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Bounds on the Coupling Strengths
of Communication Channels and

Their Information Capacities
Zeyu Kuang , David A. B. Miller, Life Fellow, IEEE, and Owen D. Miller

Abstract— The concept of optimal communication chan-
nels shapes our understanding of wave-based communication.
Its analysis typically focuses on specific communication-domain
geometries, however, without a general theory of scaling laws or
fundamental limits. In this article, we derive shape-independent
bounds on the coupling strengths and information capacities
of optimal communication channels for any two domains that
can be separated by a spherical surface. Previous computational
experiments have observed rapid, exponential decay of coupling
strengths, but our bounds predict a slower, sub-exponential
optimal decay, and specific source/receiver distributions that can
achieve such performance. Our bounds show that domain sizes
and configurations, and not domain shapes, are the keys to
maximizing the number of nontrivial communication channels
and total information capacities. Applicable to linear time-
invariant (LTI) wireless and optical communication systems, our
bounds reveal fundamental limits to what is possible through
engineering the communication domains of electromagnetic
waves.

Index Terms— Communication channels, information capacity,
multiple-input–multiple-output (MIMO), physical bounds.

I. INTRODUCTION

OPTIMAL communication channels define the optimal
set of sources and measurements for communicating

between two volumes [1], [2], [3], [4]. The total number
and relative strengths of the communication channels depend
sensitively on the size and shape of the volumes, which has
restricted most studies to specific and often highly symmetric
geometries [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26] with only overall sum rules known rigorously
for arbitrary shapes [2], [4]. In this article, we identify
bounds on the individual coupling strengths between any
two communication regions, as long as a spherical surface
separates them. The bounds depend only on the maximal sizes
and minimal separation distances of the two regions, which
are typically known a priori (there are fixed regions within
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which antenna transmitters and receivers can be placed).
Our theory leverages a monotonicity property of the singular
values of the Green’s function operator to bound the strength
of each channel by its analytical counterpart from a concentric
bounding volume. A key hypothesis about communication
channels has been a seemingly universal exponential decay
of the coupling strengths with the channel number, supported
in numerous computations [4], [5], [6], [7], [8], [9], [10],
[11], [12], [27], [28], [29], [30], and which we rigorously
prove in two dimensions. Surprisingly, however, we find that
such behavior is not generic: in three dimensions, our bounds
decay sub-exponentially, such that their logarithms decrease
only with the square root of the channel number and not
linearly. The origin of this decay is the additional degeneracies
that are possible for concentric domain configurations in 3-D
space, which underscores the role of dimensionality in channel
counting. Our approach leads directly to shape-independent
bounds on two fundamental metrics in communication science:
the maximal number of nontrivial channels and their informa-
tion capacities. The bounds show that increasing domain size
and optimizing the global configuration, rather than altering
the local patterning of the domain shape, are the keys to
increasing the number of nontrivial channels and maximizing
their information capacities.

Optimal communication channels represent a unifying
framework for optical physics [4], [31], [32], [33], [34]
with a wide range of applications in communication sci-
ences [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47]. The Green’s function operator that
connects a source volume to a receiver volume, while account-
ing for all possible background scattering, unambiguously
dictates the optimal channel profiles and their coupling
strengths through its singular vectors and singular values,
respectively [1], [2], [3], [4]. These channels extend previous
sampling theorem-based analyses [48], [49], [50] from high-
symmetry geometries (e.g., regular apertures in the paraxial
limit [51], [52], or spheres [53], [54]) to arbitrary ones
(see [4, Appendix A] for a detailed history and discussion
of this point). The numerical computation defining these
channels—the singular-value decomposition—is sufficiently
opaque that analytical insights are still restricted to highly
symmetric domains, with little understanding of general prop-
erties or scaling laws [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [27], [28], [29], [30] other
than overall sum rules [1], [2], [3], [4].

A classic example that is analytically solvable is the com-
munication between two identical rectangular or circular apert-
ures in the paraxial limit, where the optimal communicating

U.S. Government work not protected by U.S. copyright.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on June 10,2025 at 12:59:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7258-6643
https://orcid.org/0000-0003-2745-2392


3960 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 73, NO. 6, JUNE 2025

channels are prolate spheroidal waves, exhibiting exponen-
tially decaying coupling strengths [27], [28], [29], [30].
Similarly rapid decays of channel strengths are observed
across different systems, ranging from simple geometries such
as rectangular prisms [2], [3], strip objects [5], [13], [14], and
concentric circumferences [6], [15], [16], to complex geome-
tries involving conformal conic arcs [7], [8], [9], [17] and
multiple rectilinear or spherical domains [10], [11], [12], [18].
Many of these geometries are reexamined in a recent review
article [4], where numerical observation of apparent expo-
nential decay of coupling strengths past heuristic limits is
hypothesized as being possibly universal.

In addition to the channel-strength decay rate, a related open
question has been the maximum total number of channels that
can be supported between two regions. Identifying bounds on
the number of channels has been of interest since the birth of
the field [1], [2], [3], [4], with partial success: channel sum
rules imply upper bounds on the number of “well-coupled”
channels simply by assumption of a minimum power mea-
surement threshold and equal division of power among all
channels. Yet, as illustrated numerically, for example, in [4],
once we move beyond some simple geometries, such as
parallel plane surfaces in a paraxial limit, even well-coupled
channels can show substantially different power coupling
strengths.

An inspiring precursor to our work is that of [19]. Piestun
and de Sterke [19], examine the number of communication
channels in two dimensions and derive a bound on the number
of communication channels between two domains. There is
a subtle mathematical issue regarding domain monotonicity
(or the lack thereof) of their suggested channel normalization
which means that their result is in fact not a fundamental
limit (discussed more in Appendix E), but their result can be
understood as a heuristic that identifies the correct scaling laws
for circular domains in 2-D, and roughly maps to the ultimate
fundamental limits. The key insight of [19]—Green’s function
singular values have monotonicity properties that imply fun-
damental limits—forms the foundation of our approach, and
enables both the fundamental limits and asymptotic analysis
that we identify in two and three dimensions.

The information capacities of optimal communication chan-
nels are fundamental to communication sciences and have been
investigated for communication domains of various shapes
including spherical [15], cubic [55], [56], and nonsymmetri-
cal geometries [7], [37]. There are shape-dependent bounds
to the information capacities for line-of-sight communica-
tions [20], [21], [22], [23], [24] and spherical communication
domains [25], [26]. A more general computational framework
is proposed in [57], [58], and [59] which bounds the infor-
mation capacity by optimizing over equivalent currents in
antenna systems. In this article, we identify a clean separation
between the impedance properties of the antenna networks
and the electromagnetic propagation from source to receiver,
and identify analytical bounds to the channels over which
information can be propagated.

Thus, this article centers around three fundamental ques-
tions: how rapidly must optimal communication-channel
strengths decay, what is the maximum number of usable
communication channels, and what are the consequent bounds
on maximum information capacities? To answer these, we first
introduce the optimal communication channels in Section II

and show their channel strengths satisfy a key “domain
monotonic” property, which unlocks a series of upper bounds:
maximal channel strengths in 2-D (Section III-A) and
3-D (Section III-B), the maximal number of nontrivial chan-
nels (Section III-C), and their maximal information capacities
(Section IV). These results have been previously archived in
the leading author’s Ph.D. thesis [60].

II. OPTIMAL COMMUNICATION CHANNELS

We start by defining communication channels. There are
many approaches [1], [2], [3], [4], [22], [23], [24], [35],
[36], [37], all of which share a common origin: power can
be supplied within a source volume, measured within a
receiver volume, and the question is how many independent,
power-normalized source excitations can be sent to inde-
pendent receivers, and with what strength? The “sources”
and “receivers” need not be physically independent antennas;
they need only to be orthogonal functions in a suitable
basis (such orthogonal signals can be filtered by heterodyne-
measurement techniques, for example). Mathematically, the
supplied currents JS in the source region induce currents
JR in the receiver region, and we assume a high-resolution
discretization such that JS and JR are vectors with all spatial
and polarization degrees of freedom collated. We consider
linear electromagnetism, in which case the supplied power
Psupp and measured power Pmeas are quadratic forms of JS and
JR : Psupp = J†

SRSJS and Pmeas = J†
RRRJR , where “†” denotes

the conjugate transpose, and RS and RR are generalized
resistance matrices (accounting for Ohmic and radiative losses,
for example) in the source and receiver regions, respectively.
We assume time-invariance in the system properties (not the
excitation signals), which implies that no frequency-mixing
occurs, and we can consider each frequency independently.
(Time-varying backgrounds that vary slowly relative to the
signal periods can be treated adiabatically.) The resistance
matrices, corresponding to the measurement of real-valued
power, are Hermitian and positive semidefinite. They can be
factorized into “matrix square roots,” e.g., RR = (R1/2

R )†R1/2
R ,

which themselves are positive semidefinite. We exclude non-
radiating currents from the source domain since they do not
radiate, and hence should not be excited at all. This makes the
resistance matrices and their square root positive definite and
therefore invertible.

The mapping from supplied currents to measured currents
can be broken into three stages. First, by the volume equiva-
lence principle [61], the supplied currents and any complex
configuration of antennas, waveguides, and substrates, can
be replaced by effective currents radiating in the background
environment via a linear and possibly nonlocal operator that
we denote TS . These effective currents create the total fields
in the receiver location via the background Green’s func-
tion G. Finally, the total fields map to received currents by
another linear and possibly nonlocal operator that we denote
TR . Hence, the received currents are related to the supplied
currents by the expression JR = TRGTSJS , which embodies
the linear mapping between currents in two the communication
regions.

The optimal communication channels are sets of orthog-
onal source currents JS and their corresponding orthogonal
receiver currents JR , both normalized under certain physical
metrics. A natural metric is to normalize the supplied and
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measured powers: the source current is normalized to unity
supplied power J†

SRSJS = 1; the receiver current, unity
measured power J†

RRRJR = 1. To simplify these expres-
sions, one can embed the resistance matrices in two new
variables XS = R1/2

S JS and XR = R1/2
R JR , both of which

now enjoy a simple unit norm X†
SXS = X†

RXR = 1.
Under these new variables, the receiver-source connection
is given by XR = R1/2

R TRGTSR−1/2
S XS , and one searches

for orthogonal pairs of XS and XR that defines the optimal
communication channels [37]. How to form these pairs is
well-known: perform a singular value decomposition (SVD)
of the matrix relating XR to XS , which is R1/2

R TRGTSR−1/2
S ,

with the right singular vectors comprising the orthonormal
(basis-transformed) source currents, the left singular vectors
comprising the orthonormal receiver currents, and the singular
values, σn(R

1/2
R TRGTSR−1/2

S ), indicating the strength of the
connection—their squares are the powers measured at the
receivers for unit-power source excitations.

The generality of this approach, of taking the SVD of
R1/2

R TRGTSR−1/2
S , which applies for any set of incoming and

outgoing ports, of any material and any dimensionality, also
inhibits theoretical understanding. There is essentially no phys-
ical system for which the singular values of the five-matrix
product can be calculated analytically. Moreover, by encap-
sulating the full-system coupling, from supplied power to
effective source currents, to fields at receivers, and last to
the measured power, one can obscure the key bottleneck:
the propagation of waves, through free space or any other
background environment. There are only so many independent
radiation channels that can transport nontrivial amounts of
power across sizeable distances (relative to the wavelength).
Mathematically, this propagation bottleneck is encapsulated by
the following inequality:

σn

(
R1/2

R TRGTSR−1/2
S

)
≤ σ1

(
R1/2

R TR

)
σn(G)σ1

(
TSR−1/2

S

)
(1)

where we use the fact that σn(AB) ≤ σ1(A)σn(B) for any
matrices A and B. Equation (1) shows that the channel
strengths of any physical system must decay at least as fast
as the singular values of the Green’s function matrix G.
The latter, encoding the effect of electromagnetic propagation,
is the focus of our article.

To isolate the effects of propagation, we define our com-
munication channels through the SVD of G alone, without
the extraneous matrices that primarily depend on individual
source/receiver properties. Our choice aligns with many pre-
vious works [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [22], [23], [24], and it leads to semi-analytical
bounds and scaling laws. Our formulation (which relies only
on general properties of the Green’s function G) can be applied
to scenarios with specific RS , RR , TS , and TR matrices. One
example is given in Appendix, where we compare the channel
strengths between two concentric aluminum antennas [defined
by the left-hand side of (1)] and those defined by the Green’s
function alone, and find they decay at the same rate. This
shows that the simplified analysis isolating G generalizes to
the full physics of real-material systems.

The central operator that defines our communication chan-
nels is the Green’s function operator, G, whose SVD

is given by

G
(
r, r′

)
=

∞∑
q=1

squq(r)v∗

q

(
r′
)

(2)

where {vq(r)}∞q=1 is a set of orthonormal vector-valued basis
functions in the source region Vs , {uq(r)}∞q=1 is a set of
orthonormal vector-valued basis functions in the receiver
region Vr , and {sq}

∞

q=1 is the set of (nonnegative) singular
values. The tuples {(vq , uq , sq)}

∞

q=1 are optimal communica-
tion channels, with the fields radiated from sources vq(r)
mapping uniquely to fields uq(r) in the receiver region with
amplitudes sq . The absolute square of the amplitude |sq |

2 is
referred to as the coupling strength or channel strength of
channel q . These channel strengths are only determined by
external scatterers in a background environment. It does not
depend on the source material (e.g., transmitting antennas)
or receiver materials (e.g., detectors), because the former is
already replaced by the volume equivalent currents, and the
latter we assume does not affect the field propagation. This
assumption is observed in many studies [4], [24], [44], and
indeed one can expect that any detector effects on the field will
primarily be subtractive: dissipating field power or reflecting
it away, losing channel strength without gaining any.

The key theorem that enables our shape-independent bounds
is that all singular values of a Green’s function operator,
as in (2), may not decrease as the source and receiver domains
are enlarged [62]. More precisely: if one domain encloses
another, each singular value of the former cannot be smaller
than the corresponding singular value of the latter. We refer
to this property of singular values as “domain monotonicity.”
It can be proven through a recursive argument. First, the
singular values of G are the square roots of the eigenvalues
of G†G. Unlike the Green’s function G which typically is
not Hermitian (it may not even be square), the operator
G†G by construction is always Hermitian, which implies real
eigenvalues, and that their eigenvalue/eigenfunction pairs can
be found variationally via maximization and orthogonalization.
The square of the first singular value of G is the maximum of
the Rayleigh quotient of G†G: |s1|

2
= max(p†G†Gp)/(p†p).

Clearly, this may not decrease as the source domain enlarges,
as maximization over a larger space of vectors cannot lead to
a smaller optimal value. The second singular value similarly
maximizes the Rayleigh quotient, now subject to orthogonality
to the first singular vector. Because the first singular vector
has changed with the domain, there is not a straightforward
comparison to the optimization problem defining the second
singular vector of the original domain. Yet, the extra freedom
given to the first singular vector ultimately only reduces the
effect of the orthogonality constraint, such that the second sin-
gular value must also increase due to the domain enlargement.
(A more precise version of this argument is given in [63].) The
same argument recursively applies to the rest of the singular
values, and also for an enlarged receiver domain. (The same
argument also extends beyond G to R1/2

R TRGTSR−1/2
S .) Hence,

we have the key theoretical ingredients: optimal communica-
tion channels are defined by the singular-value decomposition
of the Green’s function operator between source and receiver
domains, and the singular values satisfy domain monotonicity
on both domains.
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Fig. 1. Coupling strengths of the communication channels between a
source volume Vs and a receiver volume Vr are upper bounded by their
counterparts from the core–shell bounding volume (shaded in gray). We can
also interchange the roles of the source and receiver volumes, and we obtain
tighter bounds by using whichever is smaller as the “inner” volume in this
figure.

III. CHANNEL STRENGTH BOUNDS

In this section, we derive shape-independent bounds on
total channel strengths, relative channel strengths normalized
against a sum rule, and their collective asymptotic decay rates
in the many-channel limit. The domain-monotonicity principle
discussed above immediately leads to bounds: the coupling
strengths |sq |

2 for arbitrary source and receiver domains
are individually bounded above by the respective coupling
strengths of any enclosing domains. Such bounds are tight:
they are always attained by filling the enclosing domains with
sources and receivers. They generalize a previous bound on
the total strength of all channel strengths (a “sum rule”) [2] to
bounds on individual channel strengths. We select an analyt-
ically tractable core–shell set of enclosing domains, depicted
as the gray shaded region in Fig. 1, which yield the bounds∣∣sq

∣∣2 ≤
∣∣s(core–shell)

q

∣∣2, for q = 1, 2, . . . (3)

In such core–shell configurations, we can choose either the
source or the receiver to be enclosed in the core; to find the
tightest upper bounds, we take the minimum of both possible
configurations. The core is a cylinder for 2-D and a sphere
for 3-D. In Sections III-A and III-B, we derive analytical
expressions for the bounds in both dimensions.

A. Channel Strength Bounds in 2-D
Consider communication in two dimensions between a

source domain Vs and a receiver domain Vr as in Fig. 1. The
sources are bounded within a cylindrical core of radius Rs
and the receivers sit a minimum distance d and maximum
distance dmax = d + 2Rr + 2Rr from the sources. The
bounding volumes, comprising an inner cylinder and an
outer shell, are shaded in gray in Fig. 1. The singular
values of the Green’s function operator between the con-
centric cylinder–shell bounding volume can be identified by
first performing a separation of variables for the 2-D scalar

Green’s function G(r, r′) = (ik2)/4H (1)
0 (k|r − r′

|) in polar
coordinates [64]

G
(
r, r′

)
=

ik2

4

∞∑
q=−∞

H (1)
q (kρ)e−iqφ Jq

(
kρ ′
)
eiqφ′

(4)

where k is the wavenumber, the functions H (1)
q (kρ)e−iqφ and

Jq(kρ)e−iqφ are the outgoing and regular cylindrical waves,
with H (1)

q (x) and Jq(x) being the Hankel function of the
first kind and the Bessel function, respectively. Their polar
coordinates (ρ, φ) and (ρ ′, φ′) are defined on the bounding
shell and bounding cylinder, respectively, relative to the center
of the cylinder–shell bounding volume. The cylindrical waves
H (1)

q (kρ)e−iqφ and Jq(kρ)e−iqφ are the (unnormalized) left and
right singular vectors of the Green’s function operator in the
cylinder–shell bounding volume. (The cylindrical symmetry
of the bounding volume ensures orthogonality.) There are two
possible cylinder–shell bounding volumes: one centers around
the source domain and one centers around the receiver domain.
To tighten the upper bound, we choose the smaller of the
two domains as the “inner” volume in Fig. 1 because it leads
to a smaller coupling strength |s(cylinder–shell)

q |
2 which is the

product of the norms of the unnormalized singular vectors,
H (1)

q (kρ)e−iqφ and Jq(kρ)e−iqφ , in their respective bounding
volumes∣∣s(cylinder–shell)

q

∣∣2
= π2k2

∫ Rmin

0

∣∣Jq(kρ)
∣∣2ρdρ

∫ Router

Rinner

∣∣H (1)
q (kρ)

∣∣2ρdρ. (5)

As the inner bounding cylinder is chosen to encompass the
smaller domain, its radius is the smaller of the two radii,
i.e., Rmin = min{Rs, Rr }. Similarly, one can show that the
inner and outer radii of the outer bounding shell are Rinner =

d + Rmin and Router = d + 2Rs + 2Rr − Rmin, respectively.
The singular values in (5) are dimensionless quantities because
our Green’s function, of (4), differs from the conventional def-
inition [4], [65] by a factor of k2, to be inversely proportional
to volume.

The number of nontrivial communication channels is deter-
mined by the number of channels whose relative channel
strengths are above a certain measurement or noise threshold.
The relative channel strengths can be normalized either by
a total sum rule S =

∑
∞

q=−∞
|sq |

2 or by the largest channel
strength [4]. Lower bounds on the sum rule can be analytically
derived based on the monotonic decay of wave energy in free
space, thus leading to bounds on the total number of channels
above a certain sum-rule energy fraction. The sum rule S is
a double integral of the absolute square of the 2-D Green’s
function over both the source and receiver domains [2], [4]

S =

∫
Ss

∫
Sr

∣∣G(r, r′
)∣∣2drdr′

≥ k4Ss Sr

∣∣∣H (1)
0 (kdmax)

∣∣∣2/16 (6)

where we further lower bound S by the fact that the magnitude
of the Green’s function takes its minimal value at the most
separated points between the two domains, which is at a
distance dmax = d + 2Rr + 2Rs for the cylinder–shell
bounding volume illustrated in Fig. 1. The variables Ss and Sr
in (6) denote the total area of the source and receiver domains.
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Fig. 2. Shape-independent upper bounds on the relative coupling strengths |sq |
2 normalized against the total sum rule S in two- and 3-D spaces. (a) Gray-shaded

concentric core–shell bounding volume enclosing a square–square configuration of sources and receivers in the blue shaded region, as well as a shell–shell
configuration in the red shaded region. (b) Two-dimensional space, the upper bound, calculated for the gray-shaded bounding volume in (a), decays exponentially
as in the dashed black line. (c) Three-dimensional space, the additional azimuthal degeneracy leads to an optimal sub-exponential decay that is achieved by
the shell–shell configuration. The sub-exponential decay rate (dashed black line) suggests many more communication channels at the large-channel limit than
previously hypothesized exponential decays (dotted lines).

Combining (5) and (6), we derive∣∣sq
∣∣2

S
≤

16
∣∣∣s(cylinder–shell)

q

∣∣∣2
k4Ss Sr

∣∣∣H (1)
0 (kdmax)

∣∣∣2 (7)

which is a shape-independent bound on the relative channel
strength between domains in 2-D space. In the many-channel
limit, the bound in (7) simplifies∣∣sq

∣∣2
S

≤
R4

min

q4Ss Sr

∣∣∣H (1)
0 (kdmax)

∣∣∣2(1 + d/Rmin)
2(q−1)

as q → ∞. (8)

The presence of the exponential factor of 2(q − 1) indicates
that channel strengths in two dimensions must decay at least
exponentially fast with channel number, in agreement with
the previously hypothesized exponential decay of channel
strengths. The exponential decay rate depends only on the
separation distance d relative to the smaller radius Rmin
between the two communication domains.

The upper bound in (6) and its optimal exponential decay
in (8) applies to any two domains that can be separated by a
cylindrical surface. The bound is achieved by concentric com-
municating domains that fill the bounding volume, while the
optimal decay rate can also be achieved with concentric sub-
domains. To illustrate the latter point, in Fig. 2(a), we arrange a
fixed number of sources and receivers in two different configu-
rations inside a bounding volume. The first configuration (blue
shaded region) consists of two squares of sources and receivers
with the side lengths of λ/

√
2. The second configuration (red

shaded region) consists of concentric shell-like communicating
domains with the same source and receiver areas. Both config-
urations are enclosed in a concentric cylinder–shell bounding
volume of 2Rs = 2Rr = d = λ. Inside this bounding
volume, the maximal relative coupling strength is given by the
solid black line in Fig. 2(b), calculated using (7). Compared
against it are the coupling strengths from the shell–shell
and square–square communicating domains. The former are
calculated analytically using (5) with the Bessel integration

now bounded by the inner and outer radii of the inner shell.
The later are solved numerically by first discretizing the space,
then constructing a discretized Green’s function matrix using
the Hankel function expression above (4), and last performing
numerical SVD on the Green’s function to yield the singular
values. We observe that, while the square–square configuration
(blue solid line) falls far short of the bound, arranging the
same number of sources and receivers to cover a wider solid
angle in a shell–shell configuration (solid red line) enables
close approach to the upper bound. (The black-line upper
bound is clamped to 1; no channel can have strength larger
than 1. The looseness of (8) arises from the dramatic mismatch
of the source–receiver volumes to the bounding volumes.)
Moreover, the shell–shell configuration achieves the optimal
exponential decay predicted in (8). This result corroborates
previous works [4], [5], [6], [7], [8], [9], [10], [11], [12],
[27], [28], [29], [30] that predicted exponential decay in wide-
ranging scenarios, and hypothesized that exponential decay
may be a universal rule. As we show below, however, the 3-D
behavior is quite different.

B. Channel Strength Bounds in 3-D
The derivation of shape-independent bounds on channel

strengths in three dimensions is similar to the derivation in
two dimensions, with the cylinders replaced by spheres. For
this 3-D case, we now use a vector formulation of the problem,
as appropriate for a full electromagnetic solution. So, we move
to dyadic Green’s functions, and we start by expanding the
dyadic Green’s function as a summation of outer products,
now of spherical vector waves

G
(
r, r′

)
= ik3

∞∑
n=0

n∑
m=−n

∑
j=1,2

vout,nmj (r)v∗

reg,nmj

(
r′
)

(9)

where vout,nmj and vreg,nmj (r′) are the outgoing and regular
spherical vector waves [66] defined on the bounding shell
and bounding sphere, respectively. The vectors r and r′ are
spherical coordinates defined with respect to the center of the
concentric bounding volume. The regular (outgoing) spherical
vector waves are formed by combining the angular dependency
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of vector spherical harmonics with the radial dependency of
spherical Bessel (Hankel) functions [66]. Explicit expressions
of the spherical vector waves, vout,nmj and vreg,nmj (r), and the
wave equation we use to define the Green’s function are given
in Appendix A. The indices n and m index the underlying
spherical harmonics, and j = 1, 2 denotes the two possible
polarizations of a transverse vector field. The orthogonality of
the spherical waves in a spherically symmetric domain allows
us to identify vout,nmj and vreg,nmj (r) as the (unnormalized)
left and right singular vectors of the Green’s function operator
defined on the 3-D sphere–shell bounding volumes. The corre-
sponding singular values are the products between the norms
of functions vout,nmj and vreg,nmj (r) in their respective volumes∣∣∣s(sphere–shell)

nmj

∣∣∣2
= k6

∫
Vshell

∣∣vout,nmj (r)
∣∣2dr

∫
Vsphere

∣∣vreg,nmj (r)
∣∣2dr (10)

where Vshell and Vsphere represent the volumes of the bounding
shell and bounding sphere. Explicit expressions of the squared
singular values |s(sphere–shell)

nmj |
2 can be found in Appendix A.

According to the domain-monotonicity property in (3), the qth
largest number from the set of all possible squared singular
values, |s(sphere–shell)

nmj |
2, upper-bounds the qth largest channel

strength of any configuration of sources and receivers in the
sphere–shell bounding volume.

Again, the number of nontrivial communication channels
is determined by normalizing the channel strengths to the
total sum rule. The sum rule is now lower bounded by
(cf. Appendix C)

S =

∫
Vs

∫
Vr

∥∥G
(
r, r′

)∥∥2
F drdr′

≥
k4Vs Vr

8π2d2
max

+O
(
(kdmax)

−4).
(11)

For conciseness, we assume the receivers are far from the
sources relative to the wavelength, i.e., kdmax ≫ 1, so that
only the leading term in (11) remains. This can be easily
generalized by explicitly including two other higher order
terms, leading to a more complicated expression but the same
asymptotic properties.

By combining the upper bound of channel strengths in (3)
and the lower bound of the sum rule in (11), we derive a key
result for 3-D communication domains, a shape-independent
upper bound on their relative channel strengths normalized
against the total sum rule∣∣snmj

∣∣2
S

≤
8π2d2

max

k4Vs Vr

∣∣∣s(sphere–shell)
nmj

∣∣∣2 (12)

where the singular value of the sphere–shell bounding volume,
|s(sphere–shell)

nmj |
2, is identified in (10), and whose explicit expres-

sion can be found in Appendix A. One immediate prediction
of the upper bound in (12) is an optimal sub-exponential decay
rate of the channel strengths between two 3-D domains, which
we now derive. The total number of channels that has n-index
less or equal to n is q = 2(n + 1)2, because each n-index has
2n + 1 m indices (corresponding to unique angular momentum
states) and two polarization states. We use this total channel
index q as our new index for channel strengths to meaningfully

describe their decay rate. When the total number q → ∞, (12)
can be simplified to (cf. Appendix D)∣∣sq

∣∣2
S

≤
2π2d2

max

k4Vs Vr (1 + d/Rmin)
√

2q+1
, as q → ∞ (13)

where the parameter Rmin = min{Rs, Rr } denotes the radius
of the smaller domain. Equation (13) shows that, regardless of
the domain shape, channel strengths |sq |

2 in 3-D space have to
decay at least as fast as a−

√
q , where a is a bounding-domain-

dependent numerical constant (a = (1 + d/Rmin)
√

2), and the
key new feature is the square root dependence on q in the
exponent. Such a decay is sub-exponential, as its logarithm
decays only with the square root of the channel number
rather than the (much faster) linear reductions characteristic
of exponential decay.

Fig. 2(c) compares the coupling strengths bound in 3-D,
with a clearly sub-exponential decay rate, to the coupling
strengths of two configurations of sources and receivers (shell–
shell and cube–cube) in a sphere–shell bounding volume.
Both configurations possess a volume λ3/(3

√
3) of sources

and receivers and follow the same layout as in Fig. 2(a).
(Other configurations such as well-separated large domains are
studied in Appendix F.) The bounds are calculated via (13); the
shell–shell and cube–cube configurations calculated similarly
as their 2-D counterparts: the former calculated analytically
using a modified (10) (the integration of the inner sphere
replaced by the inner shell), and the latter numerically by
performing the SVD on a discretized Green’s function matrix.
Similar to the 2-D case, we observe that the shell–shell
configuration closely follows the bound while the cube–cube
configuration falls short. Interestingly, both the cube–cube
and shell–shell configurations and the upper bound first enter
a phase of approximately exponential decay (dotted lines
in Fig. 2(c), a phenomenon also observed in [4]) before they
exhibit different sub-exponential decays on a larger scale.
By “sub-exponential,” we mean that the fall off in the channel
strengths is not as fast as exponential; high-index channels
have somewhat stronger coupling strength than an exponen-
tial fall-off would predict. The extent of the benefit of the
observed sub-exponential decay depends on the sensitivity of
the receivers, as the high-order channels, though abundant,
possess small channel strengths relative to the total sum rule.
In the many-channel limit, the asymptotic sub-exponential
decay predicted in (13) bounds all geometries and also puts
forth the concentric shell–shell configurations as the optimal
candidate for achieving the slowest sub-exponential decay.

The sub-exponential decay of the channel-strength bound
in 3-D is in stark contrast with its exponentially decaying
counterpart in 2-D. This point is accentuated by contrasting
Fig. 2(c) with Fig. 2(b), where their asymptotic decay rates,
shown as the black dashed lines, are fundamentally different.
This difference originates from the possible azimuthal degen-
eracy of communication channels in 3-D. Such degeneracy
manifests through the staircase behavior of the upper bound
in Fig. 2(c). It allows one to potentially establish many more
useful orthogonal channels in 3-D: the bound suggests approx-
imately 145 channels for 3-D domains above a threshold
of 10−4 in Fig. 2(c), as compared to only eight channels in
the 2-D case above the same threshold. The difference in the
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Fig. 3. Maximal number of nontrivial communication channels for a
domain of maximal radius R and certain measurement thresholds set by their
percentage in the total sum rule. The other communication domain is in a
bounding shell shown in the inset. The quadratic dependence of the bound
regards to the domain radius R can be conveniently modeled by a spherical
heuristic number, NSH = 2k2 R2.

decay rate of upper bounds in 2- and 3-D spaces underscores
the role of dimensionality in channel counting.

We have considered in this section, source and receiver
regions in 3-D space, but this does not imply that the
sources or receivers need to occupy volumes themselves: they
can be surface currents, for example, or even delta-function
sources/measurements; all that matters is that they properly
normalize to 1. The key role of dimensionality in our results
stems from the different number of propagating states that
can exist in two versus three dimensions, and has nothing
to do with the dimensionalities of the source or receiver
distributions.

C. Bounds on the Number of Nontrivial Channels
The number of nontrivial communication channels is often

regarded as the number of “spatial degrees of freedom” for
communicating between two regions, an idea that generalizes
the concept of diffraction limits [4] and dictates fundamental
response in many wave systems [32], [67], [68]. A communi-
cation channel is considered nontrivial if its coupling strength
is above a certain percentage in the total sum rule [4]; the
bounds of (7) and (12) on relative coupling strengths therefore
directly lead to bounds on the number of communication
channels.

Fig. 3 shows the maximal number of channels available for
any source domain within a 3-D sphere of radius R, computed
from (12). The receiver domain is a shell 20 wavelengths
away, with a thickness of one wavelength, as shown in the
inset of Fig. 3. (The source and receiver domains can be
transposed.) We also assume both domains occupy at least
half of their respective bounding volumes. The bounds are
plotted as a function of the maximal domain radius R for
a number of measurement thresholds. The bounds are not
overly sensitive to the measurement threshold: a 500 increase
in the sensitivity, as occurs going from the cyan line (0.5%)
to the dark blue line (0.001%), does not even double the
number of available channels. On the other hand, the bounds

increase approximately quadratically with the maximal domain
radius R, suggesting enlarging domain size is the key to
gaining more useful channels.

The quadratic increase of the bound with respect to the
domain radius R can be understood as arising from the
increasing surface area of two sufficiently separated com-
munication domains. At first, one might expect the channel
number to increase with the volume of the domains, but
the waves in the volumes are determined by the waves at
the surfaces (by the surface equivalence principle [61]), and
restrictions on the number of unique wave patterns at the
surface will naturally constrain the number of independent
volume functions as well. As the domain size increases, we can
use the notion of a “spherical heuristic number,” denoted NSH,
to estimate the number of communication channels

NSH = 2k2 R2. (14)

This spherical heuristic number, slightly modified from a
recent proposed estimate in [4], dates back to the sampling
theorem [54], [69], which estimates the degrees of freedom of
an electromagnetic wave to be proportional to the product of
its maximal spatial bandwidth and physical extent. It suggests
at most two orthogonally polarized channels are possible per
λ2/π area on the surface of a spherical bounding domain.
Fig. 3 shows quantitative agreement between the spherical
heuristic number and the rigorously calculated bound under
a 0.05% threshold on the sum rule, explaining the approx-
imately quadratic increase of the number of channels as a
function of domain radius.

The bounds in Fig. 3 weakly depend on the sum-rule
percentage threshold because of the rapid decay of channel
strength at large-order channels. Though not shown in this
graph, the bound barely depends on the depth of the receivers
and their distance from the source (unless in the extreme
near-field limit when the separation distance is much less than
a wavelength). All these imply that the group of bounds shown
in Fig. 3 represent the intrinsic number of channels one can
couple out of any source domain of a given size to well-
separated receivers.

IV. BOUNDS ON THE INFORMATION CAPACITIES
OF COMMUNICATION CHANNELS

Information capacity, defined as the maximal rate at which
the information can be reliably transmitted between two com-
municating domains, is a notion that has been central to the
development of modern communication systems [37], [48].
In this section, we show how our coupling-strengths bounds
identify a maximal information capacity for communication
channels in 3-D space, which encapsulates all possible orienta-
tions of a 2-D antenna plane. As our communication channels
concern with only the propagation of electromagnetic waves,
the maximal information capacity we derive represent the
intrinsic capacity limit of wave propagation.

The intrinsic capacity limit of wave propagation has been
previously analyzed in [22], [24], and [56], but all are limited
to specific geometries such as rectangular volumes [56] or
square surfaces [22], [24]. In contrast, the domain-monotonic
property of the channel strengths in Section II allows
us to argue a single geometry-independent capacity bound
which, computed once for a given bounding volume, applies
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to all possible geometries within. In addition, unlike the
rectangular volumes studied in [56], we choose a sphere-shell
bounding volume which has two favorable attributes: 1) it
allows for semi-analytical bounds and 2) the receiver collects
all the power emitted from the source so the resulting bound
represents the largest information capacity that no further
geometric engineering can surpass.

The information capacity C of N optimal communication
channels (per unit time and unit bandwidth) is the sum of
the capacity of each channel, each of which logarithmically
depends on its input power Pq , coupling strength |sq |

2, and
noise power Pnoise [24]

C =

N∑
i=q

log2

(
1 +

Pq
∣∣sq
∣∣2

Pnoise

)
bits/s/Hz (15)

where following the conventions in both wireless [35], [37]
and optical [44], [56] communications, we assume an additive
white Gaussian noise background with the same noise power
Pnoise for each channel.

A larger domain size is always favorable to increase the
information capacity of the first n optimal communication
channels. This is because the capacity C in (15) increases
monotonically with coupling strength |sq |

2, which in turn
increases monotonically with the domain size. Therefore, the
capacity of the sphere–shell bounding volume serves as an
upper bound for the capacity of all possible sub-domains
within

C ≤

N∑
q=1

log2

1 +

Pq

∣∣∣s(sphere–shell)
q

∣∣∣2
Pnoise

 bits/s/Hz (16)

where the coupling strength |s(sphere–shell)
q |

2 of the sphere–shell
bounding volume is given in (10). One can solve for the
optimal allocation of powers Pq for a fixed total power input∑N

q=1 Pq = P , by the “water-filling” algorithm [37], with the
semi-analytical form Pq = max{0, µ − Pnoise/|s

(sphere–shell)
q |

2
},

where µ is the numerical constant for which
∑N

q=1 Pq = P .
The signal-to-noise ratio (SNR), defined as the ratio between
the total power and noise power, i.e., SNR = P/Pnoise, is the
key external parameter that affects the optimal strategy of the
power allocation.

Fig. 4 shows the capacity bound for communication between
arbitrary domains contained in the sphere–shell bounding
volumes in two limits: high SNR (solid black) and low SNR
(dashed black). The size dependencies of the capacity bounds
are quite different in the two limits. When SNR is very
small, the logarithms approximately become linear functions
of the power, in which case the optimal allocation puts all
of the power in the single channel with the highest coupling
strength [37]. The maximum coupling strength scales linearly
with the radius R: max{|s(sphere–shell)

q |
2
} = k2 Rr R, provided

that the radius R of the bounding sphere is much larger than
a wavelength and the bounding shell far from the bounding
sphere (cf. Appendix B). Then we have

C ≤ SNR · log2(e)k
2 Rr R, for SNR → 0. (17)

By contrast, in the high-SNR limit, the optimal allocation of
power equally divides among all channels with nonzero chan-
nel strengths [37]. The information capacity in this case scales

Fig. 4. Maximal information capacity C between any two domains that fit
within the radius-R sphere and wavelength-thickness bounding shell of Fig. 3.
In the high SNR limit, the bound increases quadratically with domain size
R (solid black), whereas in the low SNR limit, the bound increases only
linearly (dashed black). When the number of available channels is restricted
by the number of antennas, Nantenna, the channel-capacity bounds tail off and
increase only logarithmically with domain size (blue, orange, and yellow).

with the number of such channels, which, as we established in
the Section IV, depends quadratically with the domain radius
R (modeled by the spherical heuristic number NSH = 2k2 R2).
Hence, the capacity bound increases quadratically with R in
the high-SNR limit

C ≤ 2 log2(SNR)k2 R2, for SNR ≫ 0. (18)

In many scenarios, the number of communication channels
may be restricted well below our electromagnetic limit;
one common example may be an multiple-input–multiple-
output (MIMO) system with antennas spaced more than half
a wavelength apart. When the number of communication
channels is restricted by the number of antennas, Nantenna, the
growth in the large-domain limit cannot remain quadratic or
even linear; instead, the capacity bound will grow logarithmi-
cally at best. This is because for a fixed number of channels,
the capacity of each channel increases logarithmically with
channel strength, which in turn increases at most linearly
with R

C ≤ Nantenna log2

(
SNR ·

k2 Rr R
Nantenna

)
, for SNR ≫ 0. (19)

The logarithmic dependence is confirmed by the computa-
tions of the blue, orange, and yellow lines in Fig. 4, with
each having the same SNR as the solid black line, but
decreasing Nantenna. The quadratic increase at the outset of
each curve saturates almost exactly at the domain size where
the number of electromagnetic channels (NSH = 2k2 R2)
equals Nantenna. Thus, despite the abundant number of elec-
tromagnetic channels in a large domain, antenna restrictions
can impose significant constraints on the total information
capacity.

V. EXTENSIONS

The key finding in this article is a shape-independent
bound on coupling strengths that we derive based on the
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domain-monotonicity property of the Green’s function
operator. This upper bound leads to two important discoveries.
First, the sub-exponential decay in (13) identifies the slowest
possible decay rate between any two domains in free space,
and implies that 3-D domains have dramatically more channels
available than their 2-D counterparts. Second, the ensuing
bounds and scaling laws on the maximal number of usable
communication channels and their maximal N -channel infor-
mation capacity represent the ultimate limit that no domains
can surpass. In this section, we briefly touch on other possible
extensions of these results.

The bounding volume for the source and receiver domains
can be any shape and size. We choose the concentric bounding
volume in this article because of its analyticity and generality:
its singular values are analytically tractable and the resulting
bound is general enough to apply to any two domains that
can be separated by a spherical surface. In practice, if the
sources and receivers are constricted to a domain smaller
than the concentric bounding volume, one can sacrifice the
analyticity by numerically computing the singular values of
the largest possible domain for a tighter bound. Another
analytical though less general bounding volume arises when
the sources and receivers are known to be in the paraxial limit.
Then, one can form the bounding volume as two rectangular
cuboids whose singular values are known analytically in the
paraxial limit [2]. While we mainly focus on the concentric
sphere–shell bounding volume in this work, future studies
of alternative bounding volumes may reveal the dependence
of the bound on the solid angles between the sources and
receivers that otherwise cannot be captured by a concentric
bounding volume.

The n-channel capacity bound proposed in this article may
have ramifications on the optimal performance of antenna
selection in massive MIMO systems [70], [71], [72], [73].
The technique of antenna selection mitigates the cost and
complexity of MIMO systems by judiciously selecting only
a fixed-size subset of antennas while maintaining a large total
information capacity. How large the total information capacity
can be among all the possible subsets is a question that
falls under the umbrella of our N -channel capacity bound,
which suggests the possibility to bound the capacity of any
N -antenna subset by the capacity of the first N optimal
channels of the total antenna arrays.

Our model, assuming a deterministic scattering system
whose Green’s function operator is known and fixed, can be
extended to cases where the exact location of the scatterer
is unknown but governed by certain probability distributions,
such as in geometry-based stochastic models [74], [75] or
optical scattering in random media [38], [40]. In the simplest
case, we can assume there are a number of possible scat-
terer configurations, each occurring with a possibility pi and
characterized by a unique Green’s function operator Gi . The
operator

∑
i pi G†

i Gi measures average power transmission in
this environment. Its first n eigenvectors define the first n
optimal communication channels of such a stochastic system.
The operator

∑
i pi G†

i Gi is subject to the same monotonicity
theorems described in Section II, and generalizes our approach
from deterministic scattering settings to stochastic ones.

Temporally modulating external scatterers not only
presents unique theoretical challenges but also tantalizing

rewards [76], [77], [78]. This article assumes a linear time-
invariant (LTI) system so that each frequency communicates
independently. Once the external scatterer is modulated in
time, one frequency excited in the input can induce another
frequency in the output. The induced second frequency may
strongly interfere with the original second frequency that
comes directly from the excitation, leading to potentially
richer channel paths and stronger channel strengths. The
extent of this interference may be analyzed by building a
Green’s function matrix G that includes not only spatial
dimensions but also a new spectral dimension [76]. The
“off-diagonal” components in the spectral dimension of G
represent the inter-frequency coupling induced by temporal
modulation. The SVD of such modified Green’s function G
may reveal the optimal spatial and spectral distributions of
the input signal that maximize the information throughput in
a time-modulated system.

Geometrically patterning external scatterers may also
enhance the scattering amplitude of electromagnetic fields
and its total information throughput. There are many
shape-independent bounds proposed in this regard to bound the
maximal power response of such external scatterers [67], [68],
[79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89],
[90], [91], [92], [93], though there is still a need to understand
their maximal information throughput. For example, to what
degree could an external scatterer alter the sub-exponential
decay rate predicted in this article? What is the maximal
number of nontrivial channels an external scatterer can help to
establish and what are the maximal information capacities of
those channels? Though a few bounds have been identified in
certain physical scenarios [32], [33], [94], [95], those are still
open questions that await for general answers. Among various
design techniques in search of better scatterer structures or
antenna arrays, shape-independent bounds continue to offer a
new lens to analyze the fundamental limits of information and
power transfer in both fundamental physics and communica-
tion science.

During the publication process of this article, two recent
works from Gustafsson [96], [97] develop channel-counting
heuristics that are rigorously correct in the geometric-optics
(short-wavelength) limit.

APPENDIX A
SINGULAR VALUES OF THE GREEN’S FUNCTION

OPERATOR IN THE SPHERE–SHELL BOUNDING VOLUME

The dyadic Green’s function G(r, r′) is defined as the
solution of the following wave equation under a point source
excitation: (1/k2)∇ × ∇ × G(r, r′) − G(r, r′) = Iδ(r − r′),
where I is the unit dyad and k is the magnitude of
the free-space wavevector. Its solution G(r, r′) = (k2I +

∇∇)(eik|r−r′
|)/(4π |r − r′

|) can be expanded by the outgoing
and regular spherical vector waves [66]

G
(
r, r′

)
= ik3

∞∑
n=0

n∑
m=−n

∑
j=1,2

vout,nmj (r)v∗

reg,nmj

(
r′
)

(20)

where vout,nmj (r) and vreg,nmj (r′) denote the two types of
spherical vector waves. The index n and m are the two indices
of the underlying spherical harmonics, and j = 1, 2 denotes
the two possible polarizations of the transverse vector field.
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The spherical vector waves can be separated into a radial
dependency of a spherical Hankel/Bessel function and an
angular dependency of vector spherical harmonics

vout,nm1(r) = γnh(1)
n (kr)V(3)

nm(θ, φ) (21)

vout,nm2(r) = γn

{
n(n + 1)

h(1)
n (kr)

kr
V(1)

nm(θ, φ)

+

[
krh(1)

n (kr)
]′

kr
V(2)

nm(θ, φ)

}
(22)

vreg,nm1(r) = γn jn(kr)V(3)
nm(θ, φ) (23)

vreg,nm2(r) = γn

{
n(n + 1)

jn(kr)

kr
V(1)

nm(θ, φ)

+

[
kr jn(kr)

]′
kr

V(2)
nm(θ, φ)

}
(24)

where (r, θ, φ) are the spherical coordinates centered at the
center of our sphere–shell bounding volume, and the pref-
actor γn = 1/(n(n + 1))1/2. The three vector spherical
harmonics are an extension of the scalar spherical harmonics:
V(1)(θ, φ) = r̂Y m

n (θ, φ), V(2)(θ, φ) = r∇[Y m
n (θ, φ)], and

V(3)(θ, φ) = ∇ × [r̂Y m
n (θ, φ)], where Y m

n (θ, φ) = (((2n + 1)

(n − m)!)/(4π(n + m)!))1/2 Pm
n (cos θ)eimφ are the scalar

spherical harmonics defined by associated Legendre polyno-
mials Pm

n (x). The radial dependency of the outgoing spherical
vector harmonics are the spherical Hankel function of the first
kind, h(1)

n (kr), with the domain of r restricted to the region of
the bounding shell. The radial dependency of the regular spher-
ical vector harmonics are the spherical Bessel function jn(kr),
with the domain of r restricted to the region of the bounding
sphere.

The three vector spherical harmonics, V(1)
nm(θ, φ), V(2)

nm(θ, φ),
and V(3)

nm(θ, φ), satisfy the following orthogonal property:∫ π

0 dθ sin θ
∫ 2π

0 (d)φV(α)
nm (θ, φ) · V(β)∗

n′m ′ (θ, φ) = zαnδαβδmm ′δnn′ ,

where the prefactor z1n = 1 and z2n = z3n = n(n + 1).
This condition ensures outgoing/regular spherical vector waves
are orthogonal in the bounding shell/sphere. Therefore,
we identify these two as the left and right singular vectors
of the Green’s function operator in the sphere–shell bounding
volume.

Equation (20) can be interpreted as the SVD of the Green’s
function. The singular values are the products between the
norms of the unnormalized singular vectors vnmj (r) and
Rgvnmj (r) in their respective domains∣∣∣s(sphere–shell)

nmj

∣∣∣2 = k6
∫

Vsphere

∣∣vreg,nmj (r)
∣∣2dr

∫
Vshell

∣∣vout,nmj (r)
∣∣2dr.

(25)

Plugging in vreg,nmj (r) and vout,nmj (r) from (21)–(24), we can
show∣∣∣s(sphere–shell)

nm1

∣∣∣2
=

π2

16
x2
[

J 2
n+

1
2
(x) − Jn+

3
2
(x)Jn−

1
2
(x)
]∣∣∣∣x=k Rsphere

x=0

× y2Re
[∣∣∣H (1)

n+
1
2
(x)

∣∣∣2 − H (1)

n+
3
2
(y)H (2)

n−
1
2
(y)

]∣∣∣∣y=k Router

y=k Rinner

(26)

Fig. 5. Numerical evidence showing that the maximum channel strength,
max |s(sphere–shell)

nmj |
2, is asymptotically attained by the first angular channel of

the second polarization state, |s(sphere–shell)
002 |

2, in the limit of large sphere radius
Rs relative to the free-space wavelength λ.
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(y)H (2)

n−
3
2
(y)

]
+

n
2n +1

×

[∣∣∣H (1)

n+
3
2
(y)

∣∣∣2 − H (1)

n+
5
2
(y)H (2)

n+
1
2
(y)

]}∣∣∣∣y=k Router

y=k Rinner

(27)

where the functions Jn(x) and H (1)
n (x) denote the Bessel

function and the Hankel function of the first kind.
Equations (26) and (27) are the explicit expressions
of |s(sphere–shell)

nmj |
2 we use in the article to calculate the upper

bounds of the coupling strengths between any two regions in
the bounding volume.

APPENDIX B
MAXIMAL CHANNEL STRENGTH IN THE LIMITS OF LARGE

BOUNDING SPHERE AND WELL-SEPARATED
BOUNDING SHELLS

We observe that the maximal channel strength in the
sphere–shell bounding domain is asymptotically attained by
the first angular channel of the second polarization state in
the limit of large bounding sphere

max
∣∣∣s(sphere–shell)

nmj

∣∣∣2 =

∣∣∣s(sphere–shell)
002

∣∣∣2, for Rsphere ≫ λ. (28)

This is evidenced by Fig. 5, which shows that the relative
difference between max |s(sphere–shell)

nmj |
2 and |s(sphere–shell)

002 |
2 is

smaller than 5% for a bounding sphere with radius Rsphere
larger than three times the wavelength λ and the relative differ-
ence asymptotically tends to zero as the radius becomes much
larger than the wavelength. The separation distance d between
the two bounding domains and the maximal thickness 2Rr
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of the spherical shell is assumed to be 10λ and λ, respectively,
though our result does not appear to be sensitive to these two
parameters.

The channel strength |s(sphere–shell)
002 |

2 has a simple analytical
form in the limits of large bounding sphere and well-separated
bounding shell. Specifically, in the limit of a well-separated
bounding shell, |s(sphere–shell)

002 |
2 simplifies to∣∣∣s(sphere–shell)

002

∣∣∣2 = 2k Rr

∫ k Rsphere

0
x2

| j−1(x)|2 dx, for d ≫ λ.

(29)

Furthermore, the integral in (29) can be analytically evaluated
considering that j−1(x) = cos(x)/x . Its result, under the limit
of large bounding sphere, reduces to∣∣∣s(sphere–shell)

002

∣∣∣2 = k2 Rr Rsphere, for Rsphere ≫ λ and d ≫ λ.

(30)

Combining (28) and (30), we derive an analytical expression
of the maximal channel strength in the limits of large bounding
sphere and well-separated spherical shell

max
∣∣∣s(sphere–shell)

nmj

∣∣∣2 = k2 Rr Rsphere (31)

for Rsphere ≫ λ and d ≫ λ, which, we observe, scales
linearly with the maximal radii of both the source and receiver
domains.

APPENDIX C
LOWER BOUND ON THE SUM RULE

The sum rule S =
∑

nmj |snmj |
2 is conserved under a unitary

transformation from the communication channel basis to the
delta-function basis in real space. Conveniently, we express
S as a double integral of the Frobenius norm of the dyadic
Green’s function over both the source and receiver volumes

S =

∫
Vs

∫
Vr

∥∥G
(
r, r′

)∥∥2
F drdr′. (32)

The Frobenius norm of the dyadic Green’s function reads [85]∥∥G
(
r, r′

)∥∥2
F

=
k6

8π2

[
1

(k|r − r′|)2 +
1

(k|r − r′|)4 +
3

(k|r − r′|)6

]
(33)

which monotonically decays with respect to the separation
distance, |r − r′

|, between two points. This monotonic decay
allows us to lower bound the sum rule by relaxing the
separation distance to the largest possible separation distance,
max |r − r′

| = d + 2Rs + 2Rr , between the source and
receiver volumes

S ≥
k4Vs Vr

8π2(d + 2Rs + 2Rr )
2 +O

(
[k(d + 2Rs + 2Rr )]−4).

(34)

The variables Rs and Rr denote the maximal radii of the
source and receiver domains. For conciseness, we assume the
receivers are far away from the sources, i.e., k(d + 2Rs +

2Rr ) ≫ 1, so that only the leading term in (34) remains. This,
of course, can be easily generalized by explicitly including
two other higher order terms with a slightly more complicated
expression.

APPENDIX D
UPPER BOUND ON THE RELATIVE COUPLING STRENGTHS

IN THE LARGE-CHANNEL LIMIT

The singular values |s(sphere–shell)
nmj |

2 have simple analytical
expressions in the large-channel limit when the index n → ∞.
They can be derived by substituting the large-n asymptotes of
the Bessel and Hankel functions into (26) and (27), yielding∣∣∣s(sphere–shell)

nm1

∣∣∣2 =

(
k Rsphere

2n

)4( Rsphere

Rinner

)2n−1

as n → ∞,

(35)∣∣∣s(sphere–shell)
nm2

∣∣∣2 =
1
4

(
Rsphere

Rinner

)2n+1

as n → ∞. (36)

While both polarizations decay exponentially as a function
of n, the first polarization channel is always smaller than the
second one in the large n limit due to the additional decay of
the factor of 1/n4. The value of the second polarization thus
serves as an upper bound for both∣∣∣s(sphere–shell)

nmj

∣∣∣2 ≤
1
4

(
Rsphere

Rinner

)2n+1

as n → ∞. (37)

This is an upper bound for the coupling strengths of both
polarizations in a sphere–shell bounding volume in the large-
channel limit. The bound only depends on the ratio between
the radius of the bounding sphere, Rsphere, and the inner radius
of the bounding shell, Rinner—the smaller the ratio, the faster
the decay.

For any two domains that can be separated by a spherical
surface, there are two possible sphere–shell bounding volumes:
one that centers around the source region and one that centers
around the receiver region. To obtain a tighter upper bound,
we choose the one that centers around the smaller domain
because it has the smaller ratio between Rsphere and Rinner.
Considering this and the fact that the number of channels with
n-index less or equal to n is q = 2(n + 1)2, (37) can be
written as∣∣s(sphere–shell)

q

∣∣2 ≤
1
4

(
1 +

Rmin

d

)−
√

2q−1

as q → ∞ (38)

where Rmin = {Rs, Rr } is the smaller of the radius of the
source domain Rs and the radius of the receiver domain Rr ,
and d is the distance between the two domains. This equation
shows the coupling strengths between two regions always
decay sub-exponentially with the total channel index, q , in the
large-channel limit.

At last, we invoke the domain-monotonicity theorem dis-
cussed in Section II of the article which implies that the
coupling strengths |sq |

2 between any two domains have to
be smaller than their counterparts in a sphere–shell bounding
volume ∣∣sq

∣∣2 ≤
∣∣s(sphere–shell)

q

∣∣2, for q = 1, 2, . . . (39)

Combining this with the upper bound of |s(sphere–shell)
q |

2 in (38)
and the lower bound of the sum rule S in (34), we derive
an upper bound on the relative channel strengths in the large-
channel limit∣∣sq

∣∣2
S

≤
2π2(d + 2Rs + 2Rr )

2

k4Vs Vr (1 + d/Rmin)
√

2q+1
, as q → ∞. (40)
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Fig. 6. Shell–shell structure (blue-colored inset) that violates the proposed bound by Piestun and de Sterke [19]. (a) Relative coupling strength |sl |
2/|s0|

2 of the
shell–shell geometry, normalized by the zeroth-order coupling strength, violates the proposed bound by Piestun and de Sterke [19] which are their counterparts
in the cylinder–shell bounding volume (gray-colored inset). (b) Relative coupling strength |sl |

2/S from the same shell–shell structure, normalized by the sum
rule, is correctly bounded in our approach.

This suggests that the relative coupling strength between any
two domains decay at least sub-exponentially in the large-
channel limit. Equation (40) is a key result presented in our
article and we hereby provide a derivation in this section.

APPENDIX E
COMPARISON WITH THE RESULTS

OF PIESTUN AND DE STERKE

Piestun and de Sterke [19] have analyzed concentric cylin-
drical objects to obtain a first approximate analysis of the
numbers of well-coupled communications channels in two
dimensions, in the limit of well-separated receivers and large
source domains. The reason it is an approximation, not an
exact bound, is because of two assumptions they made. First,
they assume, for all geometries, the channel strengths |sq |

2 are
constant up to a certain channel index, after which the channel
strengths fall off rapidly. Second, they assume, for all geome-
tries, their relative channel strengths |sq |

2/|s0|
2 are upper

bounded by their counterparts in the cylinder–shell bound-
ing volume, |s(cylinder–shell)

q |
2/|s(cylinder–shell)

0 |
2. (This assumption,

though not explicitly stated in [19], arises when its (6) is used
for upper bounds.) Under these two assumptions, they derive
an upper bound on the number of well-coupled channels, N ,
in a cylinder–shell bounding volume

N ≈

∞∑
q=−∞

∣∣sq
∣∣2

|s0|
2 ≤

∞∑
q=−∞

∣∣∣s(cylinder–shell)
q

∣∣∣2∣∣∣s(cylinder–shell)
0

∣∣∣2 . (41)

This expression is meaningful for (circular) cylinders, but is
not a “fundamental limit” for any shape. In order for the
inequality in (41) to be valid, one would need the denom-
inator on the right, the first singular value of the cylinder,
to be less than or equal to the denominator on the left,
the first singular value of any arbitrary domain. Yet, this
inequality is not valid in general, not even in their assumed
well-separated-receiver large-source limit. One geometry that
violates the singular-value inequality is a “shell–shell” geom-
etry that consists of two concentric cylindrical shells as shown

in the blue-colored inset of Fig. 6(a). Its normalized channel
strengths, |sq |

2/|s0|
2, are plotted as the blue line for the

first 1000 channels. We assume the inner cylindrical shell
has inner and outer radii of 100λ and 150λ, and the outer
cylindrical shell has inner and outer radii of 1000λ and 1100λ.
A part of the blue line surpasses the supposed upper bound
(black line) given by the normalized channel strengths,
|s(cylinder–shell)

q |
2/|s(cylinder–shell)

0 |
2, of the cylinder–shell bounding

volume.
On the other hand, the approach presented in our article

correctly bounds the response from the same shell–shell geom-
etry at each channel, as shown in Fig. 6(b). Our bound is a
rigorous upper bound to all geometries because we do not
make any prior assumptions on the domain configurations
or their singular values. We do not assume well-separated
receivers, nor large source domains. We do not assume a
step-like distribution of the channel strengths (as in [19]).
We also employ a sum-rule normalization where the relative
channel strengths can always be bounded above.

APPENDIX F
SUB-EXPONENTIAL DECAYS FOR VARIOUS DOMAIN

SIZES AND SEPARATION DISTANCES

In the main text, we show that maximal coupling strengths
decay sub-exponentially in three dimensions. In this section,
we investigate how such sub-exponential decay changes under
a variety of communication scenarios, from small to large
domains, from near to far receivers.

Fig. 7(a) shows the decay of maximal coupling strengths
[calculated via (10)] for different separation distances d. The
source and receiver domains are assumed to be bounded by
the sphere-shell geometry with Rs = Rr = 0.5λ. The filling
ratios for both the source and receiver domains are assumed to
be at least50%. Fig. 7(a) shows all separation distances exhibit
sub-exponential decay: the closer the communication domains,
the slower their sub-exponential decay. When the receiver is
well separated from the source, beyond d = 10λ, the decay
rate does not change. Keeping the two domains separated
by d = 10λ, Fig. 7(b) varies the source domain size Rs

Authorized licensed use limited to: Stanford University Libraries. Downloaded on June 10,2025 at 12:59:05 UTC from IEEE Xplore.  Restrictions apply. 



KUANG et al.: BOUNDS ON THE COUPLING STRENGTHS OF COMMUNICATION CHANNELS 3971

Fig. 7. Maximal channel strengths between two domains for various. (a) Separation distances d and (b) source domain radii Rs . In both cases, we assume
the receiver domain has Rr = 0.5λ and the filling ratio is at least50%. We find the sub-exponential decay is most prominent when channels are abundant as
in the case of communicating at moderate separations [the blue line in (a)] or between large domains [the black line in (b)].

from 0.5λ to 20λ and observe more prominent sub-exponential
decays for larger domains.

APPENDIX G
POWER–POWER COMMUNICATION MODEL

In Section II, we propose two communication models:
one rigorous but complex model based on the input–output
power relation of antenna systems, and a simpler model based
solely on the background Green’s function portion of the
input–output power relation. We argued above that the latter
captures the key physics of the former using (1). In this
Appendix, we support this claim with a numerical example:
The channel strengths of two concentric metallic shells decay
at the same sub-exponential rate for both models. Here,
we detail our models and calculations.

We first review the complex communication model dis-
cussed in Section II, which models the full power transmission
process from a supplied current JS in the source antenna to the
induced current JR in the receiver antenna. This transmission
can be broken down into three steps as follows.

1) The supplied current JS induces in the source antenna
an induced polarization current J′

S = T′

SJS through a
matrix T′

S .
2) The induced current J′

S and the supplied current JS radi-
ate a field E = GRS(J′

S + JS) through the background
Green’s function GRS .

3) The field E induces current JR = TRE in the receiver
antenna through a matrix TR .

The complete mapping from the supplied current to the
induced current in the receiver is JR = TRGRSTSJS , where
for simplicity, we introduce a matrix TS = T′

S + I that
encodes the contribution from both the induced current and
the supplied current. The SVD of the matrix TRGRSTS finds
a set of orthogonal currents, but with the wrong normalization
(not power-normalized) of |JS|

2
= |JR|

2
= 1. Physically,

the currents should be normalized by the input and output
power: J†

SRSJS = J†
RRRJR = 1. So, the matrix we perform

the SVD should instead be R1/2
R TRGRSTSR−1/2

S . Its singular

values define the channel strengths of the power–power com-
munication model.

Given an antenna system, how do we evaluate the matrix
R1/2

R TRGRSTSR−1/2
S ? The background Green’s function

matrix GRS can be easily computed (especially for a vacuum
background); the other four matrices, i.e., RR, TR, TS, RS ,
need more work. Here, we express them via elementary
matrices using the volume equivalence principle [61]. Taking
TS as an example, the volume equivalent principle states that
the field scattered from the source antenna is effectively the
radiation of the induced current J′

S in free space. This radiation
plus the incident field has to equal to the total field that induces
J′

S in the source region; this translates to a self-consistent
equation

χSGSS
(
J′

S + JS
)

= J′

S (42)

where GSS is the background Green’s function from the source
domain to itself, and χS is the susceptibility of the source
antenna. This equation implies T′

S = (χ−1
S − GSS)

−1GSS ,
and therefore T is this expression plus an identity. Similarly,
the matrix TR for the receiver antenna can be written as
TR = (χ−1

R − GR R)−1, where GR R is the background Green’s
function from the receiver domain to itself, and χR is the
susceptibility of the receiver antenna. (The slight difference
between the explicit expressions of TS and TR is because the
former maps from “current” to “current” while the latter maps
from “field” to “current.”) Just like GS R , the matrices GSS ,
GS R and the constants χS , χR can be easily derived from the
antenna material and geometry.

The same elementary matrices also describe the input and
output power of the antenna system. The input power equals
to the power radiated from the current and the power dis-
sipated inside the material. The former is characterized by
the imaginary (anti-Hermitian) part of the Green’s function,
acting on the total current: (JS + J′

S)
†Im{GSS}(JS + J′

S); the
latter, the imaginary part of the material susceptibility: (JS +

J′

S)
†Im{−χ−1

R }(JS + J′

S). Summing up the two, and converting
J′

S to JS using J′

S = T′

SJS , we have RS = T†
S(Im{GSS} +

Im{−χ−1
S })TS . Similarly, we write the matrix for the output
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Fig. 8. Power–power communication model. (a) Antenna system is made of two concentric aluminum shells, separated by distance d = λ = 1 mm. The
inner shell has diameter of 2R = λ. (b) Channel strengths of the power–power communication model and those defined by the Green’s function GS R . The
two curves have the same sub-exponential scaling, as shown in the inset.

power as RR = Im{−χ−1
R } which encodes the power dissi-

pated into an external load. (It technically also includes the
power dissipated into the receiver material, but that is usually
much smaller than the power dissipated into the external
load.)

The derived expressions above allow us to evaluate the
SVD of the matrix R1/2

R TRGRSTSR−1/2
S for most antenna

systems. In Fig. 8(a), we consider a system made of two
concentric metallic shells. We choose this structure because
it captures radiations into all directions, which is expected
to be optimal from our model in Fig. 2(a). We choose the
radius R of the inner shell to be half a wavelength, and the
distance d between shells to be one wavelength [again, similar
to Fig. 2(a)]. We choose the thickness of both shells to be
one-tenth of the wavelength. The wavelength λ is 1 mm.
The antennas are made of aluminum. Its susceptibility at
this wavelength is χAl = −8.1 × 104

+ i1.9 × 106 [98].
Consequently, the susceptibility of the receiver antenna is
χS = χAl . The susceptibility of the receiver antenna, because
of the external load, has higher loss. We consider a scenario
with a resistive external load that draws 100× as much power
as is dissipated in receiver material losses, so that the inverse of
the susceptibility (whose imaginary part corresponds to loss)
is χ−1

R = Re{χ−1
Al } + i101Im{χ−1

Al }. At last, because of the
spherical symmetry, we can compute the SVD more efficiently
by decomposing every relevant matrix into vector spherical
waves, which are defined in (21)–(24).

Fig. 8(b) compares the singular value of the system’s full
matrix R1/2

R TRGRSTSR−1/2
S (red line, labeled power–power)

with that of GRS (black line). The singular values physically
represent the channel strengths of the communication channels
in both models. Both curves are normalized by the channel
strengths of their first channel. The inset renormalizes the
curves to validate their equivalent scalings as a function of
channel index. Both the black curve and the rescaled red
curve match the sub-exponential scaling derived in (13). This
confirms that our sub-exponential scaling, though derived
using a simplified model of the Green’s function, applies

to realistic considerations of all of the power-transfer and
power-loss pathways in real-material antenna systems.
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