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We give extended mathematical analysis and discussion of the approach to filtering discussed 
in the main text and an expanded discussion of some extensions of device usage and 
architectures. S1 gives a detailed formalism for analyzing the filter behaviors. S2 gives a 
complete analysis of a simple single-layer filter. S3 gives extended discussion of the classes 
and range of possible filter functions, especially for multilayer filters, and of approaches for 
programming the necessary matrices onto the interferometer mesh. S4 gives a detailed 
discussion of the analysis of temporal coherence and its measurement by the system. S5 
discusses some other operating modes and extensions in more detail.

S1. Formalism for analyzing filter behavior
To understand this filter approach in detail, we can set up some physical and mathematical 
formalism. Much of this is standard for analyzing devices such as arrayed waveguide grating 
(AWG) routers, but we give this in relatively complete form because we need to extend it, 
especially for waveguide lengths beyond those used in conventional AWGs and for analysis of 
multiple-layer interferometer meshes, which allow many novel filters.

General description

Consider the system as illustrated schematically in Fig. S1, which is a generalized version of 
Fig. 1(a) of the main text.

Fig. S1. General block diagram of the device.

All waveguides are presumed to be single-spatial-mode guides. We presume a single input 
waveguide. In this analysis, we consider one wavelength or frequency at a time, so, some 
angular frequency  , which would correspond to a conventional frequency / 2f   , and a 
free-space wavelength / 2 /c f c     where c is the velocity of light in free space. Since 
this is a linear, time-invariant system (at least over the time-scales relevant for optical 
frequencies), different frequencies are never mixed to generate new frequencies within the 
system, so the response of the system to a sum of light at different frequencies is just the sum 
of the responses to the individual frequencies. 
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Power splitting

An input field at this angular frequency  and of amplitude x in the single input waveguide is 
split by this power splitter A among the waveguides in the array L with amplitude coefficients 

1a  to Na . In general, this split need not be equal, but if it were, for a lossless splitter these 
amplitudes would all be 

1/pa N (S1) 

in magnitude; then the relative powers, presumed proportional to the modulus squared of the 
amplitudes, would add to 1. Whether or not the split is equal, quite generally, for a lossless 
system by power conservation we write

2
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 (S2)

We have written the modulus squared here (i.e., 2
pa ) in each case, though in fact, without loss 

of generality, we could take these coefficients pa  to be real because we will have other points 
at which we can add arbitrary phases mathematically if we need to. (It will not matter in the 
final operation if there are different fixed phases associated with these splitting amplitudes; 
such phases can readily be calibrated out of the system [1].) If there is some common loss in 
the waveguides or the power splitter, we can simply presume some constant loss factor for the 
entire system and proceed otherwise as if the system is lossless.

Waveguide lengths

The waveguides in the array L will be fabricated to a set of lengths 1l  to Nl , which we could 
take as the waveguide lengths from the output of the power splitter to the input to the mesh. In 
the analysis that follows, the total length of the guides is of little or no interest; what matters is 
the difference in the lengths of the guides. (Lengths that are common to all paths just correspond 
to the same phase factor over all paths for a given frequency, and such a common phase factor 
is of no particular importance here.) For convenience, we can define such differences relative 
to some “center” length cl . This could be the length of some “center” waveguide (if there is 
one), or some average length; in practice, we can just choose it to be some length that is 
convenient for our algebra. (It can also be the length of the first waveguide if that is more 
convenient for analysis.) Then we work with the relative length difference of waveguide p 
compared to cl . So, we use the quantities

p p cl l l   (S3)

Various parameters in the analysis, such as power-splitting coefficients, beamsplitter ratios, and 
controlled phase shifts, could all depend on frequency, in which case we would regard these 
parameter values as being the ones at the angular frequency  of interest. As a first 
approximation and for simplicity of analysis, we presume these parameters do not depend on 
frequency or wavelength, at least for narrow bandwidths. We do retain frequency dependence 
of the effective refractive index of the waveguide mode, however, since this is important in the 
system behavior through group velocity effects, and we discuss this next.

Waveguide phase delays and effective refractive indexes

In waveguides, some care is required with appropriate refractive index values, both for the 
effective refractive index at some frequency and with the effects of frequency-dependence or 
dispersion of that index. Especially in single-mode waveguides with small cross-sections, first, 
the effective (phase) refractive index for light in the guide at a given frequency, rn , can differ 
significantly from the underlying refractive index on  of the core material itself [2], in part 
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because some of the field amplitude is in the lower-refractive index waveguide cladding 
material. Second, the group index gn  may be quite different again, especially because of strong 
modal dispersion effects in small guides. 

To understand refractive index effects and phase delays in single-mode guides, first we can 
formally define the phase refractive index for the waveguide mode

 
r

c
n

 


 (S4)

where     is the (phase) propagation constant of the mode at (angular) frequency  . Now 
we choose some “center” or reference (angular) frequency c  (corresponding to a conventional 
frequency / 2c cf   ). This need not be in the actual center of some frequency band of 
interest, though conveniently it can be. For future use, we can define the effective wavelength 
inside the waveguide at the center frequency as

2
c

r c r c

c c
n f n




  (S5)

We can usefully approximate rn  by a first-order expansion of its behavior with respect to 
frequency as

  r
r c

dnn n
d

 


  (S6)

where cn  is the (phase) index at the center frequency, /rdn d  is the rate of change of this 
refractive index rn  with respect to the angular frequency  , and 

c    (S7)

is the (angular) frequency separation from the center (angular) frequency. 

The relative phase delay in propagating through waveguide p can then be written

     

 

2 p
p r r p

cr
c p

l
n n l

c
dnn l
d c

      


 
 



 

   
 

(S8)

Dropping terms in  2 , consistent with taking the first-order expansion as in Eq. (S6), Eq. 
(S8) leads to 

    p
p c c g

l
n n

c


     (S9)

where

r
g c c

dnn n
d




  (S10)

which is typically referred to as the group index. (Note that, if rn  did not depend on frequency 
– so we would then have r cn n  – then Eq. (S9) would become the simple expression 

   /p r pc n l    .) 

In the design of AWGs, it will often be the case that the waveguide lengths are chosen so that, 
at a center frequency, 
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/ 2c c p pn l c u   (S11) 

for some integers pu , which is equivalent to saying that the lengths of the guides (compared to 
the “center” waveguide length) are integer numbers pu  of c  [the wavelength in the waveguide 
at the center frequency, Eq. (S5)], i.e., 

p p cl u  (S12)

Such an approach leads to simpler analysis, and we take this approach here. Then Eq. (S9) can 
be rewritten in the simpler form 

  /p g pn l c   (S13)

where we have dropped the integer multiples of 2  as in Eq. (S11) from Eq. (S9) since they 
make no difference when in the argument of any sine or cosine trigonometric function. In that 
case, only the group index would then be involved in the frequency response of the system  [3]. 

In practice, it will be useful to work with length increments between guides that are themselves 
a specific integer number om  of c . Such a choice will mean that the free-spectral range of the 
system (essentially, the useful spectral range – see below for a detailed discussion) will be a 
correspondingly smaller fraction of cf . (For example, the width of the telecommunication C-
band is ~ 1/44 of its center frequency, which would suggest using 44om  to get a filter of an 
appropriate free-spectral range.) So, we can choose some underlying length increment for 
design  

2 o
o o c

c c

m
l m

n


 


  (S14)

We can now usefully write 

p p ol m l  (S15)

where p o pm m u . 

We can now also usefully introduce the effective time delay ot  for the wave at frequency 
c   passing through that same waveguide length increment ol ; specifically, 

/o g ot n l c  (S16)

in which case Eq. (S13) becomes

 p p om t   (S17)

For example, and for our explicit calculations, as mentioned in the main text, we presume a 
typical silicon photonics waveguide design that is a silicon strip waveguide 500 nm wide by 
220 nm tall, with silicon dioxide cladding. We use material refractive indices of 1.444 [4] for 
the silicon dioxide cladding and 3.4757on   [5] for the silicon core, as appropriate for 1550 
nm free-space wavelength. Using an eigenmode solver (EMOpt [6]) with these parameters, at 
a “center” wavelength of 1550 nm we deduce a (phase) refractive index of 2.45932cn   and a 
group index of 4.05647gn  for the TE polarized mode in such a guide. The low phase index 
is in part because of penetration of the waveguide mode into the lower index cladding material 
surrounding that silicon core. The group index is strongly influenced by modal dispersion. (In 
calculations by others for other thin silicon guides [7], the group index for TE polarized modes 
can be as high as 4.25gn   near 1550 nm (free-space) wavelengths.) So, in our analysis below, 
as in other analyses of AWG routers (see, e.g., [3]), we will include such dispersive effects in 
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the waveguides, at least to lowest order. The group index also varies slightly over the 
wavelength range of interest (such as the telecommunications C-band), but for simplicity in our 
calculations we use the above group index value for all wavelengths in our calculations. 

Modeling the combination of splitter, waveguide array and interferometer mesh

We use the convention here that a forward propagating wave at angular frequency   has the 
form    exp i t z   , where t is time and we take z to be the appropriate distance along 
the waveguide. (If necessary, we can take the real part of any result to give a real field or 
amplitude.) The interferometer mesh in Fig. S1 can be represented by some matrix M with 
matrix elements qpM . This mesh and matrix will have N input waveguides and Q output 
waveguides. Here p indexes the mesh input waveguides WG1 to WGN and q indexes the output 
waveguides WO1 to WOQ. N and Q can be equal, but they need not be; Q can also be greater 
than or less than N.  A simple filter need only have one signal output waveguide (so we can 
have 1Q  ). 

For an amplitude at (angular) frequency c     (as defined in Eq. (S7)) of value x in the 
input waveguide, by definition the output field in the waveguide of index q is given by

     
1

exp
N

q p qp p o
p

y a M i m t x  


 
  

 
 (S18)

where we have used the phase delay from Eq. (S17) in each waveguide. 

In the language of frequency filters [8], we can rewrite Eq. (S18) as (Eq. (2) of the main text)

     q qy H x   (S19)

where (Eq. (3) of the main text)

   
1

exp
N

q p qp p o
p

H a M i m t 


  (S20)

is the frequency response of the filter as seen in output waveguide q. For analysis of some 
simple systems, we may presume equal power splitting 1/pa N  as in Eq. (S1). Then for 
simplicity of notation, we rewrite the matrix elements as

qp
qp q qp

M
M a M

N
  (S21)

(this will allow the matrix M  to be an actual unitary matrix in practice), giving the simpler 
form

   
1

exp
N

q qp p o
p

H M i m t 


   (S22)

For the case where the pm are successive integers, the series in Eq. (S20) or Eq. (S22) 
essentially corresponds to a Fourier series, and N is then the “order” of the filter [8]. Altogether, 
the system is implementing Q different filter frequency responses qH , with a possibly different 
such frequency response seen in each different (signal) output waveguide q.

Note in Eq. (S18), or equivalently Eq. (S20), the response at frequency   (relative to the 
“center” frequency c ) is the same as the response at frequency 2 / on t    for any integer 
n; because pm is an integer, 
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 
       
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            

       

  (S23)

So, each term in the sum is the same if we add 2 / on t  , which makes the response periodic 
in frequency with a “free-spectral range” of

2 /FSR ot   (S24)

or, in conventional frequency terms

1/FSR of t (S25)

or, explicitly, using Eq. (S16)

/FSR g of c n l (S26)

So, in understanding what filter functions we can generate, we note that only one such free-
spectral range matters (with the response in every other free-spectral range being identical). So, 
we restrict our analysis to the “zeroth” free-spectral range, which we can choose to regard as 
being from (angular) frequency / ot     to / ot   .

Filter functions, their representations, inner products, and Hilbert space

Much discussion of linear filter behavior is based on approaches that consider functions that 
may be continuous over all times and all frequencies or may be based on infinite sums of 
discrete and equally spaced frequencies or times. Approaches that work in such cases include 
Fourier transforms and z-transforms. Our case is somewhat different. First, we generally only 
have finite numbers of underlying physical functions we are considering, with the finite number 
being related to the number of waveguides in our arrays. Second, we may not even have uniform 
spacings of time delays between our different waveguides. As a result, it can be clearer to 
consider the filter functions of interest as being more generally in Hilbert spaces that can 
incorporate these restrictions. (Hilbert spaces are often implicit in the common approaches to 
analyzing and designing filters, but discussions of Fourier and z-transforms typically do not 
formally need to emphasize or point out this underlying mathematics.) Our use of Hilbert spaces 
enables us to be quite explicit about what functions we can consider (they are all the ones that 
can exist in our Hilbert spaces), retaining underlying mathematics of orthogonality and 
functional analysis without presuming that full Fourier or z-transforms must be used or be 
applicable. 

With this background, to start, consider two possible filter functions formed as in Eq. (S20)

   

   
1

1

exp

exp

N

a ap p o a
p

N

b bp p o b
p

H i m t H

H i m t H

  

  





  

  




  (S27)

where we can consider that we are replacing the product of coefficients like qp pM a  with a 
single coefficient like ap  or bp  in writing these expansions. (We will clarify the meaning and 
use of Dirac notations like H below.) Generally, we can view such functions as existing 
mathematically in some “filter-function” function (or vector) space. With the formal 
mathematical definition of an inner product, which we can choose as



7
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   
    (S28)

such a function or vector space essentially becomes a Hilbert space, mathematically.

Since quite generally

     
/

/

2exp exp
o

o

t

o o uv
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iu t iv t d
t

 

 

   


  (S29)

for any integers u and v and with the Kronecker delta uv , then the inner product reduces to 

1 1 1

N N N

a b ap pj ap bj
p j p

H H     

  

   (S30)

Equivalently, we can formally define the set of “Fourier-like” basis functions 

   exp
2

o
p p o p

t
h im t h


 


   (S31)

each of which is also normalized over a free-spectral range (that is, the inner product of the 
functions with themselves is 1, i.e., 1p ph h  ). We call this a “Fourier-like” basis rather than 
just a Fourier basis because, first, we only have a finite number N of orthogonal basis functions, 
rather than having p  run from   to   as in a conventional Fourier series expansion, and, 
second, in the general case, the pm  need not be successive integers; for example, they might 
be given by a non-redundant array set such as a Golomb ruler, as discussed in the main text. 

Then, any filter functions in our filter-function Hilbert space can be represented on this basis, 
Eq. (S31), by the vectors

1 1

,
a b

a b

aN bN

H H
 

 

   
       
      

  (S32)

When using a Dirac notation like this in which   represents a column vector, then   
represents a corresponding row vector with complex conjugated elements; formally 

 †  , where quite generally in Dirac notation the superscript “†” denotes the Hermitian 
adjoint or conjugate transpose of a matrix or vector. In this Dirac notation, we see the vector 
product a bH H  [conventionally shortened to the notation a bH H  as in Eq. (S30)] gives 
the same answer as the definition in Eq. (S28). Whether we use the representations of Eq. (S27) 
with inner product definition Eq. (S28) or of Eq. (S32) with inner product definition as the 
vector product a b a bH H H H , the inner product a bH H  lets us define that two non-
zero frequency response functions aH  and bH  are orthogonal if and only if 0a bH H  . 

With the orthogonal basis functions as in Eq. (S31), we can also rewrite the filter functions of 
Eq. (S27) in the form
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 
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1
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


(S33)

Incidentally, a major reason for using Dirac notation, in addition to its algebraic simplicity and 
convenience, is that it allows us to refer to a function in the Hilbert function space in a way that 
is independent of what representation (basis set) we are using to specify the function. The 
representation in Eq. (S27) is in terms of the (infinite) set of amplitudes corresponding to the 
values of the continuous variable   within a free spectral range, whereas the representation 
in Eq. (S33) is in terms of an expansion over a discrete and countable basis set ph . Whichever 
way we represent it, we are referring to the same function, e.g., aH  or bH , in the 
mathematical Hilbert space of frequency response functions.

Because we can represent any frequency response function in the space of possible frequency 
response functions for this apparatus as a (weighted) sum over the N orthogonal functions 

 p ph h  , the Hilbert space of possible frequency response functions is N-dimensional. 
The Fourier-like basis as in Eq. (S31) is one possible convenient basis, but of course we can 
choose any other N-dimensional  orthogonal basis formed by a unitary transform from this 
basis. With such basis sets we can represent any filter function that can be formed from this set 
of N waveguides with their specified lengths pl  as in Eq. (S15). One other such useful basis 
could be the “sinc-like” functions we would obtain as the frequency responses of AWG outputs 
(see the discussion below for the analysis of a simple filter. Another other particularly 
interesting basis would be the set of orthogonal functions that are the eigenfunctions of the 
(temporal) coherency matrix, as we discuss below in relation to partially coherent light. 

Design of matrix elements to implement a filter function

If we know what filter function H  we want, then we can find the best implementation of it, 
on the basis given by the functions as in Eq. (S31), by formally projecting it onto this basis to 
establish the coefficients p . Explicitly

     
/

/

exp
2 2

o

o

t
o o

p p p o
t

t t
h H im t H d

 

 

 
   

  

   (S34)

Note that, as mentioned above, the integers pm  could be just consecutive integers for each 
successive integer p (leading to successive waveguide lengths pl  that are be equally spaced, 
as in a conventional AWG), but they need not be. In the case of the non-redundant array filters 
in the main text, these pm  can be quite widely and relatively arbitrarily spaced integers. 
Nonetheless, the process described here, with the coefficients as in Eq. (S34) still gives us the 
best possible filter design (in a “least squares” sense) on the resulting basis. In general, linear 
combinations of basis functions of the form in Eq. (S31) tell us what filter functions are possible 
and hence, formally, in what filter-function Hilbert space we are working. 

Time-domain description

Though we will mostly use the frequency-domain description as discussed above, we can 
briefly note the time-domain description. We use a time-domain discussion below when 
considering the (temporal) mutual coherence function and (temporal) coherency matrix.
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It is straightforward to write the impulse response of the filter directly. If we presume a (Dirac) 
-function input at time 0t  , then the output of one row q of the filter in time is simply

   
1

N

q p qp p o
p

H t a M t m t 


  (S35)

(Here we are neglecting some overall propagation time propt  through the system for 
mathematical simplicity, and because it likely will not matter to us in applications; we could 
incorporate that by subtracting it inside the argument of each -function, delaying the output 
accordingly.) All we are saying here is that, if the input to the device is a short impulse (written 
mathematically as a -function), then the output is a string of N -functions, delayed by times 

p om t , and with corresponding amplitudes p qpa M . This time-domain response, Eq. (S35), with 
appropriate normalization, is the Fourier transform of the frequency-domain response in Eq. 
(S20) (Eq. (3) of the main text).

S2. Analysis of a simple filter
One filter construction, common in AWGs [9–14], is where the power is split equally between 
the waveguides as in Eq. (S1) and where the successive waveguides increase in length by equal 
amounts ol . For the moment, we are interested in only one “row” q of the matrix, which is 
equivalent to considering only one (signal) waveguide output at a time; for example, with just 
a single “layer” of MZIs in the device, as in Fig. 1(b) or (c) of the main text, the matrix would 
anyway have only one row (so, obviously, then 1q  ). We call this a simple filter. 

We will formally “center” these length differences to get an average guide length difference of 
zero for mathematical convenience. (The guides themselves will, of course, all have positive 
lengths; we are essentially just subtracting off the length of the “center” or average guide.) So, 
we write

   1 1
1

2 2p o o

N N
l p l p l  

    
       

   
(S36)

(Note that formally, for even N, this would mean that pl  could be a half integer number of the 
length increments ol , rather than an integer number as formally presumed in Eq. (S15). 
However, the lengths pl  will still be spaced by integer numbers of length increments ol  
since p is an integer; so, this possible additional / 2ol just corresponds to an overall phase 
factor common to all elements in the sums over the waveguide responses, and such overall 
phase factors are generally of no particular significance in the operation of the device. This 
does, however, lead to a minor complicating detail in discussing free-spectral ranges below.) 

From Eq. (S17), therefore, we have relative phase delays in the guides of

   1
2p o

N
p t  

 
  

 

As mentioned in the main text, we can usefully add a controllable “tilt” to the input phase 
shifters of the mesh (e.g., PS1 to PS4 in Fig. 1 of the main text), adding a phase increment   
between each successive waveguide, where   is a real constant that can be chosen to be positive, 
negative or zero. This will allow us to tune the “center” frequency of the filter after we set it 
up. Here, for algebraic convenience (but with no change in the underlying physics), we center 
the phase tilts around the middle of the set of input waveguides. So, instead of the form 

p pm   for this “tilted” phase delay as in Eq. (7) of the main text, with our simple choice of 
pm p  and this centering, instead we use a “tilted” phase delay
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 1
2p

N
p 

 
  

 

We choose uniform matrix element magnitudes for this filter. With our presumed equal power 
splitting, and using the simplified notation of Eq. (S22) where we incorporate the corresponding 

1/ N  splitting amplitude into the matrix elements, those elements in our single row q of 
interest are then

 11 exp
2qp

N
M i p

N


  
       

 (S37)

Substituting these matrix elements in Eq. (S22) gives

       

   

   

   

1

1

1

0

0

1 11 exp exp
2 2

11 exp
2

11 exp
2

11 exp exp
2

N

q o
p

N

p

N

s

N

s

N N
y i p i p t x

N

N
i p x

N

N
i s x

N

N
i is

N

   

 

 

 











        
                     

   
          

   
          

 
  

 







 
1

x 
 

 
 


 (S38)

where 1s p   and for convenience we have defined ot    .

Now, the summation in Eq. (S38) is a geometric series of the form

1

0

1 ,  for 1
1

,  for 1

N
N

s

s

z zz z
N z





 
 

 
 (S39)

where  expz i  . Hence, for 2m  , where m is any positive or negative integer or zero 

     
 

 

 
 

 
 

 

   
   

 

 
 

   
 

 

1 1 exp1 exp
2 1 exp

exp / 2 1 exp1
exp / 2 1 exp

exp / 2 exp / 21
exp / 2 exp / 2

2 sin / 2 sin / 21 1
2 sin / 2 sin / 2

q
N iN

y i x
N i

iN iN
x

N i i

iN iN
x

N i i

i N N
x x

N i N


  



 


 

 


 

 
 

 

            
  

    
  

    
 

  
 

 (S40)

We can also rewrite this result as
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   
 

 
 

   

 
 

 

sin / 2 sin / 21 / 2 / 2
/ 2 sin / 2 sin / 2 / 2

sinc / 2
sinc / 2

q
N N

y x x
N N

N
x

    
   






 
  

 


  (S41)

where we take the definition 

sin , 0
sinc

 1,     0

x x
x x

x

  
 

(S42)

or explicitly now for 2m 

 
  

    
sin / 21
sin / 2

c o
q

c o

N t
y x

N t
  

 
  

 


 
(S43)

or equivalently

    
  

 
sinc / 2
sinc / 2

c o
q

c o

N t
y x

t
  

 
  

 


 
(S44)

For 2m  , since 

        11 2
exp exp 1 1

2
m NN m

i i N m


  
    

 
(S45)

then

       11 m N
qy x   (S46)

The periodicity of the behavior of this filter in frequency space is easier to see from the “sine” 
form, Eq.(S43). If we change the frequency of the input from a c a     to b c b     
where 4 /b a om t      for any integer m, then no matter what is the integer value of N, 
the relation between the input  x   and the output  qy   is unchanged because we have 
simply added an multiple of 2  to the argument of each sine function ( 2Nm  on the sine in 
the numerator, and 2m  on the sine in the denominator). That would give a periodicity in 
angular frequency with a period or frequency increment 4 / ot  . While this is strictly correct, 
more commonly in filter response we may be interested in the periodicity of the “power” 
response of the filter, which would depend on the modulus squared of the output of the filter. 
In that case, we have a relation of the form

 
  

    

  
   

2
2 2

2 2

2

2

sin / 21
sin / 2

1 cos1
1 cos

c o
q

c o

c o

c o

N t
y x

N t

N t
x

tN

  
 

  

  


  

 


 

  


  

 (S47)

which is periodic with an angular frequency increment 2 / ot  . The apparent difference 
between the field and power frequency periodicities is because of the possible sign change as 
evident by the expression Eq. (S46). If N is even, the sign of the output changes as we change 
angular frequency by 2 / ot  , but the intensity response does not care about such a sign 
change. (This minor point on the apparent doubling of the free-spectral range is algebraically 
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because we formally “centered” the waveguide lengths about the average, and hence for even 
values of N we have introduced a / 2ol  shift in the waveguide lengths compared to those of 
Eq. (S15).) With this understanding, we can formally state that the free-spectral range of this 
filter is as defined above in Eqs. (S24) - (S26). 

Within the free-spectral range, in addition to one frequency at which the input and output 
magnitudes are the same, there are 1N   frequencies at which the response is identically zero. 
If we presume that the frequency 0 0c     is such that 

0 2c ot m       (S48)

i.e., for some integer m

0
2 c

o

m
t

  



 

 (S49)

this frequency corresponds to a maximum output from the filter (both sinc functions in Eq. 
(S44) are then 1). Then the set of frequencies

0
2

s c
o

s
N t

  


   , 1,2, , 1s N  (S50)

will all correspond to zero output, so these frequencies, which are separated by 

2 / oN t    (S51)

or a conventional frequency separation

1/ of N t  (S52)

are all perfectly rejected by the filter (at least for the output corresponding to this matrix row).

We can think of these (angular) frequencies 0 1 1, , , N     (or the corresponding conventional 
frequencies 0 1 1, , , Nf f f   obtained by dividing by 2 ) and their shifted replicas in the other 
free spectral ranges as the reference comb for the system. (See, e.g., [15] for discussion of comb 
sources.) Note that, if we choose 2q cm     for some integer m, we are effectively able to 
“center” the response of the filter round the chosen frequency c  just by imposing this “tilt” 
on the phase shifts of the mesh. This completes the formal analysis of the simple filter in the 
main text, with frequency responses as in Fig. 3(a) of the main text. 

S3. Classes and range of filter operations
Meshes and matrices

With interferometer meshes, we can usefully separate the architectures and operations into 
those that implement unitary matrices (at least within some constant, such as an overall loss of 
the system) and those that implement non-unitary matrices. We can make mesh architectures 
in which we add loss, with controllable absorbers or by deliberately “dumping” power to 
external waveguides, which would generally make the corresponding matrix M represented by 
them be non-unitary. Mesh architectures more typically start by having no added internal loss 
or external “dump” ports, in which case they are represented by unitary matrices, typically 
written as U or V or their Hermitian adjoints (conjugate transposes) †U  or †V  (which 
mathematically are also necessarily unitary). 

One particularly useful way to represent or construct any arbitrary non-unitary matrix is to use 
the singular-value decomposition (SVD) (see, e.g., [16]), in which we can write any matrix M 
as the matrix product
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†
diagM VD U (S53)

where U and V are unitary matrices and diagD  is a diagonal matrix with a set of (generally 
complex) numbers js , known as the singular values, as the diagonal elements. 

Equivalently, we can think of the matrix as mapping each of a set of orthogonal “input” vectors 
j  to corresponding orthogonal “output” vectors j  with coupling amplitudes js . The 

functions j  are the eigenfunctions of the operator †M M , and the functions j  are the 
eigenfunctions of the operator †MM , with positive real eigenvalues 2

js , in both cases. 

These sets are unique for any given matrix (at least within any arbitrary linear combinations of 
degenerate eigenvectors) – there is exactly one set of orthogonal “input” functions or vectors 
that maps, one by one, to exactly one set of corresponding “output” functions or vectors. These 
pairs of eigenfunctions, which can be called the “mode-converter basis sets” [16,17] for 
matrices representing optical systems, generally have fundamental physical properties and 
meaning in optical systems, including physical laws that apply only to them (see, e.g., [16,18]). 
The existence of these pairs of “input” and “output” orthogonal functions also automatically 
implies that any linear optical system has a set of orthogonal channels “through” it. 

Fig. S2. Block diagram of a non-unitary matrix M implemented by singular-value 
decomposition [19] onto a succession of a unitary matrix †U , implemented by a 
corresponding “input” unitary mesh, a diagonal matrix diagD , implemented by a line of 
modulators, and a unitary matrix V, implemented by an “output” unitary mesh. Such a 
matrix M need not be square; Q can be equal to N, or can be greater than or less than N. 
The number of modulators J need never exceed the smaller of Q or N. 

In this notation, the j  are the corresponding columns of U (and the corresponding j  are 
the rows of †U ), and the j  are the corresponding columns of V. In this notation, Eq. (S53) 
can be rewritten equivalently as 

j j j
j

M s    (S54)

Generally, then, any linear optical system between an “input” and an “output” space can be 
completely described by these coupled pairs of orthogonal functions j  and j  and their 
coupling strengths js , hence the term “mode-converter basis sets” [16,17]. If viewed as the set 
of communication channels between the input or “source” space and the output or “receiving” 
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space, these same function pairs and coupling strengths can be viewed equivalently as the 
“communication modes” [16,20,21] of the system. 

This SVD decomposition gives a general way to implement arbitrary matrices with 
interferometer meshes [19], as illustrated in Fig. S2. Each of the unitary matrices †U  and V can 
be implemented with a unitary interferometer mesh and the matrix diagD  can be implemented 
with a line of modulators between these two unitary meshes. The outputs of the †U  unitary 
mesh feed the inputs of the modulators, and the outputs of the modulators feed the inputs of the 
V unitary mesh. The complex field transmission of a given modulator in waveguide j is just 
chosen to be the singular value js . 

The SVD architecture for implementing arbitrary matrices was introduced in Ref. [19], and has 
been employed by others subsequently (e.g., Ref. [22]). This method is only as complicated as 
it needs to be [23]; the number of adjustable parameters in the system overall (e.g., phase 
shifters) is essentially equal to the number of real numbers required to specify an arbitrary 
Q N complex matrix. 

Range of possible filter functions

Given the ability to implement arbitrary unitary or non-unitary matrices with interferometer 
meshes, a wide range of filter functions can be implemented. Unlike some previous transversal 
or finite-impulse-response filters [24–26], we can contemplate a mesh with multiple outputs, 
each corresponding to a row of the matrix M, so the filter here can have multiple such frequency 
filtering behaviors simultaneously, one for each such mesh output. Unlike the fixed behavior 
of the outputs of a conventional AWG filter, we can have separate control over the filter 
functions for different outputs. This is an unusual capability for a physical filtering system, so 
we should clarify just what filters can be generated, both individually and in simultaneous sets. 

As noted above, we can usefully view the filter frequency-response functions we can generate 
as formally being functions in a Hilbert space of possible functions. For N waveguides in the 
array, we can define this Hilbert space quite precisely as having the N dimensional basis set as 
in Eq. (S31) and the inner product as in Eq. (S28) or, more compactly, Eq. (S30), with frequency 
response functions that can be written as in Eq. (S27) or more compactly Eq. (S33).

In the discussion that follows, just as we did for the analysis of the simple filter above, for 
simplicity we presume equal power splitting, so all of the 1/pa N  as in Eq. (S1), and we 
will fold these pa  into the rescaled matrix elements qpM  for simplicity of notation, as in Eq. 
(S22). We will also presume waveguide length differences based on integer multiples of an 
underlying length ol , which will give all such filters a free-spectral range as in Eq. (S51), 

2 / oN t    , or equivalently as in Eq. (S52), 1/ of N t  .

Just what different filter functions we can generate depends on whether the mesh is a unitary 
mesh or a more general non-unitary mesh (e.g., as in Fig. S2). Quite generally, though, for some 
arbitrary desired filter function  H H  , the “best” version of that filter we can generate 
(in a “least squares” sense), will be the one with the matrix elements

     
/

/

1 2 exp
o

qp

o

t

p o
o t

M h H ip t H d
N tN

 

 

   
 

   (S55)

This approach of finding the best representation of a function on a given basis by using the 
inner products with the basis functions as the expansion coefficients is standard in such linear 
algebra and functional analysis [27]. 
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Unitary filters and filter sets

With M implemented as a unitary mesh, because of the construction of the multilayer unitary 
filter, the multiple filter functions it implements are physically guaranteed to be orthogonal to 
one another (at least if the mesh is “perfect” – that is, with 50:50 beam beamsplitters and the 
same loss on all paths through the mesh); each layer effectively implements a different row of 
a unitary matrix, and such rows are necessarily orthogonal. Any mutually orthogonal set of 
filter functions on the basis as in Eq. (S31) can be implemented. Because of the unitarity, the 
mesh overall will be loss-less; all the input power will appear somewhere in the N outputs of 
the mesh itself (whether we use all N of them or not).

If we express the filter functions as (normalized) vectors of amplitudes as in Eq. (S32), for 
example,

1q

q

qN

M
H

M

 
   
 
 






(S56)

any ( )Q N  such orthogonal vectors can be implemented in the outputs of a mesh with Q 
“layers” (such as the self-configuring layers as in Fig. 2 of the main text).

For example, instead of working directly on the Fourier-like basis of Eq. (S31), we could 
unitarily transform to and work with what we could call the “AWG” basis, which is functions 
each like those in Eqs. (S43) or (S44), but shifted (by effective mathematical phase tilts) so that 
the peak of a given filter function lines up with the zeros of every other such filter function. 
The actual filters that can be implemented do not depend on which such mathematical basis we 
choose, however. 

Non-unitary filters and filter sets

Though unitary meshes are restricted to orthogonal filter functions, for non-unitary meshes, as 
in Fig. S2, in principle we can program any desired set of filter functions on the same basis. For 
N waveguides in the array, we can program up to N different filter functions, and these need 
not be orthogonal; those filter functions, on the Fourier-like basis Eq. (S31), are then simply 
the rows of the (generally non-unitary) matrix M. We do, however, need to consider power 
conservation in the final set of filters that can be generated. Though it would be possible to add 
gain instead of (lossy) modulation in generating a non-unitary mesh, adding such gain can be 
technologically challenging, so we presume we will not do so. Given that constraint, a 
procedure for setting up the best mesh can be as follows:

1. Write down the initially desired matrix initM  with the expansion coefficients of the 
desired filter functions as the rows.

2. Mathematically perform the SVD of initM . 

3. Note the required singular values, and in particular note the largest one, which, without 
loss of generality, we can call 1s . 

4. Divide the matrix by 1s  (or, at least, its magnitude) to obtain 1/actual initM M s . This 
guarantees that the largest singular value in actualM  is no larger than 1 in magnitude, 
which means physically that we do not need to introduce gain in the system. (The SVD 
of this new matrix actualM  is the same as that of initM  except that all the singular values 
are divided by 1s ). Such new singular values can be implemented by the line of 
modulators as in Fig. S2.
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With this approach, we can implement the desired set of non-orthogonal filter functions, subject 
to their overall magnitudes being reduced, if necessary, by this factor 11/ s . This ability to 
generate multiple non-orthogonal filter functions simultaneously and physically in optics, and 
with independent programmability, is an unusual one.

Mesh architectures and topologies

As we consider the full range of filters that could be made with this approach, we can usefully 
consider the topologies of architectures made from 2 2  blocks such as the MZIs in Fig. 1 of 
the main text [28]. Quite generally, the architectures we are considering are all “forward-only”; 
there are no reflections or loops in the network. In filter terminology, because of the absence of 
loops or reflections, these filters are all “finite impulse response” or (non-autoregressive) 
“moving average” filters  [8] (as opposed to “infinite impulse response” or “autoregressive” 
filters). In network topology nomenclature, these are “directed acyclic graphs”. The 2 2  (e.g., 
MZI) blocks can be viewed as the “nodes” in the graph and the waveguides between these 
nodes are the graph “edges”. 

Fig. S3. Two important topologies for 2 2  blocks (such as MZIs) in forward-only 
(directed acyclic graph) mesh networks, illustrated for a triangular mesh. (a) Column 
topology, in which all blocks in a column can be configured or calibrated in parallel; all 
forward-only networks can be arranged into this form. (The triangular network is unusual 
in that no waveguide crossings are required in such an arrangement.) (b) Self-configuring 
layer topology; in such a layer, each layer input connects to the “signal” output by only 
one path through the blocks in the layer. Not all forward-only networks have such 
topologies, though any network formed from cascades of successive self-configuring 
layers automatically does.  

Any such directed acyclic graph can be arranged into “columns” without changing the 
topology. (As discussed in Ref. [28], this arrangement corresponds to Dijkstra’s 
algorithm [29].) The blocks or nodes in a column do not affect the inputs to any other blocks 
or nodes in the same column, and so they can be calibrated or set in parallel. With rectangles 
representing the 2 2  blocks, Fig. S3(a) shows the corresponding “column” topology in a 
“triangular” mesh [30] architecture. 
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Another important topology of some directed acyclic graphs or forward-only mesh 
architectures is the self-configuring layer topology [1] (Fig. S3(b)). Topologically, a self-
configuring layer is one in which each input port is connected by only one path through the 
blocks to a single “signal output” port (or waveguide). The diagonal line and (symmetric) 
binary tree architectures [31] have this property, as do hybrids of them [1]. Conveniently, 
cascades of multiple such layers can be made. If we start with one such layer with N inputs, we 
can essentially “extract” this signal output from that layer as a useful output. Then the other 

1N   outputs (which we could call “drop-port” outputs) are passed as inputs to a succeeding 
self-configuring layer (which has its own “signal output” port). If we wish, we can continue 
this for a total of up to 1N   layers to form a full cascade. 

Such a full cascade implements a fully programmable N N unitary matrix. Fig. S3(b) shows 
self-configuring layers in a full cascade in a triangular mesh architecture, which we see can also 
be viewed as being formed from successive cascaded “diagonal line” self-configuring layer 
mesh architectures (as also in Fig. 1(c))).  Not all mesh architectures can be factored into such 
successive self-configuring layers; notably, the rectangular architecture  [30] cannot be factored 
this way. 

Detectors can be added between columns or self-configuring layers to sample the amount of 
power in one or both outputs of a 2 2  block, which can be convenient for calibrating or setting 
up the network. Such detectors can be “mostly transparent” detectors [32] in the waveguides, 
or can use waveguide “taps” to sample a small amount of power from the guide to a 
conventional detector [33]. Other techniques based on two output detectors [34] can also be 
used to deduce the power passing through any phase shifter in a forward-only mesh. With such 
monitoring of internal powers in the mesh, simple progressive techniques [28,35] allow mesh 
calibration by power maximization based on shining in specific vectors of amplitudes. Any 
given self-configuring layer can also be set up progressively just with a detector at its signal 
output; to configure the first 2 2  block, we set up the other blocks to route this power to the 
signal output of that layer, and can proceed similarly through the subsequent 2 2  blocks in 
the layer [31]; meshes based on cascaded self-configuring layers can also be set up 
progressively just with detectors at the outputs [1,19,31] in an extension of this approach.  

Programming matrices on meshes

Generally, the matrices corresponding to collections of 2 2  blocks can be set up as matrix 
products of the 2 2  matrices corresponding to each block. With a calibrated mesh, and with 
calculation of the factorization of the overall matrix into such 2 2  blocks, arbitrary matrices 
can be set up this way. See, for example, Ref. [28] for a general discussion of this approach. 
Ref. [35] shows how to calibrate any forward-only mesh. 

Programming self-configuring layers

Architectures made from successive self-configuring layers are particularly easy to set up and 
to calibrate [1,19,31,35]. Explicit procedures for diagonal line and symmetric binary tree mesh 
layers are given in Ref. [1] and its supplementary material, including both simple calibration 
procedures and explicit formulas for mesh settings for a given vector. Self-configuring layers 
only require one input vector for each self-configuring layer to be calibrated or programmed. 
Shining in a vector 1  and optimizing progressively for minimum powers at the drop ports 
of each successive 2 2  block configures the first such layer to have a matrix row of 1 . For 
each successive self-configuring layer j in a unitary mesh, shining in a vector j  that is 
orthogonal to all the preceding such vectors 1 2 1, , , j     can similarly configure the 
succeeding matrix row to j , giving a simple way of programming any unitary matrix to the 
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set of rows j  just by successively shining in the vectors j  and configuring these 
successive layers. 

It is also particularly straightforward to calculate the required settings of the self-configuring 
layer blocks to implement a desired matrix row. Conceptually, we can do this by imagining we 
are running the system backwards, shining light backwards into the signal output to generate a 
specific vector coming backwards out of the inputs to that mesh layer. Quite generally with 
unitary mesh networks (Ref. [1] supplementary section S5, Ref. [35]) if a given input vector 
  gives some output vector  , then if instead we shine a vector of amplitudes     

backwards into the “outputs”, the vector that emerges from backwards from the inputs will be 
of the form    . (When we say “of the form”, we mean that the relative amplitudes and 
phase delays are the same as those of the vector    . If there is any overall common loss in 
the forward direction, there will be the same loss in the backwards direction, so the overall 
amplitude of the backwards vector will be reduced accordingly.) This is a general property of 
reciprocal loss-less optical systems, and relates to phase conjugation (see Ref. [1] 
supplementary material for an explicit discussion of these phase conjugating properties in mesh 
mathematics);    , which is the column vector whose elements are the complex conjugates 
of those in the vector  , can be called the phase conjugate of  . 

Now, the phase conjugate of a beam going “forwards” in a single-mode guide is just the same 
mode going “backwards”. If we supposed that the layer is set up to take all of the power in 
vector   and put it in the signal output port of that layer, then just shining light backwards 
into that signal output port (so “phase conjugating” that simple output) would therefore generate 
the vector     coming backwards out of the mesh “inputs”. So, to design the settings of the 
self-configuring layer to take all of the power in input vector   and put it at its signal output, 
we simply imagine that we are shining light back into the signal output and calculate how to 
generate the vector     emerging backwards from the “inputs”. For the diagonal line mesh, 
this is particularly obvious. 

Using the diagonal mesh of Fig. 1(c), we set up the   phase shifter of MZI3 in Fig. 1(c), to 
split out the desired fraction of power into WG1, and then set the   phase shifter of MZI3 to 
give the desired phase. Then we set up the   phase shifter of MZI2 to split out the desired 
fraction of the remaining power into WG2 and set its phase with the   of MZI2, and so on. For 
other self-configuring layer meshes such as the symmetric binary tree, the calculations are 
slightly different but are still similarly progressive and straightforward. 

In calculating how to set up successive self-configuring layers, we simply note the unitary 
matrices we have set up in earlier layers and compensate for those. So, for example, having set 
up the first layer in the mesh to correspond to the first matrix row 1 , which will correspond 
to a unitary matrix 1U  as in Fig. 2 of the main text, then to calculate how to set up the second 
row so it implements the row 2 , we set it up to send all the power in the vector 1 2U   to 
its signal output, and so on for each successive layer, multiplying all the unitary matrices 
corresponding to all previous layers as necessary. This algebra is explicitly given in [19].

Calculating how to set up the general non-unitary matrix in the SVD configuration is also 
straightforward with unitary meshes made from successive self-configuring layers; each of the 
two unitary meshes can be set up (or even self-configured) in the same way. 
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Simultaneous self-configuration with identifying tones

In an input signal comprised of multiple different optical frequencies, by putting different 
identifying tones on different specific optical frequencies in that input signal, such as some 
small amplitude modulation at a given tone frequency, layers in the network can be self-
configured to extract such specific optical frequencies to specific signal outputs. For example, 
the detection process for maximizing or minimizing power, as required for self-configuration 
in a given layer, can also incorporate electronic filters that have the system look only for such 
specific tones and the amplitude of the corresponding modulation in the detected signals. (The 
use of such modulation tones or frequencies for setting up self-configuring layers is discussed 
in [31] and used, for example, in Ref. [32].) Such a process then can optimize that layer to 
extract, to its signal output, signals on this specific optical frequency. (This extraction of 
multiple frequencies by multiple layers can only be perfect if the corresponding filter functions 
are orthogonal, of course.) 

S4. Analyzing temporal partial coherence with self-configuring filters
Here we give a formal discussion of the use of the device concept to analyze temporal partial 
coherence. We use a modal description of partial temporal coherence, using approaches from 
references such as Wolf [36] and others [37]. We consider the amplitude of the field mode in 
the single-mode input waveguide to be a single time-varying scalar field function  x t . We 
formally presume that this function of time is one of a statistical ensemble  jx t  of such 
possible functions, where j indexes all the possible functions in the ensemble. Quite generally, 
the (first-order) coherence (or coherence function) of such an ensemble between the values of 
the function at two times 1t  and 2t can be written as

     1 2 1 2,
j

t t x t x t  (S57)

where by j  we mean the average over this statistical ensemble. In our case, we choose to 
write

1 ot t u t  , 2 ot t v t  (S58)

where t is time, ot  is our time delay element characterizing the waveguide array (as in Eq. 
(S16)), and for the moment u and v are real numbers (though later those will be integers 
characterizing waveguide relative lengths).

We take these  jx t  to be ergodic random variables, by which we mean that an average over 
this ensemble of possibilities at some given time is the same as a time average. This in turn 
requires we presume the process is also “stationary”, with probabilities independent of the 
chosen time origin. This choice means we presume that (average) power measurements we 
might make on these fields will be independent of time. With these ergodic and stationary 
assumptions, the average over time will be the same as the ensemble average. We can also 
freely shift the time origin for the averaging because of the stationarity property, and any such 
coherence function is then only a function of time differences. As a result, we can define the 
mutual coherence function    of the field as [36] (Eq. (8) of the main text)

     
t

x t x t    (S59)

where t  denotes time averaging, and where

  ov u t   (S60)

This time averaging can be expressed as the integral
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Note, incidentally, because this is presumed to be a stationary process, shifting the time origin 
again by , makes no difference to the averaging. Hence
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Consider now the spectrometer system from Fig. 2 of the main text, with the “AWG-like” set 
of waveguides with lengths spaced progressively by increments ol . In this case, it is more 
useful to think of the waveguides as giving a set of time-delayed versions of the input signal. 
So, we have progressive relative time delays in waveguide p of op t , with /o g ot n l c   (Eq. 
(S16), also Eq. (1) of the main text), and with equal power splitting, so a factor 1/pa N  as 
in Eq. (S1) above. After passing through the power splitter and waveguide array, the input to 
the mesh M is a set of time-delayed replicas of the signal  x t  of  (1/ ) oN x t p t  in the 
pth input waveguide. As a result, the output field in waveguide q is 

   
1

1 N

q qp o
p

y t M x t p t
N




  (S63)

(We could also view this formally as the result of convolution of the input signal  x t  with the 
impulse response of the system in waveguide q, as in Eq. (S35).)

We can formally write
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So, the time-averaged power in waveguide q is
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where what we will now call the temporal coherency matrix  in the last line has the matrix 
elements (Eq. (9) of the main text)

  ps os p t    (S66)
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These matrix elements therefore represent a discretized version of the mutual coherence 
function as in Eq. (S59). Note that, by Eq. (S62), 

ps sp
   (S67)

So, this matrix  is Hermitian, which means it has real eigenvalues and orthogonal 
eigenvectors. We can therefore choose the rows of the unitary matrix M to correspond to the 
eigenvectors of . In that case, the matrix †M M  is diagonal, and, for unit input power, the 
output powers as given by Eq. (S65) are the eigenvalues of . Because the left hand side of Eq. 
(S65) is the average of a positive number, we can see directly that all the eigenvalues of  are 
necessarily non-negative. 

Now, in the presence of the input field, if we adjust the first layer of the mesh to maximize its 
output power, then we are variationally setting the first row of the matrix to correspond to the 
eigenvector with the largest eigenvalue. Leaving those settings, we can then similarly maximize 
the power from the second mesh layer, which will set the combination of the first and second 
layers to correspond to the second eigenvector and so on. In this way, we can establish the 
eigenvectors and eigenvalues of , hence measuring this discretized version of the coherency 
matrix or coherence function. (This is the same sequential mesh optimization procedure 
introduced by some of us in the context of measuring the spatial coherency matrix [38].) 

Note too that the input field has then been separated by the mesh into its eigen components, 
which in this case correspond to the “natural” mode or Karhunen-Loève expansion, providing 
the separate field at the signal outputs of the mesh. These output powers will also be mutually 
completely incoherent. We are not aware of another approach that accomplishes both this 
measurement and this non-destructive physical separation, which is simultaneous for all these 
components and is without any loss (other than background losses in the system). 

Incidentally, having set up the matrix M in this way by physically separating into its natural 
mode components, it is now straightforward to understand exactly what set of filter functions 
we have constructed. We know the matrix elements qpM , and so we can simply deduce the 
filter functions from Eq. (S20) (Eq. (3) of the main text).

Above we have presumed for simplicity in the derivation that the waveguides in the array have 
lengths op t  where p is the summation index, so p takes on sequential integer values. We note 
that, as a result, several matrix elements of ps  are identical (e.g., 12 23   ), so we are 
essentially measuring the same value of the coherence function multiple times. If instead we 
chose sets of relative lengths p om t  such that all the differences between the various pm  values 
corresponded to different integers, then we could avoid this redundancy, and obtain measured 
values of    at a larger number of different time-delay values  for the same number of 
physical measurements in the apparatus. Of course, this simply corresponds to making the set 
of integers pm  form a non-redundant set, as in a Golomb ruler, and as discussed for the non-
redundant array filters in the main text. So, using such a non-redundant array approach for the 
waveguides gives us a more efficient method of measuring the coherence function for a larger 
number of different time (delay) values.

S5. Other operating modes and extensions
Here we give an extended discussion of some additional device operating modes and extensions 
to the device architecture.
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Running the device backwards

Though we have so far considered the device working forwards from the input waveguide to 
one or more output waveguides, as in the architectures of Fig. 1 or 2, there are several possibly 
useful ways of running the device backwards. 

One example would be wavelength multiplexing. We could, for example, shine light of a first 
wavelength back into the signal output 1 of Fig. 2. We could then adjust the settings of that first 
mesh layer to maximize the power coming back out of the input waveguide of the entire device. 
This would be equivalent to lining up the peak of the response as in Fig. 3 to coincide with that 
wavelength. Then, leaving those settings, we could now shine light of a second wavelength 
back into signal output 2 of Fig. 2, and adjust the settings of the second layer to again maximize 
the power coming back out of the input waveguide. If that second wavelength happened to line 
up with one of zeros of the filter response we have effectively set on the first layer, then we 
should be able to couple all of this second wavelength backwards out of the input waveguide. 
To the extent that the second wavelength does not line up perfectly with such a zero, there will 
be some loss in multiplexing this second wavelength (which would appear as loss in the power 
splitter, scattering light out of it). Nonetheless, even with some loss from such imperfect 
spacing of the wavelengths to be combined, we should still be able to couple much of the power 
from this second wavelength back out of the input guide. We can continue to extend this for 
different wavelengths backwards into the outputs of other layers in Fig. 2. A feature of this 
multiplexer is that it will still multiplex wavelengths together (with some loss) even if they are 
not quite equally spaced, and without knowing in advance just what the wavelengths are.

A second example of running the device backwards would be to operate the device as a 
wavelength-dependent mirror by adding an actual mirror or reflector at the signal output of a 
layer. Such a configuration used as a mirror in a laser cavity could allow tuning of the laser, for 
example over the free-spectral range of the device, with the laser running at or near the 
wavelength corresponding to the peak power transmission to that signal output.

A third example would be to use the device as a pulse generator. If the various outputs of a 
mesh as in Fig. 2 were each fed backwards by different mutually coherent elements of a 
frequency comb, the mesh could combine them controllably to generate pulses at a repletion 
rate given by the difference frequency between adjacent frequencies in the comb. Generally, 
we can imagine various architectures related to those of the schemes as reviewed in Weiner et 
al. [39] for pulse generation and shaping, with architectures such as those of Fig. 2 replacing 
grating dispersive elements, for example, and allowing quite arbitrary pulse shape control. 

Other modalities exploiting partial coherence

Separating high-coherence sources or spectral lines

If the input spectrum contains some narrow lines amid a broad, incoherent background, the 
approach above proposed for measuring the coherence function will tend to separate out such 
coherent lines preferentially in the first layer or layers of the mesh because those will tend to 
be the strongest components that are coherent with themselves and mutually incoherent with 
respect to the rest of the spectrum. Note that this will happen without prior knowledge of the 
frequency of any such spectral lines. 

Configuring for absorption lines rather than spectral emission lines

The discussion so far has largely concerned the detection and separation of specific frequencies 
or wavelengths of light to different outputs. This is also appropriate if we are performing 
spectroscopy where we are looking for different spectral lines in the emission from gases of 
atoms or molecules, for example. Often, however, spectroscopy is concerned with looking for 
corresponding absorption lines, again, for example, in gases of atoms or molecules. In such a 
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case, the material to be investigated, such as a gas, may be illuminated with a broad, incoherent 
spectrum of light, such as from the sun or some light bulb. To look for absorption lines, one 
can then configure or tune the first mesh layer to look for minimum rather than the maximum 
power in its signal output. Configuring a second layer to look for a maximum output power 
would tend to mean that the second layer was effectively measuring the background light power 
in regions with minimal absorption. The amount of absorption from the spectral line of interest 
can then be deduced by comparing the output of this first layer to the output of this second 
layer. Alternatively, if we want to compare the relative strength of two such absorption lines, 
so we can tell the relative abundance of two species, for example, we can compare the minimum 
power from two layers, one tuned to the first spectral line and the second tuned to the second 
such line. 

Separating channels without knowing the wavelengths

Signals from different lasers can generally be considered mutually incoherent. So, for example, 
if we have several telecommunications signals from different lasers incident at the same time 
in the input, a mesh such as that in Fig. 2 could at least partially separate them automatically 
just based on their mutual incoherence as discussed above. In such a case, we might decide to 
optimize each layer based not on maximum output power, but instead on, say, the degree of 
opening of an eye diagram or a minimum in a bit error rate (see also the discussion below on 
optimization on other parameters). If the signals from the different lasers are of somewhat 
different powers and if their wavelengths are separated by more than the basic spectral 
resolution of the system (as given by the widths of the “peaks” in Fig. 3, for example), then we 
can expect that these signals can be usefully separated, at least approximately. Note that such a 
separation does not require advance knowledge of the specific wavelengths of the signals.  

Extensions to the device architecture

NxQ meshes 

Working with a large number N of input waveguides together with a smaller number Q of self-
configuring layers can allow a relatively compact mesh (in terms of the number of MZIs 
required) that nonetheless has good spectral resolution and discrimination between different 
signals or spectra. Such an architecture could, for example, be programmed to pick out just a 
few (Q) spectral lines in a larger spectrum, presenting their powers at the Q output waveguides. 
It could also be a good mesh for separating a few wavelength channels when the input 
wavelengths are not known, as discussed above, because, with a large N, it more easily 
discriminates closely spaced channels. 

Adding a controllable power splitter

Instead of the fixed power splitter of Figs. 1 and 2, we could instead use a controllable splitter, 
similar to the diagonal line or binary tree networks as shown in Fig. 1 but run backwards (i.e., 
with the input light shining “backwards” into the signal “output” of the layer). Such a device 
could allow us to pre-compensate for different losses in different waveguides so that the powers 
leaving the waveguides as they couple into the mesh are all approximately equal; this might be 
particularly useful for the non-redundant array architectures where waveguide lengths can be 
very different. In such a device, only controllable power splitting would be necessary (so only 
the  phase shifters in the MZIs) because phase differences between guides are already handled 
by the mesh M. 

Successive layers or filters for better rejection

With ideal components, a given layer can completely reject a given wavelength. Of course, 
imperfections exist; rejection will not generally be perfect, and some of that wavelength will 
also be passed to the next layer. For better rejection, one simple strategy is then to configure 
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the second layer also to reject the same wavelength. If there is no other leakage of light in the 
system, we can expect this second layer to lead to a doubling of the overall rejection (in decibels 
or some other logarithmic scale). 

Of course, as with any filtering system, we can cascade complete filters, here also including 
another waveguide array, to improve rejection. Such a technique could be particularly effective 
with non-redundant array filters because the second set of waveguides could use a different set 
of lengths so their spectral “leakage” would not line up with the leakage in the first filter.

Optimization on other parameters

Instead of optimizing based on maximizing or minimizing power out of the signal port or ports, 
the device could be run to optimize other measurable parameters. For example, it could 
optimize based on “eye-opening” in telecommunications eye-diagrams or on minimum bit error 
rate, which essentially is a technique to correct for pulse dispersion and/or crosstalk with other 
channels. A related concept is to maximize the measured signal-to-noise ratio, which tends to 
create matched filters  [40,41]. A single-layer filter could compensate and extract the single 
best channel, and multilayer filters could extract or compensate additional channels.

Handling imperfections and perfect MZIs

One of the possible imperfections in MZIs is that the beamsplitter split ratio will not in general 
be 50:50. That imperfection can limit rejection, for example, especially in “diagonal line” 
architectures. (Given approximately equal desired power splitting overall in a diagonal line, the 
overall power splitting of the individual MZIs in a long line tends to vary from nearly unity at 
one end of the line to nearly zero at the other. Symmetric binary trees are less susceptible to 
this issue since the corresponding power splitting of all MZIs tends to be near 0.5 for each 
MZI [42].)

One solution to this issue is to use “double” or “perfect” MZIs in which the actual beamsplitters 
are themselves implemented by “beamsplitter” MZIs. Such a “beamsplitter” MZI can behave 
as a 50:50 beamsplitter even for fabricated split ratios as bad as 85:15 [43]. There is also an 
algorithm that allows these MZIs to be set to 50:50 effective split ratio based only on successive 
power minimizations or maximizations [43], and high rejection has been reported in such 
configurations [44]. All such “perfect” MZIs inside a larger mesh can be set up with a sequence 
of such power minimization or maximization algorithms [43].

Dithering for derivative spectra

Derivative techniques can be generally useful in spectroscopy; they can identify line centers 
precisely, for example, as those correspond to zeros in the first derivative, and overall 
background light can be easily rejected. One way to perform such derivative spectroscopy here 
would be to add some small modulation of the   tuning parameter, at some frequency   and 
look for modulation at that frequency for first-derivative spectra (or at 2  for second-derivative 
spectra) at the signal output of a given layer. This could be achieved by adding small 
modulations of amplitude pm  (as in Eq. (7) of the main text) to the “input” phase shifters 
(e.g., PS1 to PS4 in Fig. 1). A particularly simple way of doing that would be to modulate the 
temperature of the entire waveguide array at such a frequency  since that would add phase 
shift appropriately proportional to the waveguide length (i.e., pm ) in every waveguide in the 
array.

Spatio-spectral device

The spectral mesh concept discussed here could also be combined with spatial meshes. For 
example, if we had, say, W different input waveguides, with their inputs coming from different 
grating couplers or other spatial mode couplers, we could split each of those into its own array 
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of N waveguides of different lengths. We could then feed all those waveguides into a mesh with 
W N  inputs. That mesh could then implement simultaneous spatial and spectral operations. 
For example, it could possibly extract different spatial modes from a multimode fiber and 
perform different dispersion-compensating spectral filtering on different modes. It could also 
operate simultaneously on spatial and spectral partial coherence. Such a concept could also be 
extended to using non-unitary meshes (e.g., in the SVD architecture [19]). 
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