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Abstract: We design self-configuring optical network architectures for continuous-variable
quantum information processing of multimode squeezed vacuum, allowing scalable
implementations in real and synthetic dimensions. © 2025 The Authors

Continuous variable (CV) quantum information serves as a promising paradigm for realizing scalable
photonic quantum technologies. Multimode squeezed vacuum (MSV) states are a versatile CV platform for
applications ranging from quantum computing to sensing and communication. Such states can be implemented across
different degrees of freedom allowing very large dimensionality, such as the spatial [1], spectral and temporal [2-4]
domains, where the corresponding squeezed quadratures are encoded in supermodes [5]. To process and measure
MSV states, one usually employs balanced homodyne detection, optionally with a shaped local oscillator [5].
However, in the most general case where no a priori knowledge of the expected supermode structure can be made,
the number of required homodyne measurements scales quadratically with the number of available modes M, even if
squeezing is carried by only a few principal supermodes. This unfavorable “curse of dimensionality” can hamper the
usage of this important quantum optical resource.

Efficient modal decompositions can be automatically performed using variational optimization in self-
configuring arrays of Mach-Zehnder interferometers for coherent [6] and partially coherent [7] classical light, as well
as for quantum optical processing of photon pairs [8]. In this work, we propose architectures for quantum information
processing of MSV states based on a cascade of r self-configuring (SC) layers [6], in both real and synthetic
dimensions. Our scheme allows the sequential learning of the » most dominant supermodes carrying the maximally-
squeezed quadratures, performing the so-called Bloch-Messiah—Williamson decomposition [5] (diagonalization of
the MSV covariance matrix in terms of physical modes) using O (rM) iterations and in a hardware-efficient manner.
Our findings pave the way towards scalable high-dimensional entanglement processing.
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b Fig 1: CV quantum information processing with
self-configuring optics in real and synthetic
dimension. The networks variationally optimize
each SC layer (color-coded) using feedback from a
single homodyne output measurement. The network
learns the most dominant supermodes first. a-b Real
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Fig. 1 illustrates implementations in real space and in synthetic frequency-time dimension with a triangular
mesh (other self-configuring architectures, such as a binary tree mesh [9] are also possible) of real or synthetic Mach-
Zehnder interferometers (MZIs). The input MSV (a Gaussian state) is completely determined by its covariance matrix
[5]1 i, = (47 + (§G7)T)/2 in terms of the quadrature operator vector § = (%1, ..., Xy, D1, -, Py) . The M modes of
the MSV (spatial or frequency bins) are incident on the input ports of the network. The SC topology allows for the
sequential optimization of the MZI parameters of each SC diagonal layer (color coded in Fig. 1a,c) through a single-
mode homodyne measurement on its corresponding output, providing electronic feedback to the SC layer (color-coded
arrows). The i-th output is optimized over the homodyne interferogram to find
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where T, is the input covariance matrix (2M x 2M symmetric real positive definite matrix; approximately-uniform
losses across the modes are assumed), o is the i-th column of 07, and O is the real 2M x 2M orthogonal matrix
diagonalizing Tj,, given in terms of the network complex unitary U as O = (ReU, ImU; —ImU, ReU). Writing [}, =
0x%07, the i=1,..,M (i =M + 1,...2M) -th diagonal elements of £? contain the variances of the antisqueezed
(squeezed) quadratures, in descending (ascending) order of antisqueezing (squeezing), while the rows of O contain
the structure of the 2M quadratures corresponding to the M supermodes. From the variational theorem, the sequential

optimization of layer i learns the i-th most squeezed supermode oc(,gt and its degree of (anti-)squeezing a7 .

So, this variational approach ensures that the network learns the most dominant supermodes first, allowing
favorable scaling of both hardware and number of required iterations for the experimentally relevant scenario of
sparsely encoded states of r supermodes in large Hilbert spaces (r «< M). Specifically, the number of physical
elements reduces from 0(M?) of a full MZI mesh to O(rM) (that is, one needs only O(r) network layers). We note
that the number of physical elements can potentially reach 0(1) for the synthetic dimension implementation discussed
below. Further, it can be formally proven that the variational optimization of the Rayleigh quotient of Eq. (1) always
converges using stochastic gradient descent [8] and requires O (rM) iterations to implement the optimizing feedback.
Numerical simulations of the optimization procedure, accounting for the homodyne measurement noise (modeled as
Gaussian noise with the covariance matrix of the output state), are presented in Fig. 2.
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Fig 2: Simulation of automatic Bloch-Messiah
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We now describe our proposed architecture
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Mode index Heration number space (Fig. la-b), an MZI mesh can be

constructed using standard integrated photonics techniques [9] where squeezed vacuum is prepared either on-chip in

a discrete-waveguide array [10] or using free-space couplers to couple onto the chip. The network’s “width” and

“depth” are both in the spatial domain. In contrast, one can implement such networks in a synthetic frequency

dimension (Fig. 1c-d), using a single modulated resonator with a weak quadratic dispersion w,, = w, + nQx + n?Q%

where Qp is the free spectral range and Q, is the dispersion scale. Driving the system using uneven harmonics w;;_; =

Qr + (21 — 1)Q = w; — w;_4, that couple adjacent frequencies w;, w;_4, a choice of |Qg| < |Qg|/3M ensures that

the minimal detuning from any unwanted transitions in the system is 2|Qx|. Therefore, for all I = 1, ..., M, driving

with €, is equivalent to a frequency-domain MZI between the pair w;, w;_; if the modulation time satisfies T >

/|Qx|. The frequency-domain MZI meshes are then constructed fully in synthetic dimensions: the network “width”

is the spectrum, and the “depth” is the time duration of the modulation. In this manner, the physical hardware

complexity is 0(1) optical elements. We note that in this configuration, the squeezing is assumed to be generated in

the same resonator (or an identical one coupled to it), and that the feedback homodyne measurements are done by

controllably outcoupling the light after the total modulation time is over. We note that these ideas could also be

extended to scattering-based architectures with the frequency domain MZIs [11]; these may still require O(rN)

physical elements, which is still a significant improvement to architectures proposed thus far.
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