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Abstract: We design self-configuring optical network architectures for continuous-variable 

quantum information processing of multimode squeezed vacuum, allowing scalable 

implementations in real and synthetic dimensions. © 2025 The Authors 

 

Continuous variable (CV) quantum information serves as a promising paradigm for realizing scalable 

photonic quantum technologies. Multimode squeezed vacuum (MSV) states are a versatile CV platform for 

applications ranging from quantum computing to sensing and communication. Such states can be implemented across 

different degrees of freedom allowing very large dimensionality, such as the spatial [1], spectral and temporal [2-4] 

domains, where the corresponding squeezed quadratures are encoded in supermodes [5]. To process and measure 

MSV states, one usually employs balanced homodyne detection, optionally with a shaped local oscillator [5]. 

However, in the most general case where no a priori knowledge of the expected supermode structure can be made, 

the number of required homodyne measurements scales quadratically with the number of available modes 𝑀, even if 

squeezing is carried by only a few principal supermodes. This unfavorable “curse of dimensionality” can hamper the 

usage of this important quantum optical resource. 

Efficient modal decompositions can be automatically performed using variational optimization in self-

configuring arrays of Mach-Zehnder interferometers for coherent [6] and partially coherent [7] classical light, as well 

as for quantum optical processing of photon pairs [8]. In this work, we propose architectures for quantum information 

processing of MSV states based on a cascade of 𝑟 self-configuring (SC) layers [6], in both real and synthetic 

dimensions. Our scheme allows the sequential learning of the 𝑟 most dominant supermodes carrying the maximally-

squeezed quadratures, performing the so-called Bloch-Messiah—Williamson decomposition [5] (diagonalization of 

the MSV covariance matrix in terms of physical modes) using 𝑂(𝑟𝑀) iterations and in a hardware-efficient manner. 

Our findings pave the way towards scalable high-dimensional entanglement processing. 

Fig 1: CV quantum information processing with 

self-configuring optics in real and synthetic 

dimension. The networks variationally optimize 

each SC layer (color-coded) using feedback from a 

single homodyne output measurement. The network 
learns the most dominant supermodes first.  a-b Real 

space implementation involves an MSV state 

encoded in spatial bins, and the network is a MZI 
mesh implemented in an integrated photonics 

platform. c-d Implementation in the frequency-time 

synthetic dimension, involving an MSV state 
encoded in spectral bins and implemented using a 

single modulated cavity with quadratic dispersion.  

  

 

Fig. 1 illustrates implementations in real space and in synthetic frequency-time dimension with a triangular 

mesh (other self-configuring architectures, such as a binary tree mesh [9] are also possible) of real or synthetic Mach-

Zehnder interferometers (MZIs). The input MSV (a Gaussian state) is completely determined by its covariance matrix 

[5] Γin = ⟨𝐪̂𝐪̂𝑻 + (𝐪̂𝐪̂𝑻)𝑻⟩/2 in terms of the quadrature operator vector 𝐪̂ = (𝑥̂1, … , 𝑥̂𝑀 , 𝑝̂1, … , 𝑝̂𝑀)
𝑇. The 𝑀 modes of 

the MSV (spatial or frequency bins) are incident on the input ports of the network. The SC topology allows for the 

sequential optimization of the MZI parameters of each SC diagonal layer (color coded in Fig. 1a,c) through a single-

mode homodyne measurement on its corresponding output, providing electronic feedback to the SC layer (color-coded 

arrows). The 𝑖-th output is optimized over the homodyne interferogram to find  

𝜎𝑖
2 = max

||𝑜(𝑖)||=1
𝑜(𝑖)𝑇Γin𝑜

(𝑖) , 𝑜opt
(𝑖) = argmax

||𝑜(𝑖)||=1

𝑜(𝑖)𝑇Γin𝑜
(𝑖) , (1) 
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where Γin is the input covariance matrix (2𝑀 × 2𝑀 symmetric real positive definite matrix; approximately-uniform 

losses across the modes are assumed), 𝑜(𝑖) is the 𝑖-th column of 𝑂𝑇, and 𝑂 is the real 2𝑀 × 2𝑀 orthogonal matrix 

diagonalizing Γin, given in terms of the network complex unitary 𝑈 as 𝑂 = (Re𝑈, Im𝑈;−Im𝑈, Re𝑈). Writing Γin =
𝑂Σ2𝑂𝑇, the 𝑖 = 1,… ,𝑀 (𝑖 = 𝑀 + 1,… 2𝑀) -th diagonal elements of Σ2 contain the variances of the antisqueezed 

(squeezed) quadratures, in descending (ascending) order of antisqueezing (squeezing), while the rows of 𝑂 contain 

the structure of the 2𝑀 quadratures corresponding to the 𝑀 supermodes. From the variational theorem, the sequential 

optimization of layer 𝑖 learns the 𝑖-th most squeezed supermode 𝑜opt
(𝑖)

 and its degree of (anti-)squeezing 𝜎𝑖
2 .  

So, this variational approach ensures that the network learns the most dominant supermodes first, allowing 

favorable scaling of both hardware and number of required iterations for the experimentally relevant scenario of 

sparsely encoded states of 𝑟 supermodes in large Hilbert spaces (𝑟 ≪ 𝑀). Specifically, the number of physical 

elements reduces from 𝑂(𝑀2) of a full MZI mesh to 𝑂(𝑟𝑀) (that is, one needs only 𝑂(𝑟) network layers). We note 

that the number of physical elements can potentially reach 𝑂(1) for the synthetic dimension implementation discussed 

below. Further, it can be formally proven that the variational optimization of the Rayleigh quotient of Eq. (1) always 

converges using stochastic gradient descent [8] and requires 𝑂(𝑟𝑀) iterations to implement the optimizing feedback. 

Numerical simulations of the optimization procedure, accounting for the homodyne measurement noise (modeled as 

Gaussian noise with the covariance matrix of the output state), are presented in Fig. 2.  

Fig 2: Simulation of automatic Bloch-Messiah 

decomposition of multimode squeezed vacuum. a Input 

covariance matrix for a 𝑁 =  5 multimode squeezed 

vacuum (off-diagonal terms represent quantum 

correlations). b Output covariance matrix after self-

configuring optics convergence. c, d Dynamics of self-
configuring training: homodyne signal (c) and overall 

fidelity (d) as a function of iteration number. Inset shows 

that the product of the learned orthogonal matrix 𝑂𝑀𝑍𝐼 (on 

𝑥, 𝑝 space) is orthogonal to the modal decomposition 𝑂 

corresponding to the Bloch-Messiah decomposition of the 

input state. 

 

We now describe our proposed architecture 

using real and synthetic dimensions. In real 

space (Fig. 1a-b), an MZI mesh can be 

constructed using standard integrated photonics techniques [9] where squeezed vacuum is prepared either on-chip in 

a discrete-waveguide array [10] or using free-space couplers to couple onto the chip. The network’s “width” and 

“depth” are both in the spatial domain. In contrast, one can implement such networks in a synthetic frequency 

dimension (Fig. 1c-d), using a single modulated resonator with a weak quadratic dispersion 𝜔𝑛 = 𝜔0 + 𝑛Ω𝑅 + 𝑛2Ω𝑅
′  

where Ω𝑅 is the free spectral range and Ω𝑅
′  is the dispersion scale. Driving the system using uneven harmonics ω𝑙,𝑙−1 ≡

Ω𝑅 + (2𝑙 − 1)Ω𝑅
′ = 𝜔𝑙 − 𝜔𝑙−1, that couple adjacent frequencies 𝜔𝑙 , 𝜔𝑙−1, a choice of |Ω𝑅

′ | ≤ |Ω𝑅|/ 𝑀 ensures that 

the minimal detuning from any unwanted transitions in the system is 2|Ω𝑅
′ |. Therefore, for all 𝑙 = 1,… ,𝑀, driving 

with Ω𝑙  is equivalent to a frequency-domain MZI between the pair 𝜔𝑙 , 𝜔𝑙−1 if the modulation time satisfies 𝑇 ≫
𝜋/|Ω𝑅

′ |. The frequency-domain MZI meshes are then constructed fully in synthetic dimensions: the network “width” 

is the spectrum, and the “depth” is the time duration of the modulation. In this manner, the physical hardware 

complexity is 𝑂(1) optical elements. We note that in this configuration, the squeezing is assumed to be generated in 

the same resonator (or an identical one coupled to it), and that the feedback homodyne measurements are done by 

controllably outcoupling the light after the total modulation time is over. We note that these ideas could also be 

extended to scattering-based architectures with the frequency domain MZIs [11]; these may still require 𝑂(𝑟𝑁) 
physical elements, which is still a significant improvement to architectures proposed thus far. 
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