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De Broglie's hypothesis
N

In 1924, Louis de Broglie proposed that
a particle with mass
also behaves as a wave with wavelength 4

now of the particle, not of
electromagnetic waves

A=

P
where p is the particle’s momentum

which can fit with Bohr's orbital idea



Matrices and waves
N
Following from the successful but ad
hoc Bohr model

and de Broglie's hypothesis

can we construct a solid
mathematical approach?



Matrices and waves
I
Werner Heisenberg (1925)

matrix formulation of quantum
mechanics

Erwin Schrodinger (1926)
wave equation
More key contributions by

Max Born, Wolfgang Pauli, Paul
Dirac, John von Neumann, ...
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Schrodinger’s equation
I
The next step in quantum mechanics
Schrédinger’s equation
solves the hydrogen atom
giving us the basis of chemical
elements

and starting the rest of the
quantum mechanics of
materials

How do we get to Schroédinger’s
equation?



Electrons as waves
N
de Broglie's hypothesis is that the electron
wavelength 4 is given by

=1

P
where p is the electron momentum and

his Planck’s constant
h=6.62606957 %107 J s

Now we want to use this to help construct a
wave equation



A Helmholtz wave equation
N

If we are considering only waves of one
wavelength A for the moment

l.e., monochromatic waves

we can choose a Helmholtz wave equation
2
O(lj;z” =K’y with k= 27”
which we know works for simple waves
with solutions like
sin(kz), cos(kz), and exp(ikz)
(and sin(-kz), cos(—kz), and exp(-ikz))




Use and notation for complex exponentials
N 1

We will need to use the complex exponential more in
guantum mechanics

and we will use both notations exp(i@) =e"
We will also use the scientific notation i = /-1

rather than the ] more common in engineering
We remember Euler’s formula

which here would give, for example

exp(ikz) = coskz +isinkz



A Helmholtz wave equation
N

In three dimensions, we can write this as

2 2 2
V2w56f+ag+af:—k2yf
ox® oy° oz

which has solutions like
sin(k - r), cos(k - r), and exp(ik - r)
(and sin(-k - r), cos(-k - r), and exp(-ik - r))
where k and r are vectors



From Helmholtz to Schrédinger
N

With de Broglie's hypothesis A =h/p
and the definition k=214
then k=2zp/h=p/#h
where we have defined A=h/2x
so k?=p*/h°

Hence we can rewrite our Helmholtz equation
2

Vi =—%w

—1*Viy = p'y

or



From Helmholtz to Schrédinger
N

For some particle of mass m (e.g., an electron)
we can divide both sides by the particle mass m

hZ p2
=V =1
2m v 2m v
But we know from classical mechanics that
2
2p_ =kinetic energy of the particle
m

and in general
Total energy (E)=Kinetic energy + Potential energy (V (r))



From Helmholtz to Schrédinger
N

So Kinetic energy = p*/2m
= Total energy (E) - Potential energy (V(r))

2 2

Hence our Helmholtz equation _h_vzw :p_w

2m 2m
2

becomes the Schrodinger equation —;l—vzw :(E -V (r))c,u
m

h* \
—%VZ +V (r)]w = Ey

or equivalently (
" J




Schrodinger’s time-independent equation
N

We can postulate a Schrédinger equation for
any particle of mass m

\

hZ
[—EVZ +V (r)jw = Ey
< J

Formally, this is the
time-independent Schrodinger equation



Schrodinger’s time-independent equation
I
Note that we have not “derived”
Schrédinger’s equation
We suggested it as an equation that
agrees with at least one experiment

There is no way to derive Schrédinger’s
equation from first principles

Schrédinger’s equation has to be
postulated

The only justification for making such
a postulate is that it works!

But what does the “wave” mean?



Probability densities
N

Born's postulate is that

the probability P(r) of finding an electron
near any specific point r in space

Is proportional to the modulus squared ‘W
of the wave amplitude y (r)

‘t//(r)‘ can therefore be viewed as a
‘probability density”

with w(r) called a "probability
amplitude”

or a "quantum mechanical amplitude”

‘2
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Electron waves and diffraction

5
de Broglie's hypothesis and

Schrédinger’s wave equation

were proposed before any evidence
of electron waves

In 1927, diffraction experiments with
electrons

from nickel by Clinton Davisson and
Lester Germer

and with gold films by George
Thomson

showed clear wave behavior



Electron waves and diffraction
I
Diffraction of electrons by crystal surfaces

IS a routine diagnostic technique today

Electron microscopes use the short
wavelengths of accelerated electrons

down even to the size scales of atoms
themselves

Electron wave phenomena

also expose many of the conceptual
aspects of quantum mechanics

such as the uncertainty principle
and the measurement problem
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Particle in a box
N

We consider a particle of mass m
with a spatially-varying potential V(z) in the

Z direction
so we have a Schrddinger equation
7% doy(z
IV (2w (2)=En ()

where E is the energy of the particle
and y(z) is the wavefunction



Particle in a box
N

Suppose the potential energy is a
simple “rectangular” potential well
thickness L,
Potential energy is constant inside
we choose V =0 there
rising to infinity at the walls
l.e,at z=0and z=1,
We will sometimes call this

an infinite or infinitely deep
(potential) well




Particle in a box
N

Because these potentials at z=0 and
at z=L, areinfinitely high
but the particle’s energy E is
presumably finite
we presume there is no possibility
of finding the particle outside
e, forz<Qorz>Ll,
so the wavefunction wis 0 there
so  should be 0 at the walls

Energy —




Particle in a box
N

With these choices
inside the well

the Schrédinger equation
VLD L () (2) =B (2) L
2m  dz° o
()
becomes _ 1> 4w (2) _ v(2) v
2m  dz’
V=0

with the boundary conditions
w(0)=0and w(L,)=0




Particle in a box
N

The general solution to the equation
n® dy(z)

=E
2m  dz° v(2)

is of the form T
w(z)= Asin(kz)+Bcos(kz) 2
where A and B are constants Q
Ll

and k =+/2mE / #?

V=0

The boundary condition y(0)=0
means B=0 because cos(0)=1




Particle in a box

B
With now w(z)= Asin(kz)
and the condition y(L,)=0
kz must be a multiple of 7 i.e,

k=v2mE /R’ =nz /L,
where n is an integer

hok*
2m

Energy —

Since, therefore, E =

the solutions are

wn(z):ﬁsin(%) with E, = " {m]

z




Particle in a box
N

We restrict n to positive integers n=1, 2, ...
for the following reasons
Since sin(—-a)=-sin(a) for any real
number a

the wavefunctions with negative n are
the same as those with positive n

within an arbitrary factor, here -1
the wavefunction for n=0 is trivial
the wavefunction is 0 everywhere

—

>
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Normalizing wavefunctions

So far, if we integrate the modulus
squared of the wavefunction

we do not get 1
Specifically

Wn(Z)\ dz = I\M sin ( fzjdz:\Afi

We prefer to “normalize”
so this integral does give 1

Then ‘Wn(z)‘z will correspond to
probability density per unit length

|

Energy —




Normalizing wavefunctions
—

To have this integral equal 1, i.e.

HM {”ﬂjd -[af 2

Z

we choose |A,|=4/2/L,

Note A, can be complex

All such solutions are arbitrary
within a unit complex factor

Energy —




Normalizing wavefunctions
—

Conventionally
we choose A, real for simplicity

so we choose A =,/2/L,

Note that in this specific case

the normalization coefficient is the
same for all states

That will not typically be the case

Normalization coefficients will often
be different for different states

Energy —




Particle in a box solutions

The normalized solutions for the
particle in a box problem are

o Enﬂ) A

" 2m L

Energy —
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Probability density

We can plot the probability densities
for each state

When we use normalized
wavefunctions

the area under each such curve is 1

Probability density —




Probability
E
For the probability of finding a
particle in a region
Integrate the probability
density over the region

For a particle in staten=1in

Probability
density

our box
for the probability of finding 0
the particle between z;, and z, 0

N

integrate the normalized |v,(z)
between these limits



Probability

Probability
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Eigenvalues and eigenfunctions
I

As in classical wave problems

solutions with a specific set of
allowed values of a parameter
(here energy)

the eigenvalues

and with a particular function
associated with each such value

the eigenfunctions
can be called eigensolutions




Eigenvalues and eigenfunctions
I

Compared to the classical world
at least in this example problem

asking for solutions with definite
energy E
leads to the conclusion that
only very specific, discrete
values of that energy are
possible

unlike classical models of
matter




Eigenvalues and eigenfunctions
B
Here, since the parameter is an energy

we can call the eigenvalues
elgenenergies

the eigenfunctions are
energy eigenfunctions

and we call n a
guantum number

The eigenenergy, eigenfunction, and
guantum number

are attributes of the particle’s “state”




Parity of wavefunctions

Note these eigenfunctions have definite
symmetry

the n=1function is the mirror image on
the left of what it is on the right

such a function has “even parity”

or is said to be an “even function”
The n=3 eigenfunction is also even
The n=2 eigenfunction

has “odd parity”

or is said to be an "odd function”




Zeros in eigenfunctions

Note that

each successively higher energy
state

has one more “zero” in the
eigenfunction

This is very common behavior in
guantum mechanics

and is a common result of requiring
mathematically “orthogonal”
functions L

Energy —

o




Probability density

In the lowest state (n=1)

the particle is most likely to be
found near the center of the box

In higher states

there are points inside the box
where the particle will never be
found

Probability density —




Quantum confinement
This particle-in-a-box behavior is

very different from the classical case
In at least 3 ways

1 —there is only a discrete set of
possible values for the energy

2 — there is a minimum possible
energy for the particle

here corresponding ton=1
here E, =(h2 /2m)(7z/ L,)
sometimes called a
“zero-point energy”

Energy —

o




Quantum confinement
-

3 - the particle is not uniformly
distributed over the box, and

its distribution is different for
different energies
It is almost never found very
near to the walls of the box

The probability obeys a
standing wave pattern

Probability density —




Orders of magnitude
N

E.g., confine an electron in a 5 A (0.5 nm) thick box
The first allowed level for the electron is
E, =(n?/2m,)(z/5x10™) 2 2.4x10°) =15 eV
The separation between the first and second
allowed energies (E, —E, =3E,) is =4.5eV
which is a characteristic size of major energy
separations between levels in an atom

Note that visible photons also have energies in the
single eV range

so light-matter interaction is quantum mechanical
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