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Tunneling



Tunneling

In quantum mechanics
a particle can get to the other side 

of a “hill” 
even though it does not have 
enough energy to get over the 
“hill”

This is “tunneling”



Tunneling

Tunneling is common in modern 
electronics, e.g.,
in “flash” memory

which is written and erased by 
tunneling through dielectrics

in transistors
where there is undesired 
tunneling through the gate 
oxide



Tunneling in optics



Tunneling in optics

Shining a flashlight from underwater
will lead to total internal reflection 

past a certain angle
But the light “tunnels” a short 

distance into the air



Tunneling in optics

Putting a piece of glass close to the 
surface
but not touching it

can allow light to “tunnel” from 
the water into the glass
known as “frustrated total 

internal reflection”
a well-known classical wave 

phenomenon



A potential barrier of finite height

Nature of solutions for a finite barrier



Infinitely thick barrier

Suppose we have a barrier of height 
Vo
with potential 0 to the left of the 

barrier
A quantum mechanical wave is 

incident from the left
The energy E of this wave is 

positive
i.e., 0E 
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Infinitely thick barrier

We allow for reflection from the barrier 
into the region on the left

Using the general solution on the left
with complex exponential waves

where, as before

Aexp(ikz) is the incident wave, going right
Bexp(-ikz) is the reflected wave, going left
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Infinitely thick barrier

Presume that
i.e., the incident wave energy is less 

than the barrier height
Inside the barrier, the wave equation 

is

i.e., mathematically
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Infinitely thick barrier

The general solution of

for the wave on the right is

where
We presume

otherwise the wave increases 
exponentially to the right for ever  
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Infinitely thick barrier

Hence the wave on the right
inside the barrier, is

with

This solution proposes that the wave 
inside the barrier is not zero
Instead, it falls off exponentially 
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Solving for barriers of finite height



A potential barrier of finite height

Boundary conditions



For our Schrödinger equation

if we presume that E, V and  are finite
then               must be finite also, so 

If there was a jump in
then               would be infinite at that point 

Boundary conditions

       
22

22
d z

V z z E z
m dz


   



2 2/d dz

/d dz
2 2/d dz

/d dz must be continuous



Boundary conditions

Also
must be finite

otherwise               could be infinite
being the limit of a difference 

involving infinite quantities 
For             to be finite

/d dz
2 2/d dz

/d dz

 must be continuous



Boundary conditions

Now that we have these two boundary 
conditions

we can proceed to solve problems with finite 
“heights” of boundaries

/d dz must be continuous

 must be continuous



A potential barrier of finite height

Solutions for a barrier of finite height



Infinitely thick barrier

Using the boundary conditions
we complete the solution

On the left, we have
On the right we have
Continuity of the wavefunction

at         gives 
Continuity of the wavefunction 

derivative at         gives 
i.e.,  
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Infinitely thick barrier

Adding

gives 

Equivalently

so we have found the amplitude C of the wave in the barrier 
in terms of the amplitude A of the incident wave
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Infinitely thick barrier

Subtracting

gives a similar relation between B and C
and we can deduce a relation 

between A and B
So we can solve the entire problem here

leaving only one arbitrary overall constant
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Probability densities

Note that we have to take the modulus squared of the 
entire wavefunction

so on the left we have 

and on the right

Note the probability density decays by 1/e 
in a distance
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Example numbers

For a barrier of height Vo = 2 eV
and an incident electron of energy E = 1.5 eV

On the left
which corresponds to a wavelength of

On the right 
so the 1/e decay length of the probability density on 
the right is

9 1 16.275 10 6.275k    m  nm
1.001   nm

9 1 13.623 10 3.623     m  nm

1/ 2 0.138  nm



Example probability density calculation

Note the standing wave and the phase change on reflection

2oV  eV

1.5E  eV
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Example probability density calculation

2oV  eV
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Tunneling through a barrier



A potential barrier of finite height

A barrier of finite height and thickness



Tunneling through a barrier

Consider a barrier of finite 
thickness, Lb
still with incident electron 

energy E < Vo
where Vo is the barrier 
height

We presume an incident 
electron wave from the left
but none from the right

reflected 
electrons

( )left

ikz ikz

z

Ae Be








 b
z z

z

Ce De 







  ikz

right z Fe 

incident 
electrons transmitted 

electrons

0 Lb

Vo



Tunneling through a barrier

Now we need to retain both 
exponentials in the barrier
The “growing” one 

corresponds to a decaying 
one
from the “reflection” at 

the right side of the 
barrier

reflected 
electrons
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Tunneling through a barrier

We can solve this starting from 
the right
Choose an arbitrary 

amplitude F
Deduce relations between 

C, D, and F using 
boundary conditions

Deduce relations between 
A, B, C, and D using 
boundary conditions

reflected 
electrons
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Tunneling through a barrier

Now the fraction of the 
incident current 
formally, in probability 

density
that is transmitted through 
the barrier 
will be the ratio

We can call this 
the current “transmission” 

through the barrier

reflected 
electrons
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Tunneling through a barrier

Note the weaker standing wave on the left
and the transmission to the right

2oV  eV

1.5E  eV

0Pr
ob

ab
ili

ty
 d

en
sit

y

En
er

gy

0 1-1 Position (nm)

Lb = 0.15 nm 



Tunneling through a barrier

Note the weaker standing wave on the left
and the transmission to the right

2oV  eV

1.5E  eV
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