4231655 FF105 CLEO 2025 © Optica Publishing Group 2025

Variational optical processors

Charles Roques-Carmes,"* Aviv Karnieli,”* David A. B. Miller!, and Shanhui Fan!
!'E. L. Ginzton Laboratories, Stanford University, 348 Via Pueblo, Stanford, CA 94305
*chre @stanford.edu, karnieli @ stanford.edu

Abstract: We introduce “variational optical processors,” self-configuring photonic net-
works that learn modal representations of partially coherent or quantum optical fields
through optimization, applicable to diverse classical and quantum optical processing tasks.
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Classical and quantum light fields can be described in terms of modes. Modal decompositions play a central
role in our understanding of multimode light field generation, propagation, and measurement. Some important ex-
amples include the decomposition of partially coherent light into so-called “natural modes” (a form of Karhunen-
Loeve expansion [1]), coherency and density matrix eigendecomposition [1, 2], Schmidt decomposition of pure
quantum bipartite states [2], and the Bloch-Messiah decomposition of multimode Gaussian states [3]. Methods re-
lying on tomographic projection of the fields onto an ad hoc basis, usually requiring prior knowledge of the modes’
geometry, have been realized to perform modal decomposition of multimode quantum and classical fields [4,5].

Networks of Mach-Zehnder interferometers (MZIs) have proven highly effective in manipulating [6] and
measuring [7] coherent multimode light. We now propose that these self-configuring meshes can be used to
measure, process, and generate multimode light fields that exhibit some degree of partial (classical or quantum)
coherence.

Here, we introduce a general framework
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ponents that have the properties of the modal decomposition of interest (e.g., mutually incoherent, separable
quantum states, supermodes, etc.). Furthermore, by sequentially learning the modes associated with the largest
eigenvalues or singular values, our framework achieves favorable scaling in both physical hardware and required
measurements compared to traditional tomographic techniques. Our method therefore paves the way to full char-
acterization of multimode classical and quantum light fields in the various use cases shown in Fig. 1.

The central element of the VOP is a reconfigurable optics consisting of cascaded self-configuring MZI layers,
each parametrized by (6, @) which are vectors of phase parameters for layer k. The input multimode field can
generally be described as a vector x, which may represent the amplitude of a light field over its spatial degrees of
freedom, the wavefunction of a single photon, or the quadratures of a multimode Gaussian field. The output of
the network y is a linear function of x parametrized by (6, ¢¢). We denote the signal detection function as f(y).
The key idea of VOP is that, for a given modal representation of the input light field Mode; (Karhunen-Loeve,
Schmidt, etc.), one can find a function f such that the following variational formulation holds:

Mode;, = argmax f(y|6, ¢x). (1)
O,k

We explain Eq. (1) with some specific examples. For instance, it was recently shown that for spatially partially
coherent light, if f(y) = (|yx|?) (the average power at the output port of the self-configuring layer k), Modey is



the k-th natural mode of the field’s Karhunen-Loeve expansion [8] (an observation that also holds for incoherent
mixtures of delocalized single photons). Another example of importance in quantum optics is, if the VOP consist
of two separate self-configuring networks, each receiving a single photon from a pure entangled state, and f is
the average coincidence measured between ports k of the two networks, Mode;, corresponds to the k-th Schmidt
mode [9]. We envision that more complex detection functions (homodyne detection, number basis or time bin
measurements, etc.) may map to other representations of the input light field. In all of the above mentioned
examples, the variational optimization is performed sequentially (Iayer by layer), such that each mode corresponds
to the parameters of a single self-configuring layer.
We now elaborate on poten-
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scattering medium. Our proto-
col leverages sequential coinci-
dence optimization within the
VOPs, facilitating efficient en-
tanglement distribution and ro-
bust quantum communication
through scattering channels. To validate our method, we conducted simulations using a random matrix to represent
the input state in Fig. 2b-f. By applying sequential coincidence maximization with VOPs, we demonstrated that
the devices accurately identify the Schmidt modes (Fig. 2d) and corresponding Schmidt values (Fig. 2e), by effec-
tively maximizing coincidence counts. The fidelity between the reconstructed and original states approaches unity
(Fig. 2f), indicating that VOPs can reliably perform modal analysis of entangled states. These results highlight
the potential of VOPs as tools for high-dimensional entanglement characterization and manipulation in practical
quantum communication systems.

In conclusion, we have shown that self-configuring photonic networks, such as triangular arrays of MZIs, can
automatically learn and measure multimode partially coherent or quantum light fields by sequentially optimizing
their parameters to perform modal decomposition.
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