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Transport Measurements of Majorization Order for Wave Coherence
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We investigate the majorization order for comparing wave coherence and reveal its fundamental
consequences in transport measurements, including power distribution, absorption, transmission, and
reflection. We prove that all these measurements preserve the majorization order under unitary control,
enabling direct experimental characterization of the majorization order. Specifically, waves with lower
coherence in the majorization order exhibit more restricted ranges of achievable measurement values. Our
results deepen the understanding of coherence in transport phenomena.
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Wave coherence originates from the statistical properties
of random fluctuations [1-4] and plays a crucial role in
fundamental phenomena like interference, diffraction, and
scattering [5—8]. Coherence theory examines how coher-
ence affects observables [9]. A fundamental issue in
coherence theory is the comparison of coherence between
different waves. The concept of “degree of coherence” can
be formalized through various measures, each with specific
applications and limitations. For instance, von Laue’s
entropy measure [10,11] has clear thermodynamic signifi-
cance but is coarse due to its scalar nature [6]. Other
measures addressing different aspects of coherence were
proposed by Zernike [12], Glauber [5], Mandel and
Wolf [3], among others [7,13-18].

Quantum resource theories have advanced coherence
theory [19-23], introducing a new coherence measure
based on the majorization order [24-28]. This measure
offers clear algebraic and geometric interpretations, and
computational simplicity [29]. However, its unique physi-
cal implications, especially for classical waves, remain
unclear. Certainly, any coherence measure, including majo-
rization order, can be indirectly inferred from density
matrix tomography [30-32]. However, direct measure-
ments specific to the majorization order effects are yet
to be established.

In this Letter, we reveal the fundamental consequences of
the majorization order in transport measurements, including
power distribution, absorption, transmission, and reflection.
We demonstrate that these measurements, under unitary
control (i.e., unitary transformations of the input wave),
precisely preserve and manifest the majorization order,
distinguishing it from other coherence measures. Con-
sequently, these effects enable direct experimental charac-
terization of the majorization order. Our findings highlight the
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crucial role of the majorization order in transport phenomena
and coherence theory.

We begin by reviewing the density matrix formalism of
wave coherence. We consider an n-dimensional Hilbert
space of waves [33] and focus on the second-order
coherence phenomena [7,9]. In this formalism, a wave is
represented by a density matrix pe M, [4,8,11,34-40],
also known as a coherence [41] or coherency [2,42,43]
matrix in optics. Here, M, denotes the set of n x n complex
matrices. The density matrix p is Hermitian and positive
semidefinite. A normalized density matrix satisfies

trp = 1. (1)

The coherence properties of the wave are encoded in the
eigenvalues of p, which we call the coherence spectrum:

A (p) = (1 (p)s - Ak (), (2)

where | denotes reordering the components in non-
increasing order, which 1is in principle directly
measurable [30-32]. A perfectly coherent wave has
A (p) = (1,0,...,0), while a fully incoherent wave has
M(p) = (1/n,1/n,...,1/n). For any wave, A*(p) belongs
to the set of ordered n-dimensional probability vectors:

n

A= {xeR 20525, v=1} ()

i=1

To compare the coherence of waves, one must introduce
an order on A,%. One approach is to use the entropy

H(p) == 3 () n At (), @)
i=1

and define p; to be less coherent than p, in the entropy
order if H(p,) > H(p,) [10,11]. We focus on an alternative
order based on majorization. For vectors x and y in R”, x is
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majorized by y, denoted as x <y [29], if

k k
ini < Z:yli forall k=1,2,....n—=1; (5)

in = Z)’i- (6)

Intuitively, x <y means that the components of x are no
more spread out than those of y. The set Aﬁ, together with

the majorization relation, denoted as (A$,<>, forms a
partially ordered set, thus < is reflexive, antisymmetric,
and transitive on Aﬁ [29]. For vectors x and y in Aﬁ, ifx <y
and x #y, then x is strictly majorized by y, denoted as
x X y. If neither x <y nor y < x holds, then x and y are
incomparable, denoted as x|y [44]. Incomparability
can occur when n > 3. [See Supplemental Material (SM)
[45], Secs. VI and VII for more details.] Comparing p,
and p, using the majorization order, we obtain four
possibilities: (1) A'(p;) = At(p,): they have the same
coherence. (2) AY(p;) £ A¥(p,): py is less coherent than
pr. (3) At(py) </1¢(p1) p; is more coherent than p,.
4) A (py) || A*(p,): their coherence is incomparable. As
a sanity check, for any partially coherent wave p,

n n n

(1,1,...,1> <) 2(1,0,...0).  (7)

Incomparable cases are typical rather than exceptional. It
has been proved that the probability that two independent
random vectors A*(p;) and A¥(p,) uniformly distributed in
Ai are comparable approaches zero as n — oo (scaling
asymptotically as 0.98n041) [51,52].

The majorization order provides a different comparison
from the entropy order. It can be shown that [29,53]

Ar(p1) 2 A (p2) = H(py) > H(py). (8)

However, the converse is not necessarily true. In fact,

H(py) > H(py) =AY (p1) $44(p2) or A¥(py) |44 (p2).
)

Moreover, recent experiments have confirmed the existence
of partially coherent optical waves that possess identical
entropy values yet remain incomparable in the majorization
order [54].

As examples that will be often used later, consider five
3 x 3 density matrices p, to p, with

A (p,)=1(0.33,0.33,0.33), At(p,)=(0.60,0.30,0.10),
A (p.)=1(0.80,0.15,0.05), A(p,)=(1.00,0.00,0.00),
A (p,)=(0.55,0.45,0.00). (10)
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FIG. 1. (a) Hasse diagram for A'(p,) to A'(p,). An edge
indicates a strict majorization relation between the lower and
upper vertices. A higher vertical position indicates a lower
entropy H(p). (b) An n-port linear time-invariant system.

The majorization order indicates that
A(pa) 3 4 (py) 344 (pe) 4 (pa), (11)
Apa) 344 (pe) 2 4% (pa), (12)
A pp) 1 4% (oo A¥(pe) 144 (pe)- (13)

In contrast, the entropy order indicates that

H(p,) > H(py) > H(p,) > H(pc) > H(pa). (14)

These relations are summarized in a Hasse diagram [44]
[Fig. 1(a)], where the edges indicate the majorization order
and the height indicates the entropy order.

This Letter aims to demonstrate the fundamental role of
the majorization order in transport processes. Resource
theories treat coherence as a resource that constrains
achievable observables [19,21]. This perspective motivates
us to examine the range of achievable transport responses
for input waves with a specific coherence spectrum A¥(p).
We will show that waves with lower coherence in the
majorization order exhibit more constrained ranges of
achievable outcomes in transport processes.

Specifically, we consider a linear system where an input
wave p yields a response F(p), with F representing power
distribution, absorption, transmission, or reflection. We
generate all waves with identical total power and coherence
spectrum as p via unitary control, which transforms the
input wave according to

p — p|U] = UpU". (15)

We examine the set of all achievable responses:
{F} ={F(plU)IUeU(n)}. (16)

We show that this set preserves the majorization order: for
sets {F}, and {F}, corresponding to waves p; and p,,
respectively,

A(p1) <A (py) = {F}, C{F},. (17)
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This result reveals the direct physical consequences of the
majorization order. Moreover, the converse of Eq. (17)
often holds. Thus, measuring {F} enables experimental
comparison of coherence in the majorization order.

We begin our detailed analysis by reviewing the scatter-
ing matrix and unitary control. Consider an n-port linear
time-invariant system characterized by a scattering matrix
SeM, [55] [Fig. 1(b)]. A coherent input wave, represented
by vector a, scatters into an output wave b = Sa. A partially
coherent input wave is described by a density matrix:

p= aa’). (18)

where (-) denotes the average over an ensemble of
realizations of randomly fluctuating fields [9]. The diagonal
elements of p, denoted by d(p), specify the input power in
each port, while trp gives the total input power, assumed to
be unity [Eq. (1)]. The output wave is characterized by an
unnormalized density matrix:

I = (bb") = Sps'. (19)

The diagonal elements of I" represent the output power in
each port, and trI" is the total output power, which may
differ from unity in systems with loss or gain.

For a lossless system, the scattering matrix is unitary,
denoted as U. The output density matrix then becomes p[U]
as defined in Eq. (15). This process is called unitary control
of the density matrix. Unitary control preserves both the
total power and the coherence spectrum:

wplU] =1, A (p[U]) = A4 (p). (20)
Conversely, any pair of waves with identical total power
and coherence spectrum can be interconverted through
unitary control. Therefore, the set

{plUNlU€Un)} (21)

comprises all waves with the same total power and
coherence spectrum as p.

Unitary control can be implemented using program-
mable unitary converters such as spatial light modulators
[56-58], Mach-Zehnder interferometers [59—-72], and mul-
tiplane light conversion devices [73-78]. It has been
introduced to manipulate the absorption, transmission,
and reflection of both coherent [79-81] and partially
coherent waves [46,82]. Here, we examine four transport
measurements under unitary control: power distribution,
absorption, transmission, and reflection.

First, we consider the power distribution measurement
[Fig. 2(a)]. We apply unitary control [Eq. (15)] to an input
wave p and measure the power distribution in each port:

d(p[U]) = d(UpU"), (22)

(2) (b)
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FIG. 2. (a) Scheme of unitary control. The power distribution
d(p) — d(UpU"). (b) {d} for p; and p,. (c),(d) {d} for p, to p,.
(c) A 3D plot. All {d} lie in the plane d| + d, + d3 = 1. (d) Each
set {d} in the plane. Only the boundaries are shown.

which corresponds to the vector of the diagonal elements of
p[U]. It can be shown that the set of all achievable power
distribution vectors under unitary control is

{d} = {d(p[U])|U€ U(n)}
={ueR"u<i(p)}. (23)

See SM, Sec. I [45] for proof of Eq. (23) using the Schur-
Horn theorem [29,83]. Equation (23) has a simple geo-
metric interpretation: {d} is the convex hull spanned by the
n! points obtained by permuting the coordinates of A*(p).
See Figs. 2(b) and 2(d) for examples of {d} when n =2
and 3, respectively.

Next, consider two input waves p; and p, with their
corresponding sets {d}, and {d},. One can prove that

A (p1) <A (py) <= {d}, C {d},. (24)

More precisely, considering all four possibilities:

A(pr) = A4 (py) = {d}, = {d},. (25)
A1) 34 (py) = {d}, G {d}s. (26)
At(p2) 244 (pr) = {d}, & {d},. (27)

A1) |44 (p2) <= {d}, || {d}. (28)

Here, A || B for two sets A and B means that they partially
overlap, i.e., they intersect, but neither is a subset
of the other. See SM, Sec. II [45] for detailed proofs of
Egs. (24)—(28). Therefore, the power distribution measure-
ment exactly preserves the majorization order and offers an
experimental method to probe the majorization order.
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We provide two illustrative examples. The first example
concerns two 2 x 2 density matrices p, and p, with
AM(pg) = (0.60,0.40), At (p,) = (0.80,0.20).  (29)
Figure 2(b) depicts the sets {d}; and {d}, as given by
Eq. (23). These sets are line segments with end points
obtained by permuting the coordinates of A*(p;) and
AY(p,), respectively. We note that {d}, G {d}, because
App) 2 2 (py)-

The second example concerns the five 3 x 3 density
matrices p, to p, introduced in Eq. (10). Figures 2(c) and
2(d) depict the sets {d}, to {d}, as given by Eq. (23).
These sets are convex hexagons with vertices obtained by
permuting the coordinates of A*(p,) to A*(p, ), respectively.
({d}, and {d}, are degenerate hexagons with coalescing
vertices.) We note that

d}a & {d}, & {d}e & d}a, (30)
{d}o & {d}. & {d}s, (31)
{d}, [ 4}, H{d}cl{d}., (32)

which confirm Eqgs. (25)-(28) applied to Egs. (11)—(13).
Second, we consider the absorption measurement

[Fig. 3(a)]. We input a wave p into a system with a

scattering matrix S and measure the total absorption:

alS] = tr(pA), (33)

where A is the absorptivity matrix [79,84], defined as

A:=1-S7S. (34)
(a) (b)
1.0
PR -
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FIG. 3. (a) Total absorption measurement with unitary control.
(b) {a} for p, to p, where 6+ (S) = (0.95,0.39,0.32). (c) Total
transmission measurement with unitary control. (d) {7}, for p, to
p. where ¢*(¢) = (0.95,0.71,0.32).

We apply unitary control [Eq. (15)] to transform the input
wave p. The total absorption then changes to

a[S] — a[S, U] = w(UpUTA). (35)

It has been shown that the set of all achievable total
absorption values under unitary control is [46]

{a}s = {alS,U]|U€U(n)}
= [ (p) -AT(A). 4% (p) - 4+ (A)] (36)
with the absorption eigenvalues given by [85]
MA) =1-61(S)=(1-61"....1—0cr)),  (37)

where 6(S) denotes the vector of singular values of S, 1
indicates reordering the components in nondecreasing
order, [,] denotes the close real interval, and - represents
the usual inner product. See SM, Sec. III [45] for an
intuitive interpretation of Eq. (36).

Next, consider two waves p; and p, with their corre-
sponding sets {a}s; and {a}s,. One can prove that [46]

M(p1) <At (py) <=V SeM,, {a}siS{a}s,  (38)

Thus, the total absorption measurement preserves the
majorization order. More precisely,

M) =AH(py) <=V SeM,, {a}s) = {a}sos (39)

M) 2A(py) <=V SeM, {a}s, C{a}s, and
385eM, {a}s, # {a}s: (40)

AM(py) A (p) =V SeM,, {a}s, C{a}s; and
I8eM, {a}s, #{a}s;;  (41)

M(Pl) | /w(/)z) — 3 SeMm{a}s,1 ¢ {a}s, and
3SeM, {a}s, ¢ {a}s,.  (42)

See SM, Sec. IV [45] for detailed proofs of Egs. (38)—(42).
We highlight the similarities and differences between
Egs. (25)-(28) and (39)—(42). The differences reflect the
fact that the absorption measurements also depend on the
properties of the S matrix.

As an illustration, Fig. 3(b) depicts {a}¢ as given by
Eq. (36) for p, to p, and a 3x3 S matrix with
o' (S) = (0.95,0.39,0.32). We note that

{a}sa & {atsp & {atse E{atsar (43)
{atsa G {a}s. G {a}sa (44)
{a}ss [ {a}s.. {atscl{als.. (45)
which confirm Egs. (39)—(42) applied to Eqs. (11)~(13).
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The total absorption measurement can also probe the
majorization order. We consider two experimental settings.
In the first setting, we have a single lossy system with an
unknown scattering matrix S. We perform total absorption
measurements under unitary control and obtain {a}¢, and
{a}g,. By comparing {a}g, and {a},, we can infer the
relation between A'(p;) and A*(p,) [86]:

{a}s, = {a}s, = no information; (46)

{atst & {ats, =2 p1) 2A44(py) or

M(Pl) | M(Pz); (47)

{atss & {ats, =2 (p2) 2A%(p1) or
’N(Pl) | M(Pz)Q (48)
{a}s1 [[{a}so == A (p1) [ 4* (p2). (49)

See SM, Sec. V [45] for detailed proofs of Egs. (46)—(49).
Only the last case yields a definite relation [Eq. (49)].
Equations (46)—(49) demonstrate that a single lossy
system may not provide sufficient information to defini-
tively determine the relation between arbitrary At (p;) and
A¥(p,). To address this limitation, we perform absorption
measurements on a set of lossy systems with designed
scattering matrices. The minimum number of systems
required is [(n — 1)/2], where [ -] represents the ceiling
function. This number is necessary because comparing
{a}s, and {a}g, in one system produces two inequalities,
while verifying the majorization order requires (n — 1)
inequalities [Eq. (5)]. To show that this number is also
sufficient, consider the following set of systems:

5 — (T © 2N s0
m — 0 0 ) mfv""’|—2—|' ( )

Comparing {a}g | and {a}g , enables verification of all
(n — 1) linear inequalities required for majorization, thus
providing sufficient information to determine the definitive
relation between any A'(p;) and A'(p,). This discussion
motivates the following open question: How to decide
whether an arbitrary set of systems S s Jj=12,..k
where k > [(n — 1)/2], can provide sufficient information
to definitely determine the majorization order?

Third, we consider the total transmission measurement
[Fig. 3(c)]. We examine a system with a 2n x 2n scattering

matrix
S—(r tl) (51)
S\t )

where r and t are the n x n reflection and transmission
matrices for input from the left, and 7/ and ¢ are the

corresponding matrices for input from the right. We input a
wave p from the left and measure the total transmission:

T[t] = tr(pt't). (52)

We apply unitary control [Eq. (15)] to transform the input
wave p. The total transmission then changes to

T[t] = T[t, U] = w(UpU't'1). (53)

It has been shown that the set of all achievable total
transmission values under unitary control is [82]

{1} ={T[r. UllU€U(n)}
= (p) 6?1 (1).44(p) - 0* (1)) (54)

See SM, Sec. HI [45] for an intuitive interpretation
of Eq. (54).

Next, consider two waves p; and p, with their corre-
sponding sets {T'},; and {T},,. One can prove that [82]

A(p)<at(py) =V 1€M, (T}, C{T},  (55)

The remaining discussion is analogous to that of absorption
and is omitted. The analysis of reflection is similar.
As an illustration, Fig. 3(d) depicts {T}, as given by
Eq. (54) for p, to p, and a 3 x3 ¢ matrix with
ot () = (0.95,0.71,0.32), where

{T}t.a ;Ct {T}z.b g {T}t.e ;Ct {T}t,c g {T}t.d’ (56)

which confirms Eq. (55) applied to Egs. (11)-(13).

We make five final remarks. First, our findings apply to
both classical and quantum waves, including optical,
acoustic, and electronic varieties. Second, many of our
results, especially those concerning incomparable cases,
are not captured by other measures such as entropy order.
Third, while we primarily compared coherence between
wave pairs, this can be extended to multiple waves. The
mathematical property that (Ai <) forms a complete
lattice [44,47,48] ensures that any subset of waves has a
well-defined supremum and infimum (see SM, Secs. VII
and VIII [45]). Fourth, all discussed measurements require
determining the range of responses under unitary control. It
suffices to find the unitary transformations that achieve the
extremal responses, which can be solved using efficient
variational algorithms [87-92], without running over all
unitary transformations in U(n). Fifth, while we focus on
transport measurements of classical waves (mixtures of
coherent states), our majorization order results should
extend to quantum waves with entanglement.

In conclusion, our investigation of the majorization order
for comparing wave coherence has revealed its fundamental
role in transport measurements. We have shown that these
measurements preserve the majorization order under

053801-5



PHYSICAL REVIEW LETTERS 135, 053801 (2025)

unitary control, enabling direct experimental probes of this
order for wave coherence. Our Letter provides a unifying
framework for understanding coherence phenomena in
wave transport, paving the way for improved coherence
characterization and engineering in both classical and
quantum technologies. Our theoretical proposal can be
readily implemented in few-port systems using current
wavefront shaping techniques [54]. Implementation in
many-port systems would benefit from further advances
in programmable unitary converters.
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