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Controlling wave transmission is crucial for various applications. In this work we apply the concept of
unitary control to manipulate multiport wave transmission. Unitary control aims to control the behaviors of
a set of orthogonal waves simultaneously. The approach fully harnesses the capability of wavefront shaping
techniques, with promising applications in communication, imaging, and photonic integrated circuits. Here we
present a detailed theory of unitary control of wave transmission, focusing on two key characteristics: total
(power) transmittance and direct (field) transmission. The total transmittance for an input port represents the
fraction of total transmitted power with respect to the input power for a wave incident from an input port. The
direct transmission for an input port denotes the complex transmission amplitude from that input port to its
corresponding output port. We address two main questions: (i) the achievable total transmittance and direct
transmission for each port and (ii) the configuration of unitary control to attain desired transmission values for
each port. Our theory illustrates that unitary control enables uniform total transmittance and direct transmission
across any medium. Furthermore, we show that reciprocity and energy conservation enforce direct symmetry
constraints on wave transmission in both the forward and backward directions under unitary control.
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I. INTRODUCTION

Controlling the transmission of waves through complex
media is crucial for various applications in imaging [1–12],
communications [13–15], sensing [16–20], photonic inte-
grated circuits [21–23], and spatiotemporal wave shaping
[24–26]. Recent advancements [27–32] have allowed for
precise control over coherent wave transport in complex
media [33,34] including highly scattering biological tissues
[2,29,31,35] and multimode optical fibers [3,36–40], en-
abling applications such as spatial and temporal focusing
[19,29,38,41–47], transmittance enhancement and suppres-
sion [16,48–58], and optical micromanipulation [59–61].

A key development in wave transmission control has
been the use of wavefront shaping techniques, particularly
spatial light modulators (SLMs) [62,63]. Spatial light mod-
ulators can adjust the phase of reflected light to tailor a
coherent input field into a customized wavefront, resulting
in the desired transmitted pattern after passing through the
complex medium. This process, known as coherent control
[18,55,64,65], has revolutionized our ability to control wave
propagation through complex media.

However, initial works on coherent control through SLMs
have been primarily limited to a single incident wave,
while many applications require the simultaneous control of
multiple orthogonal waves [66–68]. This multiport control
is becoming possible with programmable unitary photonic
devices like Mach-Zehnder interferometer (MZI) meshes
[13,69–81] and multiplane light conversion devices [82–87].
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These devices can perform arbitrary unitary transformations
and hold promise for various applications in quantum com-
puting [72,88–93], machine learning [94–101], and optical
communications [74,77,102–105]. By transforming from one
set of orthogonal incident waves to another, they can achieve
sophisticated multiport transmission control. We refer to such
control as unitary control [106–109], as it is mathematically
represented by a unitary transformation of the input wave
space. References [13,15] show explicit physical examples of
such unitary control.

In this paper we present a systematic theory of unitary con-
trol over multiport wave transmission. Some optimum results
are already known from the singular-value decomposition
(SVD) approach to waves and optics [110,111]. Such SVD
optimum orthogonal channels between inputs and outputs,
which can be thought of as communication modes [14,110]
or mode-converter basis sets [14,111], can be found and im-
plemented physically using unitary control from MZI meshes
[13–15]. Beyond these SVD modes, other sets of orthogonal
waves are relevant in various contexts. For instance, princi-
pal modes in multimode waveguides exhibit minimal modal
dispersion and form orthogonal bases at both waveguide
ends [36]. Additionally, orbital angular momentum modes
are common in multimode fiber communications [112–116].
Understanding the transmission properties of these diverse
orthogonal wave sets is thus valuable.

When analyzing the transmission properties of orthogonal
waves, several key characteristics are essential for each in-
put wave basis: total transmittance, direct transmission, and
crosstalk. These quantities are defined after selecting orthog-
onal bases at both input and output ends of the medium, e.g., a
waveguide. For an incident wave in the ith input port, the total
transmittance Ti represents the fraction of power transmitted
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with respect to the input power. The direct transmission ti
denotes the complex transmission amplitude to the ith output
port. Crosstalk, calculated as Ti − |ti|2, describes the fraction
of power transmitted to output ports other than the ith out-
put port. Though a full transmission matrix is required to
describe the transmission properties of the medium, the total
transmission and the crosstalk usefully characterize the power
transmission properties of the ith input basis wave through the
medium.

Here we address two fundamental questions for the trans-
mission of orthogonal waves in unitary control. (i) What are
the possible values of total transmittance and direct trans-
mission for each input port under unitary control in a given
medium? (ii) How can we configure unitary control to achieve
specific total transmittance or direct transmission for each
port? We answer these questions using matrix inequalities.
Our results provide insights into the principles and implemen-
tations of the unitary control method.

The rest of this paper is organized as follows. In Sec. II
we summarize the useful mathematical notation. In Sec. III
we develop a general theory of unitary control over wave
transmission. In Sec. IV we discuss the physical applications
of our theory. In Sec. V we provide a numerical illustration of
our theory. We summarize in Sec. VI. The Appendices con-
tain additional information. Appendices A–C provide details
and demonstrations of the algorithms. Appendix D provides
detailed mathematical proof.

II. NOTATION

We first summarize the notation related to matrices.
We denote by Mn the set of n × n complex matri-
ces and U(n) the set of n × n unitary matrices. For
M ∈ Mn, we define d(M ) = (d1(M ), . . . , dn(M ))T, λ(M ) =
(λ1(M ), . . . , λn(M ))T, and σ(M ) = (σ1(M ), . . . , σn(M ))T as
the vectors of diagonal entries, eigenvalues, and singular val-
ues of M [117]. We also define

σ2(M ) ≡ (
σ 2

1 (M ), . . . , σ 2
n (M )

)T
. (1)

(We take the convention of choosing the singular values to
be real numbers, with any complex phase factors instead
included in the corresponding singular functions.) Finally,
for z = (z1, . . . , zn)T ∈ Cn, we define |z| = (|z1|, . . . , |zn|)T ∈
Rn. (The superscript T here means the transpose, giving a
more compact way of writing a column vector.)

We also discuss the notation of majorization [118]. For
x = (x1, x2, . . . , xn) ∈ Rn, we define x↓ = (x↓

1 , x↓
2 , . . . , x↓

n ),
where x↓

1 � x↓
2 � · · · � x↓

n , hence reordering the components
of x in nonincreasing order. For x = (x1, . . . , xn) and y =
(y1, . . . , yn) in Rn, if

k∑
i=1

x↓
i �

k∑
i=1

y↓
i , k = 1, 2, . . . , n − 1 (2)

n∑
i=1

xi =
n∑

i=1

yi, (3)

FIG. 1. (a) Scheme of wave transmission. An input wave |φS〉
passes through the medium and becomes the transmitted wave
|ψR〉 = G|φS〉. (b) Unitary control of wave transmission. Input ports
and output ports are numbered from (1) to (n).

we say that x is majorized by y, written as x ≺ y. If Eq. (3) is
replaced by a corresponding inequality

n∑
i=1

xi �
n∑

i=1

yi, (4)

we say that x is weakly majorized by y, written as x ≺w y.

III. THEORY

A. Wave transmission

Consider a typical setup for wave transmission, where
waves are emitted from multiple sources, transmitted through
a medium, and detected by several receivers [14] [see
Fig. 1(a)]. The medium is assumed to be a linear time-
invariant system with two sides, each having n ports. We
consider a set of input ports, with the wave in the jth input
port being written as |φ(i)

j 〉 and the wave in the jth output port

being written as |ψ (o)
j 〉. The wave in one input (or output) port

by definition does not overlap with the wave in any other input
(or output) port, so this port by port set of input functions is
orthogonal, and similarly for the corresponding port by port
set of output functions. Using these port functions as bases,
we can describe the input and transmitted waves as the vectors
of amplitudes

a = (a1, . . . , an)T, b = (b1, . . . , bn)T, (5)

where ai and bi represent the input and transmitted wave
amplitudes in their respective ports. The transmission process
is described by a complex transmission matrix G ∈ Mn (which
can also be considered as a coupling matrix, a device matrix,
or a Green’s function matrix) [14,48,49,119],

b = Ga, (6)

where Gi j represents the transmission coefficient from the jth
port on the left to the ith port on the right.
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B. Unitary control of wave transmission

Now we introduce unitary control. Unitary control refers
to unitarily transforming the input and transmitted wave bases
[Fig. 1(b)]

∣∣φ(i)
j

〉 → ∣∣φ(i)
j [U ]

〉 =
n∑

k=1

Uk j

∣∣φ(i)
k

〉
,

∣∣ψ (o)
j

〉 → ∣∣ψ (o)
j [V ]

〉 =
n∑

k=1

Vk j

∣∣ψ (o)
k

〉
, (7)

where U,V ∈ U(n). Throughout the paper, we use square
brackets to indicate the dependence on a matrix. The re-
sulting transformed basis functions are themselves now
n-dimensional vectors of amplitudes. Because unitary op-
erations preserve orthogonality, these new bases are also
orthogonal. Under the new bases, the transmission matrix is
modified to

G → G[U,V ] = V †GU . (8)

Hence, unitary control corresponds to a unitary equivalence
[120] of a transmission matrix.

Unitary control also transforms the transmission properties
of a system. We focus on two key characteristics: total (power)
transmittance and direct (field) transmission. The total trans-
mittance [55] is described by a real total transmittance vector

T := (T1, . . . , Tn)T, (9)

where Ti ∈ R represents the total power transmitted when
a wave with unit power is incident from the ith input port
only. The direct transmission is described by a complex direct
transmission vector

t := (t1, t2, . . . , tn)T, (10)

where ti ∈ C represents the amplitude transmission coeffi-
cient from the ith input port to the ith transmitted port.
These input and transmitted ports can be chosen freely, but
in many practical scenarios, there is a natural choice. For
example, in a multimode fiber, the orbital angular momentum
(OAM) modes are often chosen as input and transmitted bases
[112–116]. Then the direct transmission describes the trans-
mission coefficients between the same OAM modes. Because
the OAM modes are transmitted without mixing in such an
ideal fiber, T just becomes the vector of power transmissions
of these modes and t just becomes the vector of the amplitude
transmissions of these modes. Then G and G†G become diag-
onal matrices in this basis so that, formally, in our notation

T = d(G†G), t = d(G). (11)

Under the unitary control as defined in Eq. (8), the total
transmittance vector in the new bases is modified to

T → T [U ] := d(G†[U,V ]G[U,V ]) = d(U †G†GU ), (12)

which depends only on U . Similarly, the direct transmission
vector in the new bases is modified to

t → t[U,V ] := d(G[U,V ]) = d(V †GU ), (13)

which depends on both U and V .

FIG. 2. Examples of {T } for (a) G2 ∈ M2 with σ2(G2) =
(0.84, 0.26)T and (b) G3 ∈ M3 with σ2(G3) = (0.81, 0.36, 0.16)T.

C. Major questions

We ask four basic questions: Given a transmission medium
under unitary control, (1) what total transmittance vectors
are attainable, (2) how is a given total transmittance vector
obtained, (3) what direct transmission vectors are attainable,
and (4) how is a given direct transmission vector obtained?
Questions 1 and 3 ask about the capability and limitation of
unitary control. Questions 2 and 4 ask for implementation.

We now reformulate these key questions mathematically.
Let G ∈ Mn be a given transmission matrix.

Question 1. What is the set

{T } := {T [U ] | U ∈ U(n)}? (14)

Question 2 Given T 0 ∈ {T }, what is the set

{U [T 0]} := {U ∈ U(n) | T [U ] = T 0}? (15)

Question 3. What is the set

{t} := {t[U,V ] | U,V ∈ U(n)}? (16)

Question 4. Given t0 ∈ {t}, what is the set

{(U,V )[t0]} := {U,V ∈ U(n) | t[U,V ] = t0}? (17)

D. Main results

Here we provide complete answers to Questions 1–3 and a
partial answer to Question 4.

1. Answer to Question 1

We start with Question 1. To hint at the solution, we per-
form two numerical experiments. In the first experiment, we
consider a random 2 × 2 transmission matrix

G2 =
(

0.4 − 0.5i 0.1 + 0.3i
0.4 − 0.3i 0.5 − 0.3i

)
, (18)

σ(G2) =
(

0.92
0.51

)
, σ2(G2) =

(
0.84
0.26

)
. (19)

We generate 1000 random Ui ∈ U(2) and calculate T [Ui] by
Eq. (12). Figure 2(a) shows the result. We see that {T } is a
line segment with endpoints obtained by permuting the coor-
dinates of σ2(G2). In the second experiment, we consider a
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random 3 × 3 scattering matrix

G3 =
⎛
⎝−0.14 − 0.07i −0.19 − 0.27i 0.55 − 0.04i

−0.48 − 0.26i −0.09 − 0.12i −0.23 − 0.38i
−0.02 − 0.03i 0.22 − 0.44i −0.14 − 0.34i

⎞
⎠,

(20)

σ(G3) =
⎛
⎝0.90

0.60
0.40

⎞
⎠, σ2(G3) =

⎛
⎝0.81

0.36
0.16

⎞
⎠. (21)

We generate 100000 random Ui ∈ U(3) and calculate T [Ui]
by Eq. (12). Figure 2(b) shows the result. We see that {T }
is a convex hexagon with vertices obtained by permuting the
coordinates of σ2(G3).

The numerical results above suggest the following obser-
vation on the geometry of {T }: For an n × n transmission
matrix G, {T } is a convex subset of an (n − 1)-dimensional
hyperplane in Rn. It is the convex hull spanned by the n! points
obtained by permuting the coordinates of σ2(G). [We note that
the convex hull of a set is the smallest convex set that contains
it, and σ2(G) = λ(G†G) is also known as the transmission
eigenvalues [121].] We show that this observation is true as
a result of our first theorem.

Theorem 1. Given a transmission matrix G ∈ Mn,

{T } = {u ∈ Rn|u ≺ σ2(G)}. (22)

Proof. First, we show T [U ] ∈ {T } ⇒ T [U ] ≺ σ2(G). We
use Schur’s theorem [122]

T [U ] = d(U †G†GU ) ≺ λ(U †G†GU ) = λ(G†G) = σ2(G).

(23)

Second, we show u ≺ σ2(G) ⇒ u ∈ {T }, i.e., there exists U ∈
U(n) such that T [U ] = u. We use Horn’s theorem [123]: As
u ≺ σ2(G), there exists a Hermitian matrix H with d(H ) = u
and λ(H ) = σ2(G). Since λ(G†G) = σ2(G) = λ(H ), H and
G†G are unitarily similar. Hence there exists U ∈ U(n) such
that H = U †G†GU . Now we check

T [U ] ≡ d(U †G†GU ) = d(H ) = u. (24)

This completes the proof. �
The geometric observation above is a direct consequence

of Theorem 1. We use Rado’s theorem [124], which states
that for a given y ∈ Rn, the set {x ∈ Rn|x ≺ y} is the convex
hull of points obtained by permuting the components of y. The
geometric observation is an application of Rado’s theorem to
Eq. (22).

It should be noted that the necessary condition T [U ] ∈
T ⇒ T [U ] ≺ σ2(G) is known in the literature in some equiv-
alent form [14,110] but not proven using majorization theory.
This implies that no channels can outperform SVD channels
[14]. The sufficient condition, stating that for any u ≺ σ2(G)
there exists U ∈ U(n) such that T [U ] = u, is a new result.
It demonstrates that any power distribution channels not su-
perior to SVD channels in the majorization sense can be
achieved through unitary control.

Equation (22) is our first main result. It shows that {T }
is completely determined by σ(G), which is invariant under
unitary control: σ(V †GU ) = σ(G). We can classify all

transmission media by their σ. Two media exhibit the same
{T } if and only if they belong to the same σ class.

2. Answer to Question 2

Now we turn to Question 2. The problem corresponds to
the following physical scenario. Suppose we have a medium
characterized by a transmission matrix G. Given a total trans-
mittance vector T 0 ≺ σ2(G), how do we construct the set of
all possible unitary control schemes as described by unitary
matrices {U [T 0]} that achieve T 0? Alternatively, a simpler
question is how to construct one unitary control scheme as
described by a unitary matrix U [T 0] that achieves T 0.

These two problems can be solved by the following algo-
rithms. We first perform a preparatory step that is common
in both algorithms. Suppose G has p distinct singular values.
Then G†G has p distinct eigenvalues λ1, . . . , λp, with respec-
tive multiplicities n1, . . . , np. Let � = λ1In1 ⊕ . . . ⊕ λpInp .
We find a V ∈ U(n) such that G†G = V �V †. Now we provide
the two algorithms.

ALGORITHM 1. Constructing {U [T 0]}.

(i) Use Fickus’s algorithm [125] (see Appendix A for details) to
construct all Hermitian matrices Hi with eigenvalues λ(G†G) and
diagonal entries T 0. For each Hi, find a Vi ∈ U(n) such that
Hi = Vi�V †

i .
(ii) We claim that Ui ∈ U(n) such that Hi = U †

i G†GUi if and
only if

Ui = V (W1 ⊕ · · · ⊕ Wp)V †
i , (25)

where Wk ∈ U(nk ), k = 1, . . . , p, are arbitrary. Denote the set of
all such Ui by {Ui}.
(iii) We claim that {U [T 0]} = ⋃

i{Ui}. (See the Supplemental
Material of Ref. [106] for proof of the two claims.)

ALGORITHM 2. Constructing a U [T 0].

(i) Use Chu’s first algorithm [126] (see Appendix A for details) to
construct a Hermitian matrix H with eigenvalues λ(G†G) and
diagonal elements T 0. Find a V ′ ∈ U(n) such that H = V ′�V ′†.
(ii) We obtain a U [T 0] = VV ′†.

Algorithms 1 and 2 are our second main result. We illus-
trate their usage with a numerical example in Appendix B.
We consider a 5 × 5 transmission matrix G. Our task is to
construct a U [T 0] with a randomly assigned goal T 0. We use
Algorithm 2 and complete the task. Importantly, our algo-
rithms allow us to achieve the prescribed total transmittance in
all ports with a single unitary matrix that performs the unitary
control.

3. Answer to Question 3

Next we consider Question 3. To hint at the solution,
we perform two numerical experiments. In the first exper-
iment, we consider the 2 × 2 transmission matrix G2 in
Eq. (18). We generate 1000000 random (Ui,Vi ) ∈ U(2) ×
U(2) and calculate t[Ui,Vi] by Eq. (13). Figure 3(a) shows the
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FIG. 3. Examples of {|t|} for (a) G2 ∈ M2 with σ(G2) =
(0.92, 0.51)T and (b) G3 ∈ M3 with σ(G3) = (0.90, 0.60, 0.40)T.

result of |t|[Ui,Vi].1 We see that {|t|} is a convex pentagon,
which is defined by the set of solutions to a system of linear
inequalities2

|t |↓1 � σ
↓
1 (G2), (26)

|t |↓1 + |t |↓2 � σ
↓
1 (G2) + σ

↓
2 (G2), (27)

|t |↓1 − |t |↓2 � σ
↓
1 (G2) − σ

↓
2 (G2). (28)

In the second experiment, we consider the 3 × 3 transmis-
sion matrix G3 in Eq. (20). We generate 10000000 random
(Ui,Vi ) ∈ U(3) × U(3) and calculate t[Ui,Vi] by Eq. (13).
Figure 3(a) shows the result of |t|[Ui,Vi]. We see that {|t|} is
a convex decahedron, which is defined by the set of solutions
to a system of linear inequalities3

|t |↓1 � σ
↓
1 (G3), (29)

|t |↓1 + |t |↓2 � σ
↓
1 (G3) + σ

↓
2 (G3), (30)

|t |↓1 + |t |↓2 + |t |↓3 � σ
↓
1 (G3) + σ

↓
2 (G3) + σ

↓
3 (G3), (31)

|t |↓1 + |t |↓2 − |t |↓3 � σ
↓
1 (G3) + σ

↓
2 (G3) − σ

↓
3 (G3). (32)

The numerical results above suggest the following observa-
tion on the geometry of {|t|}: For an n × n transmission matrix
G, {|t|} is a convex polytope in Rn, bounded by an intersection
of half planes. The half planes are defined by a set of linear
inequalities involving the coordinates of σ(G). We show that
this observation is true as a result of our second theorem.

Theorem 2. Given a transmission matrix G ∈ Mn,

{t} =
{

v ∈ Cn | |v| ≺w σ(G),

n−1∑
i=1

|v|↓i − |v|↓n �
n−1∑
i=1

σ
↓
i (G) − σ↓

n (G)

}
. (33)

Proof. This can be proved using the Sing-Thompson
theorem [127–129]. �

1It is easy to see that the phases of t components can be arbitrary
when one considers all possible (Ui,Vi ).

2Inequality (26) is redundant but included for later generalization.
3Inequality (30) is redundant but included for later generalization.

Equation (33) is our third main result. It shows that {t} is
completely determined by σ(G). Two media exhibit the same
{t} if and only if they belong to the same σ class. We also
note that only the magnitudes of ti are constrained by Eq. (33),
while the phases of ti can be arbitrarily set, e.g., by considering
a diagonal unitary transformation U or V .

4. Answer to Question 4

Finally, we discuss Question 4. The problem corresponds
to the following physical scenario. Suppose we have a
medium characterized by a transmission matrix G. Given a
direct transmission vector t0 ∈ {t}, how do we construct the
set of all possible unitary control schemes as described by uni-
tary matrix pairs {(U,V )[t0]} that achieve t0? Alternatively,
a simpler question is how to construct one unitary control
scheme as described by a unitary matrix pair (U,V )[t0] that
achieves t0.

We do not have the answer to the first problem yet. We
provide an algorithm that solves the second problem.

ALGORITHM 3. Constructing a (U,V )[t0].

(i) Calculate the SVD of G: G = V †
0 �U0.

(ii) Use Chu’s second algorithm [130] (see Appendix A for details)
to construct a complex matrix G′ with singular values σ(G) and
diagonal elements t0. Calculate the SVD of G′: G′ = V ′†�U ′.
(iii) We obtain a (U,V )[t0] = (U †

0 U ′,V †
0 V ′).

Algorithm 3 is our fourth main result. We illustrate its
usage with a numerical example in Appendix C. We consider
a 5 × 5 transmission matrix G. Our task is to construct a
(U,V )[T 0] with a randomly assigned goal t0. We use Al-
gorithm 3 and complete the task. Importantly, our algorithm
allows us to achieve the prescribed direct transmission in
all ports with a single unitary matrix pair that performs the
unitary control.

IV. APPLICATIONS

Now we discuss the physical applications of our theory.

A. Multimode coherent perfect or zero transmission

First, we provide the criterion for k-fold degenerate co-
herent perfect transmittance, i.e., the effect that a medium
exhibits perfect total transmittance for k independent coher-
ent input waves. From Eq. (22) we obtain a necessary and
sufficient condition for G ∈ Mn:

σ
↓
1 (G) = · · · = σ

↓
k (G) = 1. (34)

Similarly, we provide the criterion for k-fold degenerate
coherent zero transmittance, i.e., the effect that a medium
exhibits zero total transmittance for k independent coherent
input waves. From Eq. (22) we obtain a necessary and suffi-
cient condition for G ∈ Mn:

σ
↓
1 (G) = · · · = σ

↓
k (G) = 0. (35)
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B. Unitary uniform transmission

Second, we propose the concepts of unitary uniform total
transmittance and unitary uniform direct transmission, which
refer to the effects that a medium exhibits uniform total trans-
mittance (Ti = const) and uniform direct transmission (ti =
const), respectively, under some unitary control. We claim
that any medium exhibits unitary uniform total transmittance.
We prove this by showing that for any G ∈ Mn, there exist
U ∈ U(n) such that

T [U ] = (a, . . . , a)T, a = 1

n

n∑
i=1

σ 2
i (G). (36)

This is because for any (x1, x2, . . . , xn)T ∈ Rn, we have

(x̄, x̄, . . . , x̄)T ≺ (x1, x2, . . . , xn)T, x̄ = 1

n

n∑
i=1

xi. (37)

Thus, for any G ∈ Mn, we have

(a, . . . , a)T ≺ σ2(G); (38)

hence by Eq. (22), it is attainable under unitary control. More-
over, we claim that any medium exhibits unitary uniform
direct transmission. We prove this by showing that for any
G ∈ Mn and for any b ∈ C that satisfies

|b| � 1

n

n∑
i=1

σi(G), (39)

there exist (U,V ) ∈ U(n) × U(n) such that

t[U,V ] = (b, . . . , b)T. (40)

This is because (b, . . . , b)T satisfies all the inequalities in
Eq. (33); hence it is attainable under unitary control. So any
transmission medium can exhibit uniform total transmittance
or direct transmission over any number of ports under suitable
unitary control. Moreover, our algorithms provide practical
implementations to achieve these effects. These results can be
useful in applications such as uniform illumination.

C. Symmetry constraints on bilateral transmission

Third, we discuss the constraints imposed by symmetry
on the unitary control of bilateral transmission. So far, our
focus has been on the transmission matrix G in the forward
direction (from left to right). However, in many applications,
it is also necessary to consider the transmission matrix G̃ in
the backward direction (from right to left). In general, G and G̃
can be distinct. Nevertheless, certain symmetries of the system
can establish a relationship between them, thereby affecting
their unitary control. Here we examine two significant internal
symmetries [131,132]: reciprocity and energy conservation.
We have proven that when the medium is either reciprocal or
energy conserving,

σ(G̃) = σ(G). (41)

(See Appendix D for proof.) Consequently, G and G̃ belong
to the same σ class and exhibit the same sets of attainable {T }
and {t} under unitary control.

FIG. 4. Silicon slab waveguide with embedded scatterers.
(a) The waveguide structure consists of a silicon core (ni = 3.48) em-
bedded in silica (n0 = 1.444) with four cylindrical scatterers made
of lossy silica (ns = 1.444 + 0.100i). The geometric parameters are
provided in the text. The uniform waveguide section supports two
eigenmodes |ψ1〉 and |ψ2〉. (b) Refractive index profile n(x) (left axis)
and eigenmode electric field distributions for |ψ1〉 and |ψ2〉 (right
axis). Intensity distributions |E |2(x, z) show the input eigenstates
(c) |ψ1〉 and (d) |ψ2〉, (e) and (f) the steady-state intensity patterns
as light interacts with the scatterers, and the transmitted states (g)
t̂ |ψ1〉 and (h) t̂ |ψ2〉.

V. NUMERICAL DEMONSTRATION

We illustrate our theory with a concrete numerical exam-
ple. Consider a silicon slab waveguide (ni = 3.48) embedded
in silica cladding (n0 = 1.444) [Fig. 4(a)]. The waveg-
uide has a thickness of w = 0.3875 µm in the x direction
and extends along the y and z directions. Light prop-
agates along the z direction with a vacuum wavelength
of λ = 1.55 µm, and the electric field is polarized along
the y direction. The waveguide contains four cylindri-
cal scatterers made of lossy silica (ns = 1.444 + 0.100i).
The cylinders have diameters of d1 = 0.116 µm, d2 =
0.194 µm, d3 = 0.233 µm, and d4 = 0.155 µm. Their centers
are located at (y1, z1) = (−0.80 µm, 0.097 µm), (y2, z2) =
(−0.60 µm, 0.078 µm), (y3, z3) = (−0.30 µm,−0.078 µm),
and (y4, z4) = (0.10 µm,−0.097 µm), respectively.

We simulate the light propagation in the waveguide us-
ing Tidy3D [133], which implements the finite-difference
time-domain method. The waveguide supports two eigen-
modes, denoted by |ψ1〉 and |ψ2〉, in its uniform section.
Figure 4(b) shows the cross-sectional refractive index pro-
file n(x) of the waveguide and the electric-field profiles of
the eigenmodes. We input these eigenmodes from the left
side of the scatterers. Figures 4(c) and 4(d) show the inten-
sity distributions of these input eigenmodes. These waves
interact with the scatterers and undergo partial transmis-
sion, reflection, and absorption [Figs. 4(e) and 4(f)]. We
determine the field transmission matrix under the eigenmode
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bases

G =
(

0.146 + 0.394i 0.484 − 0.471i

0.151 − 0.407i 0.378 + 0.297i

)
, (42)

where the reference planes for incident and transmitted waves
are positioned at z = −4.39 and 4.00 µm, respectively. From
this transmission matrix, we calculate

σ(G) =
(

0.879

0.528

)
, σ2(G) =

(
0.773

0.279

)
, (43)

along with the total transmittance vector

T = (0.365, 0.687)T (44)

and the direct transmission vector

t = (0.146 + 0.394i, 0.378 + 0.297i)T. (45)

Figures 4(g) and 4(h) show the intensity distribution of the
transmitted states t̂ |ψ1〉 and t̂ |ψ2〉, respectively.

Next we demonstrate unitary control of wave transmission
in this system. We place programmable unitary mode convert-
ers on each side of the waveguide [Fig. 5(a)]. These converters
can take multiple physical forms, such as multiplane light
conversion devices and Mach-Zehnder interferometer meshes.
The left-hand-side converter transforms each input eigenmode
|ψi〉, i = 1, 2, into U |ψi〉. This transformed wave then inter-
acts with the scatterers, producing a transmitted state t̂U |ψi〉.
The right-hand-side converter further transforms this state into
V †t̂U |ψi〉. By tuning U and V , we control both the total
transmittance vector T [U ] and the direct transmittance vector
t[U,V ]. Figures 5(b) and 5(c) display the sets of achievable
{T } and {t} under unitary control, showing patterns similar to
those in Figs. 2(a) and 3(a). The gray dots mark the values
of T and |t| for the original eigenmodes (when U = V = I),
while the purple dots indicate our target values

T 0 = (0.526, 0.526)T, t0 = (0.704, 0.704)T, (46)

which achieve unitary uniform total transmittance and direct
transmission. Applying Algorithms 2 and 3, we obtain the
unitary transformations that achieve the target values

U =
(−0.938 + 0.000i 0.346 + 0.000i

0.328 − 0.111i 0.889 − 0.301i

)
, (47)

V =
(−0.175 − 0.713i 0.526 − 0.429i

−0.159 + 0.660i 0.718 − 0.152i

)
. (48)

FIG. 5. Unitary control of wave transmission in the waveguide.
(a) Schematic showing programmable unitary mode converters U
and V added to both sides of the waveguide. The sets of attainable
(b) {T } and (c) {|t|} are under unitary control. Gray dots indicate the
values in the absence of unitary control. Purple dots mark the target
values achieved via unitary control in Eqs. (47) and (48). Intensity
distributions |E |2(x, z) show the transformed input states (d) U |ψ1〉
and (e) U |ψ2〉, (f) and (g) the steady-state intensity patterns as light
interacts with the scatterers, the immediately transmitted states (h)
t̂U |ψ1〉 and (i) t̂U |ψ2〉, and the final transformed transmitted states
(j) V †t̂U |ψ1〉 and (k) V †t̂U |ψ2〉.

Figures 5(d) and 5(e) show the intensity distributions of the
transformed input states U |ψ1〉 and U |ψ2〉. These waves in-
teract with the scatterers, undergoing partial transmission,
reflection, and absorption [Figs. 5(f) and 5(g)]. Figures 5(h)
and 5(i) display the intensity distributions of the immediately
transmitted states t̂U |ψ1〉 and t̂U |ψ2〉, while Figs. 5(j) and
5(k) show the final transformed transmitted states V †t̂U |ψ1〉
and V †t̂U |ψ2〉. The numerical results demonstrate the im-
plementation of unitary control for manipulating multimode
wave transmission.

VI. CONCLUSION

We note several limitations and challenges in the current
methodology of unitary control. These challenges naturally
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point to promising directions for future research in this field.
First, implementing unitary control requires complete knowl-
edge of the transmission matrix, which may not be available
in certain applications. Exploring control strategies based on
partial transmission matrix information represents an impor-
tant future direction. Second, our current theory addresses
only single-frequency manipulation, and extending it to mul-
tifrequency broadband control remains an open challenge.
Third, practical deployment requires compact, large-scale,
programmable unitary converters. The development of such
devices for various practical applications constitutes a techno-
logical frontier.

In conclusion, we provided a systematic theory for unitary
control of wave transmission. We revealed that singular value
inequalities provide the mathematical structure to describe
the physics of unitary control. Our results deepen the under-
standing of unitary control of wave transmission and provide
practical guidelines for its implementation.
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APPENDIX A: CHU’S AND FICKUS’S ALGORITHMS

Here we briefly review Chu’s [126] and Fickus’s [125]
algorithms (Algorithms A1 and A2, respectively) for con-
structing a Hermitian matrix with prescribed diagonal entries
and eigenvalues.

ALGORITHM A1. Chu’s first algorithm.

One can construct a real symmetric matrix with prescribed
eigenvalues λ and diagonal entries d by integrating the differential
equations

Ẋ = [X, [diag(X ) − diag(d ), X ]] (A1)

until equilibrium from a starting point X0 = QT�Q, with Q a
random orthogonal matrix and � = diag(λ). Here
[A, B] ≡ AB − BA is the Lie bracket, diag(X ) is the diagonal
matrix with the same diagonal entries of X , and diag(d ) is the
diagonal matrix with diagonal entries d. This algorithm always
converges to a valid solution.

ALGORITHM A2. Fickus’s algorithm.

One can construct all Hermitian matrices with prescribed
eigenvalues λ and diagonal entries d using finite frame theory. The
explicit steps can be found in Ref. [125].

We also review Chu’s algorithm [130] for constructing a
matrix with prescribed diagonal entries and singular values.

ALGORITHM A3. Chu’s second algorithm.

One can construct a real matrix with prescribed singular values σ

and diagonal entries d using a recursive method. The explicit
codes can be found in Ref. [130].

APPENDIX B: DEMONSTRATION OF ALGORITHM A2

To illustrate Algorithm A2, we consider a 5 × 5 transmis-
sion matrix

G =

⎛
⎜⎜⎜⎜⎜⎝

−0.15 − 0.13i −0.09 − 0.02i −0.13 − 0.35i −0.13 − 0.01i −0.20 − 0.12i
0.36 − 0.20i 0.14 + 0.10i −0.08 − 0.10i −0.16 + 0.24i 0.22 − 0.34i
0.44 − 0.14i −0.11 − 0.05i −0.07 + 0.22i −0.04 + 0.15i −0.19 − 0.19i
0.02 + 0.00i −0.04 + 0.19i 0.25 + 0.12i 0.11 − 0.02i 0.18 − 0.12i
0.04 − 0.17i −0.45 − 0.13i −0.25 − 0.14i 0.07 − 0.03i −0.18 − 0.07i

⎞
⎟⎟⎟⎟⎟⎠, (B1)

with

σ(G) = (0.90, 0.70, 0.50, 0.30, 0.10)T, (B2)

σ2(G) = (0.81, 0.49, 0.25, 0.09, 0.01)T. (B3)

The task is to construct a U [T 0], with the randomly assigned goal

T 0 = (0.55, 0.20, 0.28, 0.15, 0.46)T. (B4)

First, we check that

T 0 ≺ σ2(G) (B5)
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so that T 0 is attainable via unitary control. We use Algorithm A2 to obtain

U [T 0] =

⎛
⎜⎜⎜⎜⎜⎝

−0.23 + 0.00i 0.53 + 0.00i 0.23 + 0.00i −0.31 + 0.00i 0.72 + 0.00i
0.10 − 0.48i −0.37 + 0.01i −0.38 − 0.09i −0.62 + 0.26i −0.15 + 0.02i

−0.48 − 0.44i 0.08 − 0.04i −0.35 − 0.34i 0.30 − 0.44i −0.03 + 0.19i
−0.09 − 0.17i 0.35 + 0.32i 0.36 − 0.25i −0.40 + 0.00i 0.58 + 0.21i
−0.32 − 0.37i −0.22 − 0.54i 0.52 + 0.32i −0.05 − 0.05i 0.12 − 0.17i

⎞
⎟⎟⎟⎟⎟⎠.

We verify that

T [U ] = d(U †[T 0]G†GU [T 0]) = T 0. (B6)

APPENDIX C: DEMONSTRATION OF ALGORITHM A3

To illustrate Algorithm A3, we consider the same G ∈ M5 as given in Eq. (B1). The task is to construct a (U,V )[t0], with the
randomly assigned goal

t0 = (0.50, −0.20, 0.10, 0.30, −0.40)T. (C1)

First, we check that

|t0| ≺w σ(G),
n−1∑
i=1

|t0|↓i − |t0|↓n �
n−1∑
i=1

σ
↓
i (G) − σ↓

n (G) (C2)

so that t0 is attainable via unitary control. We use Algorithm A3 to obtain

U [t0] =

⎛
⎜⎜⎜⎜⎜⎝

0.27 + 0.00i −0.41 + 0.00i 0.37 + 0.00i −0.52 + 0.00i −0.60 + 0.00i
−0.67 + 0.38i −0.00 + 0.22i −0.23 − 0.29i −0.43 − 0.03i −0.07 + 0.17i
0.41 − 0.03i −0.14 + 0.08i −0.51 − 0.34i −0.06 − 0.60i 0.02 + 0.24i
0.20 + 0.30i 0.43 + 0.28i 0.48 − 0.19i −0.37 − 0.19i 0.41 − 0.01i
0.07 − 0.17i −0.33 − 0.62i 0.30 + 0.02i −0.05 − 0.03i 0.48 + 0.39i

⎞
⎟⎟⎟⎟⎟⎠.

V [t0] =

⎛
⎜⎜⎜⎜⎜⎝

−0.19 − 0.43i 0.25 − 0.38i −0.60 + 0.35i 0.14 + 0.21i −0.05 + 0.16i
−0.43 − 0.34i −0.02 − 0.14i 0.19 − 0.08i −0.70 + 0.07i −0.05 − 0.37i
0.20 + 0.17i −0.13 + 0.07i −0.15 + 0.15i −0.39 + 0.39i 0.72 + 0.22i
0.18 − 0.23i −0.24 + 0.61i −0.03 + 0.51i −0.21 + 0.10i −0.40 + 0.11i
0.49 − 0.28i −0.26 − 0.51i 0.41 − 0.06i −0.02 + 0.29i −0.20 + 0.24i

⎞
⎟⎟⎟⎟⎟⎠.

We verify that

t[U,V ] = d(V †[t0]GU [t0]) = t0. (C3)

APPENDIX D: PROOF OF EQ. (41)

To prove Eq. (41), we consider the whole scattering matrix
of the medium

S =
(

R1 G̃
G R2

)
∈ M2n, (D1)

where R1 and R2 are the reflection matrices on the left and
right sides, respectively. If the system is reciprocal, then [132]

S = ST, (D2)

which implies that

G̃ = GT, (D3)

and thus

σ(G̃) = σ(G). (D4)

If the system is energy conserving, then [132]

S†S = SS† = I2n. (D5)

From S†S = I2n we obtain

R†
1R1 + G†G = In. (D6)

From SS† = I2n we obtain

R1R†
1 + G̃G̃† = In. (D7)

Therefore,

σ2(G) = λ(G†G) = λ(In − R†
1R1) = 1 − σ2(R1), (D8)

σ2(G̃) = λ(G̃G̃†) = λ(In − R1R†
1) = 1 − σ2(R1). (D9)

Thus,

σ(G̃) = σ(G). (D10)

This completes the proof of Eq. (41).
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