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Tunneling
5
In quantum mechanics

a particle can get to the other side
of a “hill”

even though it does not have

enough energy to get over the
llhillll
This is “tunneling”



Tunneling

I

Tunneling is common in modern
electronics, e.qg.,

in “flash” memory

which is written and erased by
tunneling through dielectrics
In transistors
where there is undesired
tunneling through the gate
oxide
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Tunneling in optics
5
Shining a flashlight from underwater

will lead to total internal reflection
past a certain angle

But the light “tunnels” a short
distance into the air



Tunneling in optics

5

Putting a piece of glass close to the
surface

but not touching it

can allow light to “tunnel” from
the water into the glass

known as “frustrated total
internal reflection”

a well-known classical wave
phenomenon
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A potential barrier of finite height
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Infinitely thick barrier
I

Suppose we have a barrier of height
V

0]

with potential 0 to the left of the
barrier

A quantum mechanical wave is
incident from the left
The energy E of this wave is
positive
e, E>0

Energy




Infinitely thick barrier
I

We allow for reflection from the barrier
into the region on the left

Using the general solution on the left
with complex exponential waves

Ve (2) = Aexp(ikz) + Bexp(—ikz)

Energy

where, as before k = \/2mE/h2

Aexp(ikz) is the incident wave, going right
Bexp(-ikz) is the reflected wave, going left




Infinitely thick barrier
I

Presume that E <V,

l.e., the incident wave energy is less
than the barrier height

Inside the barrier, the wave equation >
IS 2 —
K doy(z L
o dzg )+V0W(Z):EW(Z) 5
l.e.,, mathematically
dw(z) 2m
P20, e ()

dz2  #




Infinitely thick barrier
I
The general solution of

2
)20y, ey (o
for the wave on the right is -
Wi (2) =Cexp(-xz)+ Dexp(xz) >
where /c:\/Zm(VO—E)/h2 -

We presume D=0

otherwise the wave increases
exponentially to the right for ever




Infinitely thick barrier
I

Hence the wave on the right
iInside the barrier, is

Wright (Z) = CEXp(—K‘Z)
with & = /2m(V, —E)/#’

This solution proposes that the wave
inside the barrier is not zero

Instead, it falls off exponentially

Energy
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Boundary conditions
N

For our Schrodinger equation
VAL L () (2) =B (2)
2m  dz°
if we presume that E, V and w are finite

then d’y / dz’must be finite also, so

{ diy / dz must be continuous ]

If there was a jump indy /dz
then d°w / dz* would be infinite at that point



Boundary conditions
N

Also
diy /dz must be finite
otherwise d“y [ dz®could be infinite

being the limit of a difference
involving infinite quantities

For di /dz to be finite

L w must be continuous J




Boundary conditions
N

Now that we have these two boundary
conditions

w must be continuous

. >

)

dy [ dz must be continuous
- J

we can proceed to solve problems with finite
“heights” of boundaries



A potential barrier of finite height
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Infinitely thick barrier
—

Using the boundary conditions
we complete the solution

On the left, we have Wi (2) = Aexp(ikz)+ Bexp(—ikz)
On the right we have Wi (2) = Cexp(—x2)
Continuity of the wavefunction

at z=0gives A+B=C
Continuity of the wavefunction

derivative at z =0 gives IKA—IkB = —«C

i.e., A—BZI—KC
K



Infinitely thick barrier
N

Adding A+B=C

A-B=Xc
K
gives 2A=(1+'—"jcz(k+"‘jc
K K
Equivalently .
2k (k —
co 2K, Hlkoix)
K+ix K®+ K

so we have found the amplitude C of the wave in the barrier
in terms of the amplitude A of the incident wave



Infinitely thick barrier
N

Subtracting A+B=C
A-B=XKC
k

gives a similar relation between B and C
and we can deduce a relation
between A and B
So we can solve the entire problem here
leaving only one arbitrary overall constant



Probability densities
N

Note that we have to take the modulus squared of the
entire wavefunction

so on the left we have
W\ (z)‘2 = |Aexp(ikz) + Bexp(—ikz)|2

and on the right
W g (z)‘2 =|Cexp(—x2)|" =ICI exp(=2x2)

Note the probability density decays by 1/e
in a distance 1/ 2«



Example numbers
N

For a barrier of height V, =2 eV

and an incident electron of energy E=1.5 eV
On the left k =6.275x10° m™ =6.275 nm™

which corresponds to a wavelength of 4 =1.001 nm
On the right k¥ =3.623x10° m™* =3.623 nm™

so the 1/e decay length of the probability density on
the right is1/2x =0.138 nm



Example probability density calculation
S 1
Note the standing wave and the phase change on reflection

0.138 nm,

\\ i Vo =2eV
2 )
o S R E=15eV
. |
> i 5
= | 3
0 ' S
O - LLl
Q 1
O !
o i

S B 0

I
—_
o

Position (nm)



Example probability density calculation
N

Energy = 0.01 eV Penetration depth = 0.069 nm

; V., =2eV
> i
+ i
= '
C :
% "

: >
2 : o
by i Q
O - -
(qv) i LLl
@) i
O :
o :

+ 0

-1 0 1

Position (nm)
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Tunneling through a barrier
B

Consider a barrier of finite

: L V
thickness, L, incident 0
still with incident electron e'eCtr°”5> trslgscifr\g;esd

energy E <V, reflected >

where V, is the barrier electrons

heigh | .
© g t . . l//|eft(z)_ : l//b(Z): : % (Z)— Felkz
We presume an incident N B
electron wave from the left | |
0 L,

but none from the right



Tunneling through a barrier
B

Now we need to retain both

exponentials in the barrier incident >
The “growing” one electrons transmitted
. 4 electrons
corresponds to a decaying  reflected >
one ei-lectrons
from the "reflection” at = 1 yua) . )pen
e rignt siae or the Ae™ 1 Be ™ 1 Cer 4 Det?

barrier
0 L,



Tunneling through a barrier
B

We can solve this starting from

the right incident Vo
Choose an arbitrary electrons transmitted
: g electrons
amplitude F reflected >
Deduce relations between ~ g&trons
C, D, and F using | .
P o Wyer (2) = LoyplZ)= _ eaikz
boundary conditions r Bl | bz( )D ) Vg (2)=Fe
e +Be ' Ce ™" + De*"!

Deduce relations between
A, B, C, and D using 0 Ly
boundary conditions



Tunneling through a barrier

Now the fraction of the

o o vV
iIncident current incident 0
formally, in probability electrons | tr:lréscirr\gc;esd
density reflected >
that is transmitted through %'eCtrO”S
the barrier ) . .
. . | | l/jleft(z): ! l//b(Z)= : _ 7) = Felkz
will be the ratio — s B |t s ot Vright (2)
We can call this A |
0 L,

the current “transmission”
through the barrier



Tunneling through a barrier

<>
- L, =0.15 nm
=
L S S
KT
> >
o O
O -
Q] LLl
O
O
= \/\/\
0
-1 0 Position (nm) 1

Note the weaker standing wave on the left
and the transmission to the right



Tunneling through a barrier
N 1

Thickness =0 nm V =2eV

2 Transmission = 1 i
U1 im0 o S e o o o E=15eV
ko
S 5
2 5
S c
= Ll
Ie!
O
o- 0

-1 0 Position (nm) 1

Note the weaker standing wave on the left
and the transmission to the right
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