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ABSTRACT: Entanglement is a unique feature of quantum
mechanics. In coupled systems of light and matter, entanglement
manifests itself in the linear superposition of multipartite quantum
states (e.g., parametrized by multiple spatial, spectral, or temporal
degrees of freedom of a light field). In bipartite systems, the Schmidt
decomposition provides a modal decomposition of the entanglement
structure over independent, separable states. Although ubiquitous as
a mathematical tool to describe and measure entanglement, there
exists no general efficient experimental method to decompose a
bipartite quantum state onto its Schmidt modes. Here, we propose a
method that relies on bipartite self-configuring optics that automati-
cally “learns” the Schmidt decomposition of an arbitrary pure
quantum state. Our method is designed for entanglement distributed
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over spatial or spectral degrees of freedom of a light field and can reconstruct the Schmidt modes and values by variational
optimization of the network’s output powers or coincidences. We illustrate our method with numerical examples of spectral
entanglement analysis for biphotons generated via spontaneous parametric down conversion and provide experimental guidelines for
its realization and generalization to other degrees of freedom of light, including the influence of losses and impurities. Our method
provides a versatile and scalable way of analyzing entanglement in bipartite integrated quantum photonic systems.

KEYWORDS: integrated photonics, spontaneous parametric down conversion, entanglement, quantum teleportation, reconfigurable optics

Bl INTRODUCTION

Entanglement is a fundamental property of quantum
mechanical systems,1 underpinning quantum computing
algorithms,” cryptography,” teleportation protocols,* and tests
of nonlocal realism.”® Optics is a prime platform for the
generation and manipulation of entanglement between the
many degrees of freedom of light and matter systems.” '’ A
paradigmatic example of bipartite entangled states in optics is
photon pairs generated via spontaneous parametric down
conversion (SPDC), which have been the workhorse of
quantum photonic logic, computing, and simulations.'' ™"
There has been a growing interest in controlling the
entanglement of photon pairs with engineered pumps and
nonlinear crystals.">~"” Such engineered quantum sources may
be used to shape separable biphoton wave functions for
heralding**~** and for quantum information processing.'”*>**

A successful implementation of quantum computing and
simulation protocols entails an accurate description and

characterization of entanglement. In pure bipartite quantum Received:  April 8, 2025 Phdtonics
systems, measures of entanglement are provided by the Revised: ~ May 19, 2025

Schmidt number and the von Neumann entropy." Generally, Accepted:  May 20, 2025

the Schmidt decomposition of a pure bipartite state provides a Published: May 28, 2025

convenient modal description of entanglement (as a linear

superposition of separable and orthogonal “Schmidt
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Y 25,26
modes”).”>

Performing the Schmidt decomposition becomes
progressively challenging as the Hilbert space becomes larger
and even continuous, as in the case of encoding quantum
entanglement in the spatial and spectral correlations of photon
pairs, 1923242627
The problem of efficient Schmidt decomposition is an active
field of study,”™>” important for applications such as high-
dimensional quantum communication”®**™** and quantum
imaging.’**” Assumptions on the spatial and spectral shape
and symmetries of the driving pump field and nonlinear crystal
in SPDC can approximate the Schmidt decomposition
26,30—32,38—43

analytically

. 28
of required measurements.””

and reduce the scaling of the number
> However, to date, there is no
efficient method for measuring the Schmidt decomposition in
the most general setting of high-dimensional entangled photon
states.
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Programmable networks of Mach—Zehnder interferometers
(MZIs)*** are an ideal platform for integrated quantum
photonics.® They have enabled the realization of quantum key
distribution,46 variational quantum eilgorithms,47’48
dimensional and multiphoton entanglement processing,
and quantum walk simulators.”’ In these demonstrations, the
enabling feature of programmable MZI networks is that they
can impart arbitrary unitary operators on spatial modes of
quantum optical states.' 77

Self-configuring programmable network architectures
additionally offer simple and progressive configuration of the
MZIs based only on power minimizations or maximizations,
adapting automatically to the problem of interest, sometimes
even without calculations. They can learn modal representa-
tions of (quantum) optical fields (e.g, communication
modes®**¥°° and natural modes of partially coherent
light®"). However, their potential in the modal analysis of
entanglement in bipartite quantum optical systems has not
been explored thus far.

Here, we propose a method to automatically analyze
entanglement in bipartite quantum optical systems using self-
configuring optics. Our approach relies on bipartite self-
configuring networks (BSCNs) composed of MZI meshes that
impart unitary transformations over spatial modes of the two
subspaces of the bipartite system. The average power or
coincidence counts at the output of the BSCN are sequentially
optimized, which results in the network having “learned” the
Schmidt decomposition of an input state. Then, the Schmidt
number can be directly measured at the output (as the number
of ports with nonzero average power/coincidence), and the
Schmidt modes of the system can be deduced directly from the
network’s settings. Our approach automatically discovers the
Schmidt modes without presuming any prior knowledge about
these modes. Furthermore, our architecture sequentially learns
the most important Schmidt modes first (corresponding to the
largest Schmidt values). In the practically important case where
only a few Schmidt modes dominate, our method offers
favorable linear scaling with the Hilbert space dimension, both
in required physical hardware and in the number of iterations
(optimization updates), compared to the quadratic scaling
associated with reconstructing an entire density matrix to
perform a Schmidt decomposition.

While our method is naturally designed to process
entanglement in the spatial domain, we propose ways to
generalize it to other degrees of freedom of light (spectral,
polarization, etc.). We first illustrate our method with
numerical examples in the spectral domain of photon pairs
generated via SPDC. We show that our method can
automatically measure Schmidt modes of photon pairs while
being robust to single-photon losses. Since our method allows
us to automatically learn a modal decomposition of
entanglement in the system, we also discuss potential
applications in modal shaping of separable light, generation
of states with controlled entanglement, and entanglement
distribution protocols for quantum communication through
scattering media. Our method paves the way to character-
ization, processing, generation, and distribution of entangle-
ment in quantum optical states. We envision that our approach
could form a building block in integrated quantum optical
architectures for computing and simulation where entangle-
ment measurement and control play an essential role.

multi-
49,50

52—61

B RESULTS

Automatic Schmidt Decomposition and Entangle-
ment Analysis of Bipartite Quantum Optical Systems
with Self-Configuring Optics. We consider a pure state
input ly;,) to the BSCN of Figure 1 (later, we shall consider
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Figure 1. Automatic Schmidt decomposition of bipartite quantum
optical systems with self-configuring optics. (a) Conceptual schematic
of automatic Schmidt decomposition enabled by bipartite self-
configuring optics. A bipartite pure state ly;,) is input to two
networks A and B acting upon Hilbert spaces H, and Hp, respectively.
Their outputs (either power or coincidence counts) are sequentially
optimized. The resulting output is a linear superposition of
orthogonal separable states (Schmidt decomposition), and the
Schmidt number can be read off as the number of nonzero outputs.
(b) Bipartite self-configuring network (BSCN) architecture. Each
network consists of a cascade of self-configuring layers (SCLs). Each
such SCL separates one mode to its output port (here, the top one in
each layer), passing the remaining field to the next layer. (c) SCL
architecture, consisting of, e.g,, a diagonal line or binary tree layer.
Each node corresponds to a 2 by 2 Mach—Zehnder interferometer
(MZI) parametrized by phases (¢, ).

photonic losses that might impair the state’s purity). The input
state is bipartite and is defined over the tensor product of two
Hilbert spaces, Hy and Hp, with dimensions N, and Nj,
respectively. These dimensions can be large and even cover the
(discretized) case of a continuous Hilbert space, e.g.,, as in
spectral-bin encoding.”*** A concrete example of this model
consists of two single photons propagating over spatial modes
of integrated networks A (red) and B (blue). We can
decompose the state over an orthogonal basis lx;)slx)s of
H, ® Hy and write its Schmidt decomposition as

ly ) = Z ijlxj>A|xk>B
ji (1)

= Z ’11")§>A|J’i>B

i=1 ()
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where G is a N, X Ny state matrix whose singular value
decomposition G = UDV' maps to the input state’s Schmidt
decomposition® as ly,), = 2 Uil s = 2 VElx)p, and D;;
= J; are the r singular values of G (ordered by the decreasing
value 4, >--> 4, > 0). As can be seen from eq 2, the Schmidt
decomposition provides a modal description of entanglement
as a linear superposition of mutually orthogonal and separable
states. The Schmidt number r, which quantifies the amount of
entanglement in the state, corresponds to the number of
nonzero A;s. The Schmidt decomposition directly yields the
von Neumann entropy of the input state: S = — Y Azlog(47).

The network shown in Figure 1 can automatically perform
Schmidt decomposition of an input state ly;,) by simultaneous
diagonalization of the reduced density operators of each
subspace. The network is made of two cascades of self-
configuring layers (SCLs) that form networks A and B (see
Figure 1b). SCL architectures can be defined topologically;*®
each SCL has a single output that is connected to each input
by only one path through the MZI blocks. (Other unitary
architectures could be used for these layers, but SCLs support
simple configuration and have the minimum number of
programmable elements.)

These SCL cascades operate on spaces H, and Hjp,
respectively, transforming their reduced density matrices as
pA - UA,OA(UA)Jr and pB - UBpB(UB)T, where U and U®
are reconfigurable unitary matrices imparted by networks A
and B, respectively. This SCL architecture allows for the
implementation of sequential, layer-by-layer optimization
methods.”**®" Example SCL architectures include diagonal
lines or binary trees of MZIs,*® as shown in Figure lc. These
sequential, layer-by-layer optimizations over parameters of the
BSCN can be realized by dithering®>” or in situ back-
propagation.sg’64

We now show how the BSCN of Figure 1 can learn the
Schmidt decomposition of the input state ly,). Sequential
optimization of the average output powers measured at port k,
(PY) (k =1, .., Ny) and (P}) (k = 1, .., N) maps to a
variational definition of the eigendecomposition of GG’ and
(G'G)" (see Supporting Information (SM), Sections S1 and
S2)

max(P,f) = max(u,?)T(GGwL)u,:A = /1,3
7 u ()
max(P?) = max(u}) (G'G) uf = A2
7 w (4)
where 7; (respectively, ;) are the parameters of the k-th self-
configuring layer of network A (respectively, B) and uf

(respectively, uf) the k-th column of (UA)T (respectively,

(UP)'). One can see from eqs 3 and 4 that tracing out
subspace B (respectively, A) allows for the variational
definition of the left (respectively, right) singular vectors of
G and their respective singular values.

Alternatively, sequential optimization of the single-photon
coincidence counts between output ports k of networks A and
B (where k = 1, .., min(N,, Ng)) directly maps to a singular
value decomposition of G (see SM, Section S2)

A B2 2
max(Cy) = max |(u; YGull* = 4
T Tk g Uy

©)

where the optimization runs over the k-th self-configuring
layers of A and B simultaneously. Both optimization methods

3287

will result in setting the network parameters to those of the
Schmidt modes, corresponding to the singular value
decomposition of G, such that U* = U' and U® = V7.

Both sequential optimization methods provide an automatic
way to find the Schmidt decomposition of the input state ly;,).
The resulting settings of the BSCN allow one to “read” the
Schmidt modes (corresponding, for instance, to the decom-
position of the complex joint spectral amplitude (JSA) of a
biphoton state), and the Schmidt number corresponds to half
the number of output ports with nonzero average power, or the
number of output port pairs of the same index with nonzero
coincidence. When considering two output ports sharing the
same index k, lx;) slx;)p, their joint output state is separable and
corresponds to the amplitude of the Schmidt mode with the
singular value 4;. Individual Schmidt modes can be physically
generated by feeding their corresponding output ports (while
blocking the rest) as inputs to a pair of complementary
networks applying U} and Uj (as shown in Figure 4). A
detailed derivation and description of the sequential
optimization methods can be found in SM, Sections S1 and S2.

In the following, we turn to numerical examples illustrating
our method, first with random matrices, to show the generality
of this approach and then the experimentally relevant case of
photon pairs generated via SPDC.

In this first numerical example, we consider the performance
of the two sequential optimization methods mentioned in the
previous section. In both cases, gradients are calculated via
automatic differentiation and optimization is performed via
stochastic gradient descent.”® The power optimization method
(Figure 2a) runs over output ports k of network A for k=1, ...,
N, and then k of network B for k = 1, .., Ng. We simulate the
performance of the sequential power optimization over the
outputs of the BSCN on a random matrix (shown in Figure
2b). First, the network learns the singular vectors of the state
matrix G: this can be seen by plotting U*U and UPV*, which
are equal to the identity matrix (except on the null space, see
Figure 2c). The corresponding singular values can be read as
the square root of the average power on the output ports of
networks A and B, as shown in Figure 2d. The performance of
the sequential coincidence maximization is shown on a similar
random matrix G in Figure 2e—h, where a similar performance
is achieved, and the singular values can be measured as the
square root of the average coincidence between ports lx;), and
lxi)g. In these examples, the BSCN accurately identifies the
Schmidt modes and values.

In our numerical simulations, optimization is performed
with a modified version of stochastic gradient descent,®® and
the performance of the algorithm is shown in Figure 2i,j for the
sequential coincidence optimization. Each sequential coinci-
dence (from 1 to min (N,, Ng)) quickly converges to the
corresponding singular value. The fidelity increases over each
sequential optimization step and reaches values &1 in our
numerical experiments (for both Schmidt vectors in A and B,
see fidelity definition in the SM).

We now discuss the computational cost (in terms of both
physical resources and number of iterations) for the BSCN to
perform Schmidt decomposition (e.g., to find the Schmidt
mode corresponding to the largest Schmidt value). Impor-
tantly, since both methods rely on Rayleigh quotient
optimization, their convergence can be formally proven, as
we show in the SM, Section S7. This variational formulation of
entanglement modal analysis also lends itself to stochastic
gradient descent methods that have advantageous convergence

https://doi.org/10.1021/acsphotonics.5c00813
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Figure 2. Sequential optimization methods for entanglement analysis
in self-configuring optics. (a—d) Sequential power optimization. (a)
Power optimization sequence: from 1 to N, (on outputs of network
A), then from 1 to Ny (on outputs of network B). (b) Random matrix
input example. (c) Resulting eigenvector reconstruction from power
optimization. (d) Resulting simulated square roots of power outputs
(meas. power) and singular values (sing. values) at the outputs of
networks A (red) and B (blue). (e—h) Sequential coincidence counts
optimization. (e) Coincidence counts optimization sequence: from 1
to min (N, N) (on pairs of outputs ports from networks A and B).
(f) Random matrix input example. (g) Resulting eigenvector
reconstruction from coincidence optimization. (h) Resulting simu-
lated square roots of coincidence counts (meas. coinc.) and singular
values (sing. values). (i) Square root of coincidence over iteration
number, mapping to their corresponding Schmidt values. (j) Fidelity
of Schmidt modes in A (red) and in B (blue) over iteration number.

speeds (which can be essentially independent of the state’s
dimensionality in some implementations®’). More generally,
the number of iterations to achieve a given accuracy for a pair
of Schmidt modes will scale like O(N) (where N is the Hilbert
space dimension), and we show this linear scaling in
simulations in the SI, Section S7. Additionally, our method
naturally orders the r Schmidt values in decreasing order, such
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that only O(rN) physical resources (number of MZIs) and
O(rN) iterations are in principle required, which can be a
substantial improvement for high-dimensional systems with
low Schmidt numbers, as compared to the worst-case O(N?)
requirement using traditional Schmidt decomposition meth-
ods.

If single photons in either subspace are lost (e.g., absorbed
or scattered), the input and output can mix with a vacuum
state, which might result in errors in the power or coincidence
measurements. In the SM, Section S3, we model such
detection and insertion losses as coupling each output and
input port to a reservoir. We find that output losses do not
affect the optimization process and can be readily calibrated
out by measuring the transmission matrix of the network (as is
typically done in entanglement distribution experiments®’).
Nonuniform insertion losses at the input can distort the input
state.”" In that case, the coincidence optimization can still
learn the correct SVD of the distorted input state traversing the
network, while the sequential power optimization does not
(nonetheless, in both cases, there is enough information to
reconstruct the original state, if the transmission matrix is
known). This problem can be alleviated by equalizing insertion
losses, preventing distortions, and allowing both the power and
coincidence optimizations to learn the SVD of the input
quantum state. Large losses may, however, result in reducing
the number of counts on the detector and slow down the
training process. Other MZI mesh architectures may also
alleviate the influence of losses and imperfections.’”*® In
general, we expect that well-established MZI calibration
methods will be critical in mitigating the influence of these
different loss mechanisms in practical experimental settings.’”
This robustness to single photon losses provides further
motivation to investigate the performance of our method in
experimentally relevant settings.

Analyzing and Processing Entanglement in Sponta-
neously Down-Converted Photon Pairs. We now
investigate the performance of our method in the analysis of
entangled photon pairs generated via SPDC. As noted in the
previous section, our method is naturally suited for the analysis
of spatial mode entanglement. To further generalize the
applicability of our approach, we consider below the case of
frequency bin entanglement. This concept could be readily
generalized to other high-dimensional Hilbert spaces, e.g,
correlations in spatial modes such as orbital angular
momentum.””””" We further discuss in the SI, Section S5
how to generalize our approach to arbitrary degrees of freedom
by using universal converters to spatial modes.’”’* The
proposed experimental setup that we model is shown in
Figure 3a. We consider a second-order nonlinear crystal
pumped by a laser at frequency ®, and spontaneously
generating photon pairs at frequencies @, (signal) and w;
(idler). The SPDC photons then go through an optional
spectral filter to shape the joint spectral density (width o) and
a polarizing beam splitter to split the signal and idler beams.
Gratings are then used to diffract spectral modes of the idler
(signal) photons, occupying equidistant frequency bins
centered around @) = @) + j& into the corresponding
spatial input modes x; (which couple to the network with a
grating coupler). The frequency bins, now occupying different
spatial modes, are then shifted to a common frequency @),
(see SM Section SS). This can be done by an array of (on-
chip) electro-optic frequency shifters’””*~7° driven by
corresponding Q harmonics. (Similarly, for analyzing orbital
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experimental proposal for SPDC analysis
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Figure 3. Automatic entanglement analysis of spontaneous parametric
down-converted (SPDC) photons. (a) Proposed experimental setup
to automatically analyze the entanglement of photon pairs generated
via nondegenerate SPDC. A laser at frequency ®, is pumping a
second-order nonlinear crystal spontaneously generating entangled
photon pairs at idler and signal frequencies (w, ), separated by a
polarization beam splitter (PBS). Different frequency components are
routed to different input ports of two self-configuring networks
(SCNs) denoted A (@;) and B (w,). The SCN performs sequential
coincidence counts maximization to automatically perform the
Schmidt decomposition of the photon pair. (b—d) Input joint
spectral amplitude (JSA). (e—g) Entanglement analysis with BSCN. S
denotes the von Neumann entropy. (b,e) Numerical results for an
unfiltered SPDC experiment (6; — 00, as defined in SM, Section S4).
(c,f) Same as (b,e) but with a filter applied to the signal and idler
modes (O'f= 0.09). (d,g) Same as (b,e) but with a filter (6; = 0.2) and
group velocity mismatch (GVM) corrections. All frequencies are
normalized to the frequency range of interest: the pump bandwidth is
o = 0.1 for (b,c) and 6 = 0.5 for (d).

angular momentum entanglement, the gratings and frequency
shifters can be replaced by an off-chip spatial mode sorter’®”’
that converts orbital angular momentum modes into deflected
Gaussian modes, which then couple to the chip.)

In the absence of insertion and detection losses, and spectral
mixing by the gratings and frequency shifters (as shown in SM
Section S3 and discussed above, the BSCN is robust to such
imperfections), the resulting input state to the BSCN is

|l//in> = Zf(Vs,,v l/i,k)lxj>A|xk>B

jok (6)
where f(v,, 1;) is the JSA of the photon pair at frequency (v,
v;), and Vg = 0, — W and vy = ;. — w; correspond to the
discrete frequency bins around the central frequencies. The
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JSA can be controlled by shaping the incident pump
spectrum,”®”” the nonlinear crystal poling pattern, >
dispersion engineering,*”®' or adiabatic frequency conver-
sion.”” Below, we focus on the ubiquitous scenarios of spectral
filtering and group velocity mismatch between the pump,
signal, and idler (Figure 3d,g). Further details on our
experimental model can be found in SM, Section S4.

Several phase-matching settings are shown in Figure 3b—d,
as well as the BSCN output after convergence, in Figure 3e—g.
In all cases, the BSCN learns the Schmidt decomposition of
the input state, and we can use the average coincidence counts
to calculate the input state’s von Neumann entropy (with
negligible error compared to the ground truth value <1%). The
addition of a spectral filter in Figure 3cf reduces the
entanglement by removing spectral components of the photon
pair, namely, making the state “more separable”. In general,
group velocity mismatch is present (Figure 3d,g), resulting in
anticorrelated side lobes in the JSA. Several methods have been
proposed to further shape the goint spectral density with
engineered crystals'® and pumps,” and the BSCN could be
also applied to perform modal analysis of entanglement in
these cases as well. We note that the experimental proposal
from Figure 3 might be generalized to a fully integrated setup.
This could be achieved by leveraging on-chip biphoton
sources*”®> and would avoid coupling losses due to grating
couplers.

A distinctive feature of our method is that the Schmidt
modes (including their phases, see SM, Section S2C) are
directly encoded into the parameters of the network after it has
converged. Specifically, the k-th Schmidt mode is encoded in
the network parameters (e.g, the phase shifts for various
waveguide segments of MZIs) of layers 1, .., k of both
networks A and B. We can therefore reconstruct the Schmidt
modes (of the SPDC example from Figure 3d), as shown in
Figure 4a. The self-configuring layers used for the reconstruc-
tion of each mode are indicated with dashed square boxes in
each panel.

By automatically performing modal decomposition of the
entanglement structure of the input state, the BSCN offers
other possibilities in the modal shaping and generation of
entanglement states. Namely, by blocking all output ports
except the ones corresponding to a given biphoton mode, and
using them as inputs for a pair of inverse networks (or even by
reflecting them back through the output ports of the original
networks), one can generate separable states with known shape
(e.g, in spectral or spatial domain), as shown in Figure 4b.
Additionally, if one inputs a degenerate quantum state (such
that 1, & A,, as can be done with broadband phase—matching86
or engineered nonlinear crystals'®), a “supermode Bell state”
can be generated by considering the output of the first two
ports of both networks (see Figure 4¢): lyy) o Ay (I Yalx;)p +
€“lx,) alx,)), where an additional phase ¢ can be imparted by
a phase shifter on one of the output ports.

Entanglement Distribution through Scattering Media
with BSCN. By shaping the modal composition of entangled
states, our approach can also be applied to quantum
communication protocols. One famous example is that of
quantum teleportation® between two agents Alice (A) and Bob
(B), where a Bell state is provided by a third-party source C
(see Figure S). A successful implementation of quantum
teleportation entails the distribution of entanglement between
the two parties A and B, or, in other words, the communication
of each photon of the Bell state to each of the two parties. In
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Figure 4. Schmidt mode reconstruction and entangled light processing with bipartite self-configuring optics. (a) Left: First four Schmidt modes
reconstructed from BSCN parameters in the SPDC example of Figure 3d,g. Right: BSCN architecture for reference, where each self-configuring
layer is highlighted in a different color. The self-configuring layers used to reconstruct the Schmidt modes on the left are represented by the number
and color of gray squares as insets. (b) Once trained, BSCN can be used to generate separable light with a given modal shape by blocking all output
ports except the two ports corresponding to that mode index (in networks A and B) and feeding them as input to networks applying the inverse
transformation. (c) If trained on a highly degenerate input state (such that two singular values are approximately equal), BSCN can also be used to
generate supermode Bell states (by blocking all output ports except the four ports corresponding to degenerate singular values in each network). An

additional phase shifter can be added on one of the output ports to control the relative phase between the two terms of the pair.

real-life settings, this communication may experience scattering
and mode mixing through different communication channels
(e.g., due to random scattering). The scattering of quantum
light through complex media is an active field of research,’’
with immediate applications to quantum communication and
entanglement distribution protocols through scattering chan-
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nels such as turbulent atmosphere and multimode fibers.
Conventional schemes compensate for the scattering through
adaptive wavefront shaping of the photon pairs by character-

izing the channel using an auxiliary laser at or near the same

—-90

photon frequency®’ or even the pump laser used to

generate the photons.91
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BSCN. Proposed setup for quantum teleportation through scattering
media with BSCN. A source C is generating Bell states sent to Alice
(A) and Bob (B) who analyze their single photon with their own
SCN. A classical communication channel between the two allows
them to perform coincidence measurements.

The BSCN offers an alternative approach based on
automatic Schmidt decomposition via sequential coincidence
optimization. Specifically, if both Alice and Bob possess a SCN
that they use to process the photon they receive and perform
the Schmidt learning method described in this work, they can
learn the basis in which Alice should perform measurement to
teleport her state to Bob. To do so, a classical communication
channel is necessary between Alice and Bob, but there is no
need to perform any characterizations of the communication
channels between the source and either Alice or Bob. More
generally, the BSCN allows us to undo the influence of random
scattering when measuring multimode entangled states. A
formal derivation of this communication protocol is provided
in the SM, Section S8.

In fact, in this protocol, the BSCN finds the effective
communication modes®”® between Alice and Bob. This idea
can therefore be generalized to the Klyshko configuration,”
which replaces one of the photon detectors (say, Alice’s) by a
classical input laser beam to characterize the effective scattering
channel between Alice, the source, and Bob. Characterizing the
communication channel in this manner to configure the BSCN
could boost the convergence speed and detection bandwidth of
the protocol, which can be critical for entanglement
distribution in rapidly fluctuating media.

B DISCUSSION AND CONCLUSION

We further discuss potential applications of our method and
experimental considerations for their realization.

Our methods could be applied to entanglement analysis in
other quantum systems, such as temporal entanglement in
atom-photon coupling” and macroscoplc %uantum states of
light, such as bright squeezed vacuum.”*”® In both cases,
multimodal entanglement over temporal, spatial, or spectral
degrees of freedom can be described on the Schmidt basis,
which reveals the fundamental mechanisms of entanglement
generation. Many of these systems, including photon pairs
from SPDC, rely on several control parameters of light or
matter that can be dynamically optimized to shape or maximize
entanglement. Since the BSCN automatically learns the
Schmidt decomposition of the input state, it could also serve
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as a form of feedback on the system’s control parameters to
learn their influence on the entanglement structure of the input
state. In particular, well-established techniques for shaping
photon pairs'®>"****%* are often sensitive to experimental
parameters such as beam alignment, poling fabrication, and
even temperature. Additional imperfections, such as partial
phase control, may have consequences on the accessible range
of Schmidt modes, as is known from analogue theories in
complex scattering medium.”* Our proposal could allow for
robustness and tunability even in the presence of experimental
imperfections.

The automatic learning of the input state’s Schmidt
decomposition requires a pure input state of the network
lw;,). Several sources of noise and imperfections may result in
impurities of the quantum state. First, stochastic losses through
the network yield a mixture of pure states with different
photon numbers. With the above-mentioned loss model, we
show that postselection on a given number state (e.g, by
performing coincidence or single photon counts) mitigates the
influence of this impurity on the performance of our algorithm
(see SM, Section S3). Second, the input state might be mixed
with other (random) states, resulting in a statistical mixture. In
general, this would result in the emergence of cross-
coincidence counts between output ports lx), and lx)g,
where j # k after diagonalization of the reduced density
matrices performed by the BSCN (see SM, Section S6).
Practically, this means that BSCN might also be used to
“detect” impurities in the input quantum state in this more
general setting.

Our proposal provides a high-dimensional (two-qudit)
photonic-hardware implementation of variational quantum
singular value decomposition circuits”>”® which decompose
bipartite entanglement of general multiple-qubit states. As a
future direction, it will be interesting to generalize our
architecture to bipartite entangled states of more than two
photons, allowing for multiple-qudit variational quantum
singular value decomposition circuits.

In conclusion, we have presented a general and versatile
method to automatically analyze the entanglement of a
multimode quantum optical state. Our method relies on a
variational definition of the Schmidt decomposition performed
by a BSCN. The methods presented in this work could be
applied to a wide range of quantum optical systems, where the
engineering and shaping of entanglement play an essential role.
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