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We give extended mathematical analysis and discussion of the approach to filtering discussed
in the main text and an expanded discussion of some extensions of device usage and
architectures. S1 gives a detailed formalism for analyzing the filter behaviors. S2 gives a
complete analysis of a simple single-layer filter. S3 gives extended discussion of the classes
and range of possible filter functions, especially for multilayer filters, and of approaches for
programming the necessary matrices onto the interferometer mesh. S4 gives a detailed
discussion of the analysis of temporal coherence and its measurement by the system. S5
discusses some other operating modes and extensions in more detail.

S1. Formalism for analyzing filter behavior

To understand this filter approach in detail, we can set up some physical and mathematical
formalism. Much of this is standard for analyzing devices such as arrayed waveguide grating
(AWG) routers, but we give this in relatively complete form because we need to extend it,
especially for waveguide lengths beyond those used in conventional AWGs and for analysis of
multiple-layer interferometer meshes, which allow many novel filters.

General description

Consider the system as illustrated schematically in Fig. S1, which is a generalized version of
Fig. 1(a) of the main text.
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Fig. S1. General block diagram of the device.

All waveguides are presumed to be single-spatial-mode guides. We presume a single input
waveguide. In this analysis, we consider one wavelength or frequency at a time, so, some
angular frequency @ , which would correspond to a conventional frequency f =@/27,and a
free-space wavelength A =c/ f =2xc/® where c is the velocity of light in free space. Since
this is a linear, time-invariant system (at least over the time-scales relevant for optical
frequencies), different frequencies are never mixed to generate new frequencies within the
system, so the response of the system to a sum of light at different frequencies is just the sum
of the responses to the individual frequencies.



Power splitting

An input field at this angular frequency @ and of amplitude x in the single input waveguide is
split by this power splitter 4 among the waveguides in the array L with amplitude coefficients
a, to ay . In general, this split need not be equal, but if it were, for a lossless splitter these
amplitudes would all be

al,zl/\/ﬁ (S1)

in magnitude; then the relative powers, presumed proportional to the modulus squared of the
amplitudes, would add to 1. Whether or not the split is equal, quite generally, for a lossless
system by power conservation we write

Tl (S2)
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=
We have written the modulus squared here (i.e., |a,|" ) in each case, though in fact, without loss
of generality, we could take these coefficients a, to be real because we will have other points
at which we can add arbitrary phases mathematically if we need to. (It will not matter in the
final operation if there are different fixed phases associated with these splitting amplitudes;
such phases can readily be calibrated out of the system [1].) If there is some common loss in
the waveguides or the power splitter, we can simply presume some constant loss factor for the
entire system and proceed otherwise as if the system is lossless.

Waveguide lengths

The waveguides in the array L will be fabricated to a set of lengths / to [, , which we could
take as the waveguide lengths from the output of the power splitter to the input to the mesh. In
the analysis that follows, the total length of the guides is of little or no interest; what matters is
the difference in the lengths of the guides. (Lengths that are common to all paths just correspond
to the same phase factor over all paths for a given frequency, and such a common phase factor
is of no particular importance here.) For convenience, we can define such differences relative
to some “center” length [, . This could be the length of some “center” waveguide (if there is
one), or some average length; in practice, we can just choose it to be some length that is
convenient for our algebra. (It can also be the length of the first waveguide if that is more
convenient for analysis.) Then we work with the relative length difference of waveguide p
compared to I, . So, we use the quantities

sl =11, (S3)

Various parameters in the analysis, such as power-splitting coefficients, beamsplitter ratios, and
controlled phase shifts, could all depend on frequency, in which case we would regard these
parameter values as being the ones at the angular frequency @ of interest. As a first
approximation and for simplicity of analysis, we presume these parameters do not depend on
frequency or wavelength, at least for narrow bandwidths. We do retain frequency dependence
of the effective refractive index of the waveguide mode, however, since this is important in the
system behavior through group velocity effects, and we discuss this next.

Waveguide phase delays and effective refractive indexes

In waveguides, some care is required with appropriate refractive index values, both for the
effective refractive index at some frequency and with the effects of frequency-dependence or
dispersion of that index. Especially in single-mode waveguides with small cross-sections, first,
the effective (phase) refractive index for light in the guide at a given frequency, #,, can differ
significantly from the underlying refractive index n, of the core material itself [2], in part
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because some of the field amplitude is in the lower-refractive index waveguide cladding
material. Second, the group index n, may be quite different again, especially because of strong
modal dispersion effects in small guides.

To understand refractive index effects and phase delays in single-mode guides, first we can
formally define the phase refractive index for the waveguide mode
cflo
n = M (S4)
@

where S(w) is the (phase) propagation constant of the mode at (angular) frequency @ . Now
we choose some “center” or reference (angular) frequency @, (corresponding to a conventional
frequency f, =@, /2x). This need not be in the actual center of some frequency band of
interest, though conveniently it can be. For future use, we can define the effective wavelength
inside the waveguide at the center frequency as

p) ¢ _ 2mc

“nf no

c

(S3)

We can usefully approximate n, by a first-order expansion of its behavior with respect to
frequency as

n, (6w)=n, +dw Z”;’) (S6)

where n, is the (phase) index at the center frequency, dn, /d® is the rate of change of this
refractive index n, with respect to the angular frequency @, and

ow=0-0, (S7)
is the (angular) frequency separation from the center (angular) frequency.
The relative phase delay in propagating through waveguide p can then be written

ol
84, (6w) =27n, (5@)7”

ZACELE)

—n, (6w) 251

c p

(S8)
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Dropping terms in (dw)’, consistent with taking the first-order expansion as in Eq. (S6), Eq.
(S8) leads to

ol

54, (6w) = (nca)c + ngé‘a))—p (59)
c
where
dn
n =n -+ —- S10
g c cdw ( )

which is typically referred to as the group index. (Note that, if n. did not depend on frequency
— so we would then have n, =n, — then Eq. (S9) would become the simple expression
op, (6w)=(w/c)ndl,.)

In the design of AWGs, it will often be the case that the waveguide lengths are chosen so that,
at a center frequency,



n.wol,/c=2u,r (S11)

for some integers u, , which is equivalent to saying that the lengths of the guides (compared to
the “center” waveguide length) are integer numbers u, of A, [the wavelength in the waveguide
at the center frequency, Eq. (S5)], i.e.,

ol =u A (S12)

P 2

Such an approach leads to simpler analysis, and we take this approach here. Then Eq. (S9) can
be rewritten in the simpler form

og, (é‘a)):ngé'a)élp/c (S13)

where we have dropped the integer multiples of 2z as in Eq. (S11) from Eq. (S9) since they
make no difference when in the argument of any sine or cosine trigonometric function. In that
case, only the group index would then be involved in the frequency response of the system [3].

In practice, it will be useful to work with length increments between guides that are themselves
a specific integer number m, of /4, . Such a choice will mean that the free-spectral range of the
system (essentially, the useful spectral range — see below for a detailed discussion) will be a
correspondingly smaller fraction of f,. (For example, the width of the telecommunication C-
band is ~ 1/44 of its center frequency, which would suggest using m, = 44 to get a filter of an
appropriate free-spectral range.) So, we can choose some underlying length increment for
design

2
Sl =m, 4, =" (S14)
nC a)(T
We can now usefully write
ol, =m,ol, (S15)

where m,m, =u,.

We can now also usefully introduce the effective time delay J¢, for the wave at frequency
@, + 0w passing through that same waveguide length increment J1, ; specifically,

ot,=ndl,/c (S16)
in which case Eq. (S13) becomes

54, (6w) = m bwdt, (S17)

For example, and for our explicit calculations, as mentioned in the main text, we presume a
typical silicon photonics waveguide design that is a silicon strip waveguide 500 nm wide by
220 nm tall, with silicon dioxide cladding. We use material refractive indices of 1.444 [4] for
the silicon dioxide cladding and n, =3.4757 [5] for the silicon core, as appropriate for 1550
nm free-space wavelength. Using an eigenmode solver (EMOpt [6]) with these parameters, at
a “center” wavelength of 1550 nm we deduce a (phase) refractive index of n, =2.45932 and a
group index of n, =4.05647 for the TE polarized mode in such a guide. The low phase index
is in part because of penetration of the waveguide mode into the lower index cladding material
surrounding that silicon core. The group index is strongly influenced by modal dispersion. (In
calculations by others for other thin silicon guides [7], the group index for TE polarized modes
can be as high as n, = 4.25 near 1550 nm (free-space) wavelengths.) So, in our analysis below,
as in other analyses of AWG routers (see, e.g., [3]), we will include such dispersive effects in
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the waveguides, at least to lowest order. The group index also varies slightly over the
wavelength range of interest (such as the telecommunications C-band), but for simplicity in our
calculations we use the above group index value for all wavelengths in our calculations.

Modeling the combination of splitter, waveguide array and interferometer mesh

We use the convention here that a forward propagating wave at angular frequency @ has the
form exp[i(wt— f(®)z)], where ¢ is time and we take z to be the appropriate distance along
the waveguide. (If necessary, we can take the real part of any result to give a real field or
amplitude.) The interferometer mesh in Fig. S1 can be represented by some matrix M with
matrix elements M, . This mesh and matrix will have N input waveguides and Q output
waveguides. Here p indexes the mesh input waveguides WG1 to WGN and g indexes the output
waveguides WO1 to WOQ. N and Q can be equal, but they need not be; QO can also be greater
than or less than N. A simple filter need only have one signal output waveguide (so we can
have O =1).

For an amplitude at (angular) frequency @ = @, + dw (as defined in Eq. (S7)) of value x in the
input waveguide, by definition the output field in the waveguide of index ¢ is given by

N

y, (6w) = {Z a,M, exp(—impéa)é'to )}x(é‘a}) (S18)
p=l1

where we have used the phase delay from Eq. (S17) in each waveguide.

In the language of frequency filters [8], we can rewrite Eq. (S18) as (Eq. (2) of the main text)
v, (6w)=H,(6w)x(6w) (S19)

where (Eq. (3) of the main text)

N
H,(6w)=Y"a,M,, exp(-im,swdt,) (S20)
p=1
is the frequency response of the filter as seen in output waveguide g. For analysis of some
simple systems, we may presume equal power splitting a, =1/ JN asin Eq. (S1). Then for
simplicity of notation, we rewrite the matrix elements as
- M
=aM, =—= (S21)

NG

(this will allow the matrix M to be an actual unitary matrix in practice), giving the simpler
form

qpr

N
H, (560) = Zqu exp(—impéa)éto) (S22)
p=1

For the case where the m,are successive integers, the series in Eq. (S20) or Eq. (S22)
essentially corresponds to a Fourier series, and V is then the “order” of the filter [8]. Altogether,
the system is implementing Q different filter frequency responses H, , with a possibly different
such frequency response seen in each different (signal) output waveguide g.

Note in Eq. (S18), or equivalently Eq. (S20), the response at frequency Jdw (relative to the
“center” frequency @, ) is the same as the response at frequency dw+27zn/ ot, for any integer
n; because m, is an integer,



exp[—iml, {5w+254} 5t{,J = exp(—i[mpc?a)&to —Zﬁman)

o

(S23)
= exp(—imp&o&o )exp(—iZﬂmpn) =exp (—imp5w§to ) x1=exp (—impé‘wé'to )

So, each term in the sum is the same if we add 27zn/d¢,, which makes the response periodic
in frequency with a “free-spectral range” of

Wpep =271 51, (S24)
or, in conventional frequency terms
Jese =1/ 6, (S25)
or, explicitly, using Eq. (S16)
Sese = ¢/ n,0l, (S26)

So, in understanding what filter functions we can generate, we note that only one such free-
spectral range matters (with the response in every other free-spectral range being identical). So,
we restrict our analysis to the “zeroth” free-spectral range, which we can choose to regard as
being from (angular) frequency 0w =—-7z/0dt, to dw=r/dt,.

Filter functions, their representations, inner products, and Hilbert space

Much discussion of linear filter behavior is based on approaches that consider functions that
may be continuous over all times and all frequencies or may be based on infinite sums of
discrete and equally spaced frequencies or times. Approaches that work in such cases include
Fourier transforms and z-transforms. Our case is somewhat different. First, we generally only
have finite numbers of underlying physical functions we are considering, with the finite number
being related to the number of waveguides in our arrays. Second, we may not even have uniform
spacings of time delays between our different waveguides. As a result, it can be clearer to
consider the filter functions of interest as being more generally in Hilbert spaces that can
incorporate these restrictions. (Hilbert spaces are often implicit in the common approaches to
analyzing and designing filters, but discussions of Fourier and z-transforms typically do not
formally need to emphasize or point out this underlying mathematics.) Our use of Hilbert spaces
enables us to be quite explicit about what functions we can consider (they are all the ones that
can exist in our Hilbert spaces), retaining underlying mathematics of orthogonality and
functional analysis without presuming that full Fourier or z-transforms must be used or be
applicable.

With this background, to start, consider two possible filter functions formed as in Eq. (S20)

H, (5(0) = iyap exp(—imp5w5t0)z |Ha>
=

(S27)

M=

H,(6w)=) m, exp(—i m,,5a’5fo) =[H,)

1

=
I

where we can consider that we are replacing the product of coefficients like M, a, with a
single coefficient like 4, or s, in writing these expansions. (We will clarify the meaning and
use of Dirac notations like |H) below.) Generally, we can view such functions as existing
mathematically in some “filter-function” function (or vector) space. With the formal
mathematical definition of an inner product, which we can choose as



5 z/dt, N

Hb>52—t" J z,u;pexp(impé'wétn)}{iybjexp(—imjé'wétn)}d(ﬁa)) (S28)

-z/st, L p=1

(H

a

such a function or vector space essentially becomes a Hilbert space, mathematically.

Since quite generally

n/ét,

[ exp(iudwst, )exp(-ivowst, )d (5w) = ;25_1”5"” (S29)

-z/dt, 4

for any integers u and v and with the Kronecker delta J,, , then the inner product reduces to

(H,

N
Hy) =27 % 4oy, = 3 Hoy by (S30)
1

N N
p=l j=1 p=
Equivalently, we can formally define the set of “Fourier-like” basis functions

h,(60)= (2”0 exp(—im,d0dt, ) =|h, ) (S31)
T

each of which is also normalized over a free-spectral range (that is, the inner product of the
functions with themselves is 1, i.e., (%,|h,) =1). We call this a “Fourier-like” basis rather than
just a Fourier basis because, first, we only have a finite number N of orthogonal basis functions,
rather than having p run from —co to +co as in a conventional Fourier series expansion, and,
second, in the general case, the m, need not be successive integers; for example, they might
be given by a non-redundant array set such as a Golomb ruler, as discussed in the main text.

Then, any filter functions in our filter-function Hilbert space can be represented on this basis,
Eq. (S31), by the vectors

|H,)=| i |, |H,)=| ! (S32)
Hay Hyy

When using a Dirac notation like this in which |a&) represents a column vector, then {«|
represents a corresponding row vector with complex conjugated elements; formally
(a|=(|e))", where quite generally in Dirac notation the superscript “1” denotes the Hermitian
adjoint or conjugate transpose of a matrix or vector. In this Dirac notation, we see the vector
product (H,||H,) [conventionally shortened to the notation (H,|H,) as in Eq. (S30)] gives
the same answer as the definition in Eq. (S28). Whether we use the representations of Eq. (S27)
with inner product definition Eq. (S28) or of Eq. (S32) with inner product definition as the
vector product (H, ||H,)=(H,|H,) , the inner product (H,|H,) lets us define that two non-
zero frequency response functions H, and H, are orthogonal if and only if (H,|H,)=0.

With the orthogonal basis functions as in Eq. (S31), we can also rewrite the filter functions of
Eq. (S27) in the form



27 &
Ha(é'a))z gz;ﬂap hp>E|Ha>
2“ ”N’ (S33)
H,(é0)= gzﬂbp|hp>E|Hb>
o P=

Incidentally, a major reason for using Dirac notation, in addition to its algebraic simplicity and
convenience, is that it allows us to refer to a function in the Hilbert function space in a way that
is independent of what representation (basis set) we are using to specify the function. The
representation in Eq. (S27) is in terms of the (infinite) set of amplitudes corresponding to the
values of the continuous variable dw within a free spectral range, whereas the representation
in Eq. (S33) is in terms of an expansion over a discrete and countable basis set |4, ) . Whichever
way we represent it, we are referring to the same function, e.g., |H,) or |H,), in the
mathematical Hilbert space of frequency response functions.

Because we can represent any frequency response function in the space of possible frequency
response functions for this apparatus as a (weighted) sum over the N orthogonal functions
h, (8w)=|h,), the Hilbert space of possible frequency response functions is N-dimensional.
The Fourier-like basis as in Eq. (S31) is one possible convenient basis, but of course we can
choose any other N-dimensional orthogonal basis formed by a unitary transform from this
basis. With such basis sets we can represent any filter function that can be formed from this set
of N waveguides with their specified lengths 5/, as in Eq. (S15). One other such useful basis
could be the “sinc-like” functions we would obtain as the frequency responses of AWG outputs
(see the discussion below for the analysis of a simple filter. Another other particularly
interesting basis would be the set of orthogonal functions that are the eigenfunctions of the
(temporal) coherency matrix, as we discuss below in relation to partially coherent light.

Design of matrix elements to implement a filter function

If we know what filter function |H) we want, then we can find the best implementation of it,
on the basis given by the functions as in Eq. (S31), by formally projecting it onto this basis to
establish the coefficients y, . Explicitly

z/dt,
H, = @@p |H> \/iii; j exp(impéw&o)H(éa))d(é'w) (S34)

-7/dt,

Note that, as mentioned above, the integers m, could be just consecutive integers for each
successive integer p (leading to successive waveguide lengths o/, that are be equally spaced,
as in a conventional AWG), but they need not be. In the case of the non-redundant array filters
in the main text, these m, can be quite widely and relatively arbitrarily spaced integers.
Nonetheless, the process described here, with the coefficients as in Eq. (S34) still gives us the
best possible filter design (in a “least squares” sense) on the resulting basis. In general, linear
combinations of basis functions of the form in Eq. (S31) tell us what filter functions are possible
and hence, formally, in what filter-function Hilbert space we are working.

Time-domain description

Though we will mostly use the frequency-domain description as discussed above, we can
briefly note the time-domain description. We use a time-domain discussion below when
considering the (temporal) mutual coherence function and (temporal) coherency matrix.



It is straightforward to write the impulse response of the filter directly. If we presume a (Dirac)
o-function input at time ¢ = 0, then the output of one row g of the filter in time is simply

a,(t)= ﬁaqu,, 8(t—m,ot,) (835)
p=1

(Here we are neglecting some overall propagation time #,, through the system for
mathematical simplicity, and because it likely will not matter to us in applications; we could
incorporate that by subtracting it inside the argument of each &function, delaying the output
accordingly.) All we are saying here is that, if the input to the device is a short impulse (written
mathematically as a o~function), then the output is a string of N o~functions, delayed by times
m,ot, , and with corresponding amplitudes a,M,, . This time-domain response, Eq. (S35), with
appropriate normalization, is the Fourier transform of the frequency-domain response in Eq.
(S20) (Eq. (3) of the main text).

S2. Analysis of a simple filter

One filter construction, common in AWGs [9-14], is where the power is split equally between
the waveguides as in Eq. (S1) and where the successive waveguides increase in length by equal
amounts o/, . For the moment, we are interested in only one “row” ¢ of the matrix, which is
equivalent to considering only one (signal) waveguide output at a time; for example, with just
a single “layer” of MZlIs in the device, as in Fig. 1(b) or (¢) of the main text, the matrix would
anyway have only one row (so, obviously, then ¢ =1). We call this a simple filter.

We will formally “center” these length differences to get an average guide length difference of
zero for mathematical convenience. (The guides themselves will, of course, all have positive
lengths; we are essentially just subtracting off the length of the “center” or average guide.) So,
we write

81, = {p —1—@}% = [p —@} ol (S36)

(Note that formally, for even N, this would mean that &/, could be a half integer number of the
length increments J/,, rather than an integer number as formally presumed in Eq. (S15).
However, the lengths o7, will still be spaced by integer numbers of length increments &/,
since p is an integer; so, this possible additional &/, /2 just corresponds to an overall phase
factor common to all elements in the sums over the waveguide responses, and such overall
phase factors are generally of no particular significance in the operation of the device. This
does, however, lead to a minor complicating detail in discussing free-spectral ranges below.)

From Eq. (S17), therefore, we have relative phase delays in the guides of

54, (60) =(p—(N2+ l)j&oa‘n,

As mentioned in the main text, we can usefully add a controllable “tilt” to the input phase
shifters of the mesh (e.g., PS1 to PS4 in Fig. 1 of the main text), adding a phase increment y
between each successive waveguide, where y is a real constant that can be chosen to be positive,
negative or zero. This will allow us to tune the “center” frequency of the filter after we set it
up. Here, for algebraic convenience (but with no change in the underlying physics), we center
the phase tilts around the middle of the set of input waveguides. So, instead of the form
0, =m,y for this “tilted” phase delay as in Eq. (7) of the main text, with our simple choice of
m, = p and this centering, instead we use a “tilted” phase delay

9



5p=(p—(N+1)j7/

2

We choose uniform matrix element magnitudes for this filter. With our presumed equal power
splitting, and using the simplified notation of Eq. (S22) where we incorporate the corresponding
N1/ N splitting amplitude into the matrix elements, those elements in our single row g of

interest are then
M, = [ -l (S37)
=——exp| —i| p—
ap \/ﬁ P p 5 e
Substituting these matrix elements in Eq. (S22) gives

v, (6w)= %:pﬁ;exp —'_p - (N;l)}yjexp(—i(p - (N;l)Jﬁa)&on(éw)

~

[ & [ (N1
L > exp| —i p—(—) a ||x(éw)
N| 3 2
- - (S38)
i N-1
L > exp| —i s—( ) a | |x(éw)
N| S | 2
1 (N-1) &
=—exp| i a exp(—isa) |x(ow
veo [ Seo(-) o)
where s = p—1 and for convenience we have defined a =y + dwdt, .
Now, the summation in Eq. (S38) is a geometric series of the form
1-z"
N-1
ZZSZ 17 , for z#1 (S39)
s=0 N, forz=1

where z = exp(—ia) . Hence, for a # 2mz , where m is any positive or negative integer or zero
N-1 1- —iN
v, (6w) =Lexp(i( )a) exp(~iNa) x(Sw)
N 2 1—exp(—ia)
iNao/2)| 1- —i

_ 1 exp(iNa/2)| 1-exp(-iNa) *(6w)

N exp(ia/2)
_i{exp(iNa/2)—exp(—iNa/2)

1—exp(—ia) (540)

}x(&o)

N| exp(ia/2)—exp(—ia/2)
_ 1 ZZSII.l(NOK/Z) x(§w)=LSII.l(Na/2)x(§a))
N| 2isin(a/2) N sin(a/2)

We can also rewrite this result as
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3, (6w) = 1 a/2 su.l(Na/Z) *(60) = — al?2 s1n(Na/2)x(5w)
N a/2| sin(a/2) sin(a/2) Nal/2
inc(Nea /2 (541
_ SH.IC( a )x(é'a))
sinc(a/2)
where we take the definition
. smx,x 40
sincx={ x (542)
I, x=0
or explicitly now for a # 2mx
sin( N|o@, +y +owdt, |/ 2
v, (6w) _L ( (%7 . )x(&z)) (S43)
’ N sin([o¢, +y +owdt,]/2)
or equivalently
i , 2
3, (60) = s11?c(N[5¢( +y+owdt,]/ )x(é'a)) (s44)
sinc([d¢, + ¥ + dwdt, ]/ 2)
For a = 2mr , since
N-1)2 m(N—
exp(i%}=exp(i(N—l)m7r)=(—1) 1 (345)
then
Y, (80) = (=1)""" x(6w) (S46)

The periodicity of the behavior of this filter in frequency space is easier to see from the “sine”
form, Eq.(S43). If we change the frequency of the input from @, = @, +dw, to @, = . + dw,
where dw, = dw, +4mr / 5t, for any integer m, then no matter what is the integer value of N,
the relation between the input x(Jw) and the output y, (@) is unchanged because we have
simply added an multiple of 27 to the argument of each sine function (2Nmxz on the sine in
the numerator, and 2msz on the sine in the denominator). That would give a periodicity in
angular frequency with a period or frequency increment 4z / 8¢,. While this is strictly correct,
more commonly in filter response we may be interested in the periodicity of the “power”
response of the filter, which would depend on the modulus squared of the output of the filter.
In that case, we have a relation of the form

2 1 sin®(N[6g, +y +6w51,]/2)

N* sin®([64, +y +0wdt, ]/ 2)

:Ll—cos(N[5¢c+;/+§a)5t0])|x( a))|
N?  1—cos(8p, +y +dwét,)

|x(60)"

|, (60)
(S47)

which is periodic with an angular frequency increment 27 /5t,. The apparent difference
between the field and power frequency periodicities is because of the possible sign change as
evident by the expression Eq. (S46). If N is even, the sign of the output changes as we change
angular frequency by 27/0t,, but the intensity response does not care about such a sign
change. (This minor point on the apparent doubling of the free-spectral range is algebraically
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because we formally “centered” the waveguide lengths about the average, and hence for even
values of N we have introduced a &/, /2 shift in the waveguide lengths compared to those of
Eq. (S15).) With this understanding, we can formally state that the free-spectral range of this
filter is as defined above in Egs. (S24) - (S26).

Within the free-spectral range, in addition to one frequency at which the input and output
magnitudes are the same, there are N —1 frequencies at which the response is identically zero.
If we presume that the frequency @, = @, + dw, is such that

0¢, +y + ow,0t, =2mx (S48)
i.e., for some integer m
Sw, = % (S49)

o

this frequency corresponds to a maximum output from the filter (both sinc functions in Eq.
(S44) are then 1). Then the set of frequencies

0, =0 +00,+5—2— 5=1,2,..,N—1 (S50)
: NG

will all correspond to zero output, so these frequencies, which are separated by

Aw=2r/Ndt, (S51)

or a conventional frequency separation
Af =1/ Not, (S52)
are all perfectly rejected by the filter (at least for the output corresponding to this matrix row).

We can think of these (angular) frequencies @,,®,,..., @y, (or the corresponding conventional
frequencies f;, f,..., fy. obtained by dividing by 27 ) and their shifted replicas in the other
free spectral ranges as the reference comb for the system. (See, e.g., [15] for discussion of comb
sources.) Note that, if we choose y, = 2mz — ¢, for some integer m, we are effectively able to
“center” the response of the filter round the chosen frequency . just by imposing this “tilt”
on the phase shifts of the mesh. This completes the formal analysis of the simple filter in the
main text, with frequency responses as in Fig. 3(a) of the main text.

S3. Classes and range of filter operations
Meshes and matrices

With interferometer meshes, we can usefully separate the architectures and operations into
those that implement unitary matrices (at least within some constant, such as an overall loss of
the system) and those that implement non-unitary matrices. We can make mesh architectures
in which we add loss, with controllable absorbers or by deliberately “dumping” power to
external waveguides, which would generally make the corresponding matrix M represented by
them be non-unitary. Mesh architectures more typically start by having no added internal loss
or external “dump” ports, in which case they are represented by unitary matrices, typically
written as U or V or their Hermitian adjoints (conjugate transposes) U’ or V' (which
mathematically are also necessarily unitary).

One particularly useful way to represent or construct any arbitrary non-unitary matrix is to use
the singular-value decomposition (SVD) (see, e.g., [16]), in which we can write any matrix M
as the matrix product
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M= VdegUT (S53)
where U and V are unitary matrices and D, is a diagonal matrix with a set of (generally
complex) numbers s; , known as the singular values, as the diagonal elements.

Equivalently, we can think of the matrix as mapping each of a set of orthogonal “input” vectors
ly;) to corresponding orthogonal “output” vectors |#,) with coupling amplitudes s,. The
functions |y,) are the eigenfunctions of the operator MM , and the functions |¢,) are the
eigenfunctions of the operator MM ', with positive real eigenvalues |s; |2 , in both cases.

These sets are unique for any given matrix (at least within any arbitrary linear combinations of
degenerate eigenvectors) — there is exactly one set of orthogonal “input” functions or vectors
that maps, one by one, to exactly one set of corresponding “output” functions or vectors. These
pairs of eigenfunctions, which can be called the “mode-converter basis sets” [16,17] for
matrices representing optical systems, generally have fundamental physical properties and
meaning in optical systems, including physical laws that apply only to them (see, e.g., [16,18]).
The existence of these pairs of “input” and “output” orthogonal functions also automatically
implies that any linear optical system has a set of orthogonal channels “through” it.

Non-unitary interferometer mesh M

Mesh input Output

waveguides Modulators D, waveguides
‘p=1 T N Ak S v Y il S lig=1 )

= G e
1p=2 11, V1 Ji=2 (5 ! Ly lg=2
' iy X el ) -
| E ' Unitary 1) | Unitary 11 !
: E y mesh UT | : : I 1 mesh V' : :
' p=N-1, : : A | — : : L q=0-1 :
Lp=N 1! ' j=g | /;}_: 3 4=0
_———— I\ ------ /I \.___,: .“‘SJ‘}_I\ —————— /I_ lh___/

Modulatorinput
waveguides

Fig. S2. Block diagram of a non-unitary matrix M implemented by singular-value
decomposition [19] onto a succession of a unitary matrix U, implemented by a
corresponding “input” unitary mesh, a diagonal matrix Duisg , implemented by a line of
modulators, and a unitary matrix ¥, implemented by an “output” unitary mesh. Such a
matrix M need not be square; Q can be equal to N, or can be greater than or less than M.
The number of modulators J need never exceed the smaller of Q or NV.

In this notation, the |, ) are the corresponding columns of U (and the corresponding (i, | are
the rows of U"), and the |¢,) are the corresponding columns of V. In this notation, Eq. (S53)
can be rewritten equivalently as

M=% |9) v (854)

Generally, then, any linear optical system between an “input” and an “output” space can be
completely described by these coupled pairs of orthogonal functions |y, ) and |¢,) and their
coupling strengths s; , hence the term “mode-converter basis sets” [16,17]. If viewed as the set
of communication channels between the input or “source” space and the output or “receiving”
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space, these same function pairs and coupling strengths can be viewed equivalently as the
“communication modes” [16,20,21] of the system.

This SVD decomposition gives a general way to implement arbitrary matrices with
interferometer meshes [19], as illustrated in Fig. S2. Each of the unitary matrices U' and V' can
be implemented with a unitary interferometer mesh and the matrix D, can be implemented
with a line of modulators between these two unitary meshes. The outputs of the U* unitary
mesh feed the inputs of the modulators, and the outputs of the modulators feed the inputs of the
V unitary mesh. The complex field transmission of a given modulator in waveguide j is just
chosen to be the singular value s, .

The SVD architecture for implementing arbitrary matrices was introduced in Ref. [19], and has
been employed by others subsequently (e.g., Ref. [22]). This method is only as complicated as
it needs to be [23]; the number of adjustable parameters in the system overall (e.g., phase
shifters) is essentially equal to the number of real numbers required to specify an arbitrary
0O x N complex matrix.

Range of possible filter functions

Given the ability to implement arbitrary unitary or non-unitary matrices with interferometer
meshes, a wide range of filter functions can be implemented. Unlike some previous transversal
or finite-impulse-response filters [24-26], we can contemplate a mesh with multiple outputs,
each corresponding to a row of the matrix M, so the filter here can have multiple such frequency
filtering behaviors simultaneously, one for each such mesh output. Unlike the fixed behavior
of the outputs of a conventional AWG filter, we can have separate control over the filter
functions for different outputs. This is an unusual capability for a physical filtering system, so
we should clarify just what filters can be generated, both individually and in simultaneous sets.

As noted above, we can usefully view the filter frequency-response functions we can generate
as formally being functions in a Hilbert space of possible functions. For N waveguides in the
array, we can define this Hilbert space quite precisely as having the N dimensional basis set as
in Eq. (S31) and the inner product as in Eq. (S28) or, more compactly, Eq. (S30), with frequency
response functions that can be written as in Eq. (S27) or more compactly Eq. (S33).

In the discussion that follows, just as we did for the analysis of the simple filter above, for
simplicity we presume equal power splitting, so all of the a, =1/ JN asin Eq. (S1), and we
will fold these a, into the rescaled matrix elements M ,» for simplicity of notation, as in Eq.
(S22). We will also presume waveguide length differences based on integer multiples of an
underlying length &1, , which will give all such filters a free-spectral range as in Eq. (S51),
Aw=27x/Ndt,, or equivalently as in Eq. (S52), Af =1/ Not, .

Just what different filter functions we can generate depends on whether the mesh is a unitary
mesh or a more general non-unitary mesh (e.g., as in Fig. S2). Quite generally, though, for some
arbitrary desired filter function H (éw)=|H) , the “best” version of that filter we can generate
(in a “least squares” sense), will be the one with the matrix elements

B 1 ' z/dt, .
M, =ﬁ<hp |H> Vor j exp(ipdwdt, ) H (6w)d (6w) (S55)

o -z/dt,
This approach of finding the best representation of a function on a given basis by using the
inner products with the basis functions as the expansion coefficients is standard in such linear
algebra and functional analysis [27].
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Unitary filters and filter sets

With M implemented as a unitary mesh, because of the construction of the multilayer unitary
filter, the multiple filter functions it implements are physically guaranteed to be orthogonal to
one another (at least if the mesh is “perfect” — that is, with 50:50 beam beamsplitters and the
same loss on all paths through the mesh); each layer effectively implements a different row of
a unitary matrix, and such rows are necessarily orthogonal. Any mutually orthogonal set of
filter functions on the basis as in Eq. (S31) can be implemented. Because of the unitarity, the
mesh overall will be loss-less; all the input power will appear somewhere in the N outputs of
the mesh itself (whether we use all N of them or not).

If we express the filter functions as (normalized) vectors of amplitudes as in Eq. (S32), for
example,

|H,)=| (S56)

M,
any Q (< N) such orthogonal vectors can be implemented in the outputs of a mesh with O
“layers” (such as the self-configuring layers as in Fig. 2 of the main text).

For example, instead of working directly on the Fourier-like basis of Eq. (S31), we could
unitarily transform to and work with what we could call the “AWG” basis, which is functions
each like those in Egs. (S43) or (S44), but shifted (by effective mathematical phase tilts) so that
the peak of a given filter function lines up with the zeros of every other such filter function.
The actual filters that can be implemented do not depend on which such mathematical basis we
choose, however.

Non-unitary filters and filter sets

Though unitary meshes are restricted to orthogonal filter functions, for non-unitary meshes, as
in Fig. S2, in principle we can program any desired set of filter functions on the same basis. For
N waveguides in the array, we can program up to N different filter functions, and these need
not be orthogonal; those filter functions, on the Fourier-like basis Eq. (S31), are then simply
the rows of the (generally non-unitary) matrix M. We do, however, need to consider power
conservation in the final set of filters that can be generated. Though it would be possible to add
gain instead of (lossy) modulation in generating a non-unitary mesh, adding such gain can be
technologically challenging, so we presume we will not do so. Given that constraint, a
procedure for setting up the best mesh can be as follows:

1. Write down the initially desired matrix M,, with the expansion coefficients of the
desired filter functions as the rows.

2. Mathematically perform the SVD of M, .

3. Note the required singular values, and in particular note the largest one, which, without
loss of generality, we can call s, .

4. Divide the matrix by s, (or, at least, its magnitude) to obtain M., =M, /|s,|. This
guarantees that the largest singular value in M, is no larger than 1 in magnitude,
which means physically that we do not need to introduce gain in the system. (The SVD
of this new matrix M, is the same as that of M,,, except that all the singular values
are divided by |s,|). Such new singular values can be implemented by the line of
modulators as in Fig. S2.
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With this approach, we can implement the desired set of non-orthogonal filter functions, subject
to their overall magnitudes being reduced, if necessary, by this factor 1/|s,|. This ability to

generate multiple non-orthogonal filter functions simultaneously and physically in optics, and
with independent programmability, is an unusual one.

Mesh architectures and topologies

As we consider the full range of filters that could be made with this approach, we can usefully
consider the topologies of architectures made from 2x2 blocks such as the MZIs in Fig. 1 of
the main text [28]. Quite generally, the architectures we are considering are all “forward-only”;
there are no reflections or loops in the network. In filter terminology, because of the absence of
loops or reflections, these filters are all “finite impulse response” or (non-autoregressive)
“moving average” filters [8] (as opposed to “infinite impulse response” or “autoregressive”
filters). In network topology nomenclature, these are “directed acyclic graphs”. The 2x2 (e.g.,
MZI) blocks can be viewed as the “nodes” in the graph and the waveguides between these
nodes are the graph “edges”.

(a)

In Out
W !
29— L ——2
1 1 ] 1
3 H H - n H+—>- 3
PN e T VI et oy B
53 i I | ] I SN
1 2t 3 4+t 45 gl 7
Columns
(b)
In . Out
1 L7 P > 1
29—”_/ -" ,"—/, -\‘—)- 2

Self-configuring layers

Fig. S3. Two important topologies for 2x2 blocks (such as MZIs) in forward-only
(directed acyclic graph) mesh networks, illustrated for a triangular mesh. (a) Column
topology, in which all blocks in a column can be configured or calibrated in parallel; all
forward-only networks can be arranged into this form. (The triangular network is unusual
in that no waveguide crossings are required in such an arrangement.) (b) Self-configuring
layer topology; in such a layer, each layer input connects to the “signal” output by only
one path through the blocks in the layer. Not all forward-only networks have such
topologies, though any network formed from cascades of successive self-configuring
layers automatically does.

Any such directed acyclic graph can be arranged into “columns” without changing the
topology. (As discussed in Ref. [28], this arrangement corresponds to Dijkstra’s
algorithm [29].) The blocks or nodes in a column do not affect the inputs to any other blocks
or nodes in the same column, and so they can be calibrated or set in parallel. With rectangles
representing the 2x2 blocks, Fig. S3(a) shows the corresponding “column” topology in a
“triangular” mesh [30] architecture.
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Another important topology of some directed acyclic graphs or forward-only mesh
architectures is the self-configuring layer topology [1] (Fig. S3(b)). Topologically, a self-
configuring layer is one in which each input port is connected by only one path through the
blocks to a single “signal output” port (or waveguide). The diagonal line and (symmetric)
binary tree architectures [31] have this property, as do hybrids of them [1]. Conveniently,
cascades of multiple such layers can be made. If we start with one such layer with N inputs, we
can essentially “extract” this signal output from that layer as a useful output. Then the other
N —1 outputs (which we could call “drop-port” outputs) are passed as inputs to a succeeding
self-configuring layer (which has its own “signal output” port). If we wish, we can continue
this for a total of up to N —1 layers to form a full cascade.

Such a full cascade implements a fully programmable N x N unitary matrix. Fig. S3(b) shows
self-configuring layers in a full cascade in a triangular mesh architecture, which we see can also
be viewed as being formed from successive cascaded “diagonal line” self-configuring layer
mesh architectures (as also in Fig. 1(c))). Not all mesh architectures can be factored into such
successive self-configuring layers; notably, the rectangular architecture [30] cannot be factored
this way.

Detectors can be added between columns or self-configuring layers to sample the amount of
power in one or both outputs of a 2x2 block, which can be convenient for calibrating or setting
up the network. Such detectors can be “mostly transparent” detectors [32] in the waveguides,
or can use waveguide “taps” to sample a small amount of power from the guide to a
conventional detector [33]. Other techniques based on two output detectors [34] can also be
used to deduce the power passing through any phase shifter in a forward-only mesh. With such
monitoring of internal powers in the mesh, simple progressive techniques [28,35] allow mesh
calibration by power maximization based on shining in specific vectors of amplitudes. Any
given self-configuring layer can also be set up progressively just with a detector at its signal
output; to configure the first 2x2 block, we set up the other blocks to route this power to the
signal output of that layer, and can proceed similarly through the subsequent 2x2 blocks in
the layer [31]; meshes based on cascaded self-configuring layers can also be set up
progressively just with detectors at the outputs [1,19,31] in an extension of this approach.

Programming matrices on meshes

Generally, the matrices corresponding to collections of 2x2 blocks can be set up as matrix
products of the 2x2 matrices corresponding to each block. With a calibrated mesh, and with
calculation of the factorization of the overall matrix into such 2x2 blocks, arbitrary matrices
can be set up this way. See, for example, Ref. [28] for a general discussion of this approach.
Ref. [35] shows how to calibrate any forward-only mesh.

Programming self-configuring layers

Architectures made from successive self-configuring layers are particularly easy to set up and
to calibrate [1,19,31,35]. Explicit procedures for diagonal line and symmetric binary tree mesh
layers are given in Ref. [1] and its supplementary material, including both simple calibration
procedures and explicit formulas for mesh settings for a given vector. Self-configuring layers
only require one input vector for each self-configuring layer to be calibrated or programmed.
Shining in a vector |y,) and optimizing progressively for minimum powers at the drop ports
of each successive 2x2 block configures the first such layer to have a matrix row of (y, |. For
each successive self-configuring layer j in a unitary mesh, shining in a vector |y,) that is
orthogonal to all the preceding such vectors |w,), |,),....|w ) can similarly configure the
succeeding matrix row to (|, giving a simple way of programming any unitary matrix to the
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set of rows (| just by successively shining in the vectors |y;) and configuring these
successive layers.

It is also particularly straightforward to calculate the required settings of the self-configuring
layer blocks to implement a desired matrix row. Conceptually, we can do this by imagining we
are running the system backwards, shining light backwards into the signal output to generate a
specific vector coming backwards out of the inputs to that mesh layer. Quite generally with
unitary mesh networks (Ref. [1] supplementary section S5, Ref. [35]) if a given input vector
ly) gives some output vector |¢), then if instead we shine a vector of amplitudes (|¢))
backwards into the “outputs”, the vector that emerges from backwards from the inputs will be
of the form (|y)) . (When we say “of the form”, we mean that the relative amplitudes and
phase delays are the same as those of the vector (|y)) . If there is any overall common loss in
the forward direction, there will be the same loss in the backwards direction, so the overall
amplitude of the backwards vector will be reduced accordingly.) This is a general property of
reciprocal loss-less optical systems, and relates to phase conjugation (see Ref. [1]
supplementary material for an explicit discussion of these phase conjugating properties in mesh
mathematics); (|¢))", which is the column vector whose elements are the complex conjugates
of those in the vector |@#), can be called the phase conjugate of | ).

Now, the phase conjugate of a beam going “forwards” in a single-mode guide is just the same
mode going “backwards”. If we supposed that the layer is set up to take all of the power in
vector |w) and put it in the signal output port of that layer, then just shining light backwards
into that signal output port (so “phase conjugating” that simple output) would therefore generate
the vector (|y))" coming backwards out of the mesh “inputs”. So, to design the settings of the
self-configuring layer to take all of the power in input vector |y) and put it at its signal output,
we simply imagine that we are shining light back into the signal output and calculate how to
generate the vector (|y))" emerging backwards from the “inputs”. For the diagonal line mesh,
this is particularly obvious.

Using the diagonal mesh of Fig. 1(c), we set up the 6 phase shifter of MZI3 in Fig. 1(c), to
split out the desired fraction of power into WG1, and then set the ¢ phase shifter of MZI3 to
give the desired phase. Then we set up the & phase shifter of MZI2 to split out the desired
fraction of the remaining power into WG?2 and set its phase with the ¢ of MZI2, and so on. For
other self-configuring layer meshes such as the symmetric binary tree, the calculations are
slightly different but are still similarly progressive and straightforward.

In calculating how to set up successive self-configuring layers, we simply note the unitary
matrices we have set up in earlier layers and compensate for those. So, for example, having set
up the first layer in the mesh to correspond to the first matrix row (y, |, which will correspond
to a unitary matrix U, as in Fig. 2 of the main text, then to calculate how to set up the second
row so it implements the row (w, |, we set it up to send all the power in the vector U, |w,) to
its signal output, and so on for each successive layer, multiplying all the unitary matrices
corresponding to all previous layers as necessary. This algebra is explicitly given in [19].

Calculating how to set up the general non-unitary matrix in the SVD configuration is also
straightforward with unitary meshes made from successive self-configuring layers; each of the
two unitary meshes can be set up (or even self-configured) in the same way.
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Simultaneous self-configuration with identifying tones

In an input signal comprised of multiple different optical frequencies, by putting different
identifying tones on different specific optical frequencies in that input signal, such as some
small amplitude modulation at a given tone frequency, layers in the network can be self-
configured to extract such specific optical frequencies to specific signal outputs. For example,
the detection process for maximizing or minimizing power, as required for self-configuration
in a given layer, can also incorporate electronic filters that have the system look only for such
specific tones and the amplitude of the corresponding modulation in the detected signals. (The
use of such modulation tones or frequencies for setting up self-configuring layers is discussed
in [31] and used, for example, in Ref. [32].) Such a process then can optimize that layer to
extract, to its signal output, signals on this specific optical frequency. (This extraction of
multiple frequencies by multiple layers can only be perfect if the corresponding filter functions
are orthogonal, of course.)

S4. Analyzing temporal partial coherence with self-configuring filters

Here we give a formal discussion of the use of the device concept to analyze temporal partial
coherence. We use a modal description of partial temporal coherence, using approaches from
references such as Wolf [36] and others [37]. We consider the amplitude of the field mode in
the single-mode input waveguide to be a single time-varying scalar field function x(z). We
formally presume that this function of time is one of a statistical ensemble x; (¢) of such
possible functions, where j indexes all the possible functions in the ensemble. Quite generally,
the (first-order) coherence (or coherence function) of such an ensemble between the values of
the function at two times ¢, and ¢, can be written as

L(h,t,) = (x"(4)x(t,)) (S57)

J

where by (),

; we mean the average over this statistical ensemble. In our case, we choose to

write

t, =t+udt,, t, =t+vot, (S58)

0

where ¢ is time, o¢, is our time delay element characterizing the waveguide array (as in Eq.
(S16)), and for the moment u and v are real numbers (though later those will be integers
characterizing waveguide relative lengths).

We take these x; (¢) to be ergodic random variables, by which we mean that an average over
this ensemble of possibilities at some given time is the same as a time average. This in turn
requires we presume the process is also “stationary”, with probabilities independent of the
chosen time origin. This choice means we presume that (average) power measurements we
might make on these fields will be independent of time. With these ergodic and stationary
assumptions, the average over time will be the same as the ensemble average. We can also
freely shift the time origin for the averaging because of the stationarity property, and any such
coherence function is then only a function of time differences. As a result, we can define the
mutual coherence function I'(7) of the field as [36] (Eq. (8) of the main text)

F(r)=<x*(t)x(t+z')>l (S59)
where (- ), denotes time averaging, and where
z'E(v—u)ﬁtn (S60)
This time averaging can be expressed as the integral
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1 T
I'(z)=lm— | x"(¢)x(z+7)dt S61
(0)=fim 37 [ (Ox(e+7) (s6)
Note, incidentally, because this is presumed to be a stationary process, shifting the time origin
again by 7, makes no difference to the averaging. Hence

1, 1, -
I'(r)= lim e J‘Tx (t—7)x(r)dt = {;13310 e J‘Tx (t)x(t—7)dr| =T"(-7)  (S62)
Consider now the spectrometer system from Fig. 2 of the main text, with the “AWG-like” set
of waveguides with lengths spaced progressively by increments J/,. In this case, it is more
useful to think of the waveguides as giving a set of time-delayed versions of the input signal.
So, we have progressive relative time delays in waveguide p of pdt, , with ¢, =n,0l, / ¢ (Eq.
(S16), also Eq. (1) of the main text), and with equal power splitting, so a factor a, =1/ JN as
in Eq. (S1) above. After passing through the power splitter and waveguide array, the input to
the mesh M is a set of time-delayed replicas of the signal x(#) of (1/ JN )x(t— pdt,) in the
pth input waveguide. As a result, the output field in waveguide q is

y, (1)= \/_ZM x(t-pdt,) (S63)

p=1

(We could also view this formally as the result of convolution of the input signal x(¢) with the
impulse response of the system in waveguide ¢, as in Eq. (S35).)

We can formally write

N

Z t—s5t)ET

s=1

X (t-s61,) (S64)

&MZ

So, the time-averaged power in waveguide ¢ is

N
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where what we will now call the temporal coherency matrix I' in the last line has the matrix
elements (Eq. (9) of the main text)

r,=T((s-p)st,) (S66)



These matrix elements therefore represent a discretized version of the mutual coherence
function as in Eq. (S59). Note that, by Eq. (S62),

r,=T, (S67)
So, this matrix I' is Hermitian, which means it has real eigenvalues and orthogonal
eigenvectors. We can therefore choose the rows of the unitary matrix M to correspond to the
eigenvectors of I'. In that case, the matrix M I'M* is diagonal, and, for unit input power, the
output powers as given by Eq. (S65) are the eigenvalues of I'. Because the left hand side of Eq.
(S65) is the average of a positive number, we can see directly that all the eigenvalues of I are
necessarily non-negative.

Now, in the presence of the input field, if we adjust the first layer of the mesh to maximize its
output power, then we are variationally setting the first row of the matrix to correspond to the
eigenvector with the largest eigenvalue. Leaving those settings, we can then similarly maximize
the power from the second mesh layer, which will set the combination of the first and second
layers to correspond to the second eigenvector and so on. In this way, we can establish the
eigenvectors and eigenvalues of I', hence measuring this discretized version of the coherency
matrix or coherence function. (This is the same sequential mesh optimization procedure
introduced by some of us in the context of measuring the spatial coherency matrix [38].)

Note too that the input field has then been separated by the mesh into its eigen components,
which in this case correspond to the “natural” mode or Karhunen-Loéve expansion, providing
the separate field at the signal outputs of the mesh. These output powers will also be mutually
completely incoherent. We are not aware of another approach that accomplishes both this
measurement and this non-destructive physical separation, which is simultaneous for all these
components and is without any loss (other than background losses in the system).

Incidentally, having set up the matrix M in this way by physically separating into its natural
mode components, it is now straightforward to understand exactly what set of filter functions
we have constructed. We know the matrix elements M, , and so we can simply deduce the
filter functions from Eq. (S20) (Eq. (3) of the main text).

Above we have presumed for simplicity in the derivation that the waveguides in the array have
lengths pdt, where p is the summation index, so p takes on sequential integer values. We note
that, as a result, several matrix elements of I',, are identical (e.g., I', =I'y;), so we are
essentially measuring the same value of the coherence function multiple times. If instead we
chose sets of relative lengths m,ot, such that all the differences between the various m, values
corresponded to different integers, then we could avoid this redundancy, and obtain measured
values of I'(7) at a larger number of different time-delay values 7 for the same number of
physical measurements in the apparatus. Of course, this simply corresponds to making the set
of integers m, form a non-redundant set, as in a Golomb ruler, and as discussed for the non-
redundant array filters in the main text. So, using such a non-redundant array approach for the
waveguides gives us a more efficient method of measuring the coherence function for a larger
number of different time (delay) values.

S5. Other operating modes and extensions

Here we give an extended discussion of some additional device operating modes and extensions
to the device architecture.
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Running the device backwards

Though we have so far considered the device working forwards from the input waveguide to
one or more output waveguides, as in the architectures of Fig. 1 or 2, there are several possibly
useful ways of running the device backwards.

One example would be wavelength multiplexing. We could, for example, shine light of a first
wavelength back into the signal output 1 of Fig. 2. We could then adjust the settings of that first
mesh layer to maximize the power coming back out of the input waveguide of the entire device.
This would be equivalent to lining up the peak of the response as in Fig. 3 to coincide with that
wavelength. Then, leaving those settings, we could now shine light of a second wavelength
back into signal output 2 of Fig. 2, and adjust the settings of the second layer to again maximize
the power coming back out of the input waveguide. If that second wavelength happened to line
up with one of zeros of the filter response we have effectively set on the first layer, then we
should be able to couple all of this second wavelength backwards out of the input waveguide.
To the extent that the second wavelength does not line up perfectly with such a zero, there will
be some loss in multiplexing this second wavelength (which would appear as loss in the power
splitter, scattering light out of it). Nonetheless, even with some loss from such imperfect
spacing of the wavelengths to be combined, we should still be able to couple much of the power
from this second wavelength back out of the input guide. We can continue to extend this for
different wavelengths backwards into the outputs of other layers in Fig. 2. A feature of this
multiplexer is that it will still multiplex wavelengths together (with some loss) even if they are
not quite equally spaced, and without knowing in advance just what the wavelengths are.

A second example of running the device backwards would be to operate the device as a
wavelength-dependent mirror by adding an actual mirror or reflector at the signal output of a
layer. Such a configuration used as a mirror in a laser cavity could allow tuning of the laser, for
example over the free-spectral range of the device, with the laser running at or near the
wavelength corresponding to the peak power transmission to that signal output.

A third example would be to use the device as a pulse generator. If the various outputs of a
mesh as in Fig. 2 were each fed backwards by different mutually coherent elements of a
frequency comb, the mesh could combine them controllably to generate pulses at a repletion
rate given by the difference frequency between adjacent frequencies in the comb. Generally,
we can imagine various architectures related to those of the schemes as reviewed in Weiner et
al. [39] for pulse generation and shaping, with architectures such as those of Fig. 2 replacing
grating dispersive elements, for example, and allowing quite arbitrary pulse shape control.

Other modalities exploiting partial coherence
Separating high-coherence sources or spectral lines

If the input spectrum contains some narrow lines amid a broad, incoherent background, the
approach above proposed for measuring the coherence function will tend to separate out such
coherent lines preferentially in the first layer or layers of the mesh because those will tend to
be the strongest components that are coherent with themselves and mutually incoherent with
respect to the rest of the spectrum. Note that this will happen without prior knowledge of the
frequency of any such spectral lines.

Configuring for absorption lines rather than spectral emission lines

The discussion so far has largely concerned the detection and separation of specific frequencies
or wavelengths of light to different outputs. This is also appropriate if we are performing
spectroscopy where we are looking for different spectral lines in the emission from gases of
atoms or molecules, for example. Often, however, spectroscopy is concerned with looking for
corresponding absorption lines, again, for example, in gases of atoms or molecules. In such a
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case, the material to be investigated, such as a gas, may be illuminated with a broad, incoherent
spectrum of light, such as from the sun or some light bulb. To look for absorption lines, one
can then configure or tune the first mesh layer to look for minimum rather than the maximum
power in its signal output. Configuring a second layer to look for a maximum output power
would tend to mean that the second layer was effectively measuring the background light power
in regions with minimal absorption. The amount of absorption from the spectral line of interest
can then be deduced by comparing the output of this first layer to the output of this second
layer. Alternatively, if we want to compare the relative strength of two such absorption lines,
so we can tell the relative abundance of two species, for example, we can compare the minimum
power from two layers, one tuned to the first spectral line and the second tuned to the second
such line.

Separating channels without knowing the wavelengths

Signals from different lasers can generally be considered mutually incoherent. So, for example,
if we have several telecommunications signals from different lasers incident at the same time
in the input, a mesh such as that in Fig. 2 could at least partially separate them automatically
just based on their mutual incoherence as discussed above. In such a case, we might decide to
optimize each layer based not on maximum output power, but instead on, say, the degree of
opening of an eye diagram or a minimum in a bit error rate (see also the discussion below on
optimization on other parameters). If the signals from the different lasers are of somewhat
different powers and if their wavelengths are separated by more than the basic spectral
resolution of the system (as given by the widths of the “peaks” in Fig. 3, for example), then we
can expect that these signals can be usefully separated, at least approximately. Note that such a
separation does not require advance knowledge of the specific wavelengths of the signals.

Extensions to the device architecture
NxQ meshes

Working with a large number N of input waveguides together with a smaller number Q of self-
configuring layers can allow a relatively compact mesh (in terms of the number of MZIs
required) that nonetheless has good spectral resolution and discrimination between different
signals or spectra. Such an architecture could, for example, be programmed to pick out just a
few (Q) spectral lines in a larger spectrum, presenting their powers at the O output waveguides.
It could also be a good mesh for separating a few wavelength channels when the input
wavelengths are not known, as discussed above, because, with a large N, it more easily
discriminates closely spaced channels.

Adding a controllable power splitter

Instead of the fixed power splitter of Figs. 1 and 2, we could instead use a controllable splitter,
similar to the diagonal line or binary tree networks as shown in Fig. 1 but run backwards (i.e.,
with the input light shining “backwards” into the signal “output” of the layer). Such a device
could allow us to pre-compensate for different losses in different waveguides so that the powers
leaving the waveguides as they couple into the mesh are all approximately equal; this might be
particularly useful for the non-redundant array architectures where waveguide lengths can be
very different. In such a device, only controllable power splitting would be necessary (so only
the @phase shifters in the MZIs) because phase differences between guides are already handled
by the mesh M.

Successive layers or filters for better rejection

With ideal components, a given layer can completely reject a given wavelength. Of course,
imperfections exist; rejection will not generally be perfect, and some of that wavelength will
also be passed to the next layer. For better rejection, one simple strategy is then to configure
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the second layer also to reject the same wavelength. If there is no other leakage of light in the
system, we can expect this second layer to lead to a doubling of the overall rejection (in decibels
or some other logarithmic scale).

Of course, as with any filtering system, we can cascade complete filters, here also including
another waveguide array, to improve rejection. Such a technique could be particularly effective
with non-redundant array filters because the second set of waveguides could use a different set
of lengths so their spectral “leakage” would not line up with the leakage in the first filter.

Optimization on other parameters

Instead of optimizing based on maximizing or minimizing power out of the signal port or ports,
the device could be run to optimize other measurable parameters. For example, it could
optimize based on “eye-opening” in telecommunications eye-diagrams or on minimum bit error
rate, which essentially is a technique to correct for pulse dispersion and/or crosstalk with other
channels. A related concept is to maximize the measured signal-to-noise ratio, which tends to
create matched filters [40,41]. A single-layer filter could compensate and extract the single
best channel, and multilayer filters could extract or compensate additional channels.

Handling imperfections and perfect MZIs

One of the possible imperfections in MZIs is that the beamsplitter split ratio will not in general
be 50:50. That imperfection can limit rejection, for example, especially in “diagonal line”
architectures. (Given approximately equal desired power splitting overall in a diagonal line, the
overall power splitting of the individual MZIs in a long line tends to vary from nearly unity at
one end of the line to nearly zero at the other. Symmetric binary trees are less susceptible to
this issue since the corresponding power splitting of all MZIs tends to be near 0.5 for each
MZI [42].)

One solution to this issue is to use “double” or “perfect” MZIs in which the actual beamsplitters
are themselves implemented by “beamsplitter” MZIs. Such a “beamsplitter” MZI can behave
as a 50:50 beamsplitter even for fabricated split ratios as bad as 85:15 [43]. There is also an
algorithm that allows these MZIs to be set to 50:50 effective split ratio based only on successive
power minimizations or maximizations [43], and high rejection has been reported in such
configurations [44]. All such “perfect” MZIs inside a larger mesh can be set up with a sequence
of such power minimization or maximization algorithms [43].

Dithering for derivative spectra

Derivative techniques can be generally useful in spectroscopy; they can identify line centers
precisely, for example, as those correspond to zeros in the first derivative, and overall
background light can be easily rejected. One way to perform such derivative spectroscopy here
would be to add some small modulation of the y tuning parameter, at some frequency v and
look for modulation at that frequency for first-derivative spectra (or at 2v for second-derivative
spectra) at the signal output of a given layer. This could be achieved by adding small
modulations of amplitude oc m, (as in Eq. (7) of the main text) to the “input” phase shifters
(e.g., PS1 to PS4 in Fig. 1). A particularly simple way of doing that would be to modulate the
temperature of the entire waveguide array at such a frequency v since that would add phase
shift appropriately proportional to the waveguide length (i.e., oc m, ) in every waveguide in the
array.

Spatio-spectral device

The spectral mesh concept discussed here could also be combined with spatial meshes. For
example, if we had, say, W different input waveguides, with their inputs coming from different
grating couplers or other spatial mode couplers, we could split each of those into its own array
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of N waveguides of different lengths. We could then feed all those waveguides into a mesh with
W x N inputs. That mesh could then implement simultaneous spatial and spectral operations.
For example, it could possibly extract different spatial modes from a multimode fiber and
perform different dispersion-compensating spectral filtering on different modes. It could also
operate simultaneously on spatial and spectral partial coherence. Such a concept could also be
extended to using non-unitary meshes (e.g., in the SVD architecture [19]).
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