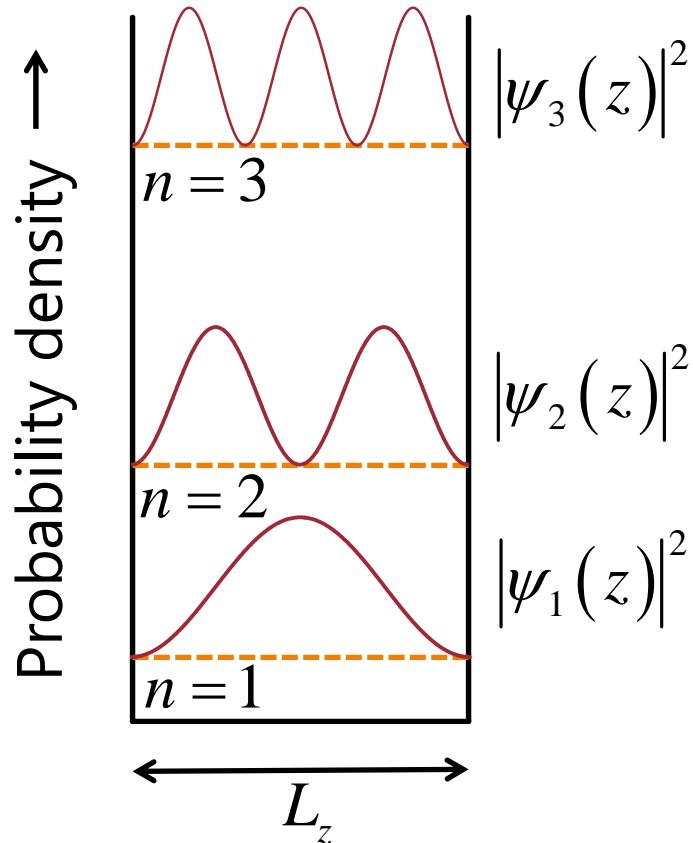
“zero-point energy”



Quantum confinement

3 - the particle is not uniformly distributed over the box, and its distribution is different for different energies

It is almost never found very near to the walls of the box
The probability obeys a standing wave pattern



Orders of magnitude

E.g., confine an electron in a 5 Å (0.5 nm) thick box

The first allowed level for the electron is

$$E_1 = \left(\hbar^2 / 2m_e \right) \left(\pi / 5 \times 10^{-10} \right)^2 \approx 2.4 \times 10^{-19} \text{ J} \approx 1.5 \text{ eV}$$

The separation between the first and second allowed energies ($E_2 - E_1 \approx 3E_1$) is $\approx 4.5 \text{ eV}$

which is a characteristic size of major energy separations between levels in an atom

Note that visible photons also have energies in the single eV range

so light-matter interaction is quantum mechanical

