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Questions
Three basic questions for optics and waves for information

• What are the “best” channels for communicating with waves?
e.g., out of one volume or surface to another

These should be independent of one another
so “orthogonal” in some mathematical and physical sense

“communication modes”
• How many of those channels are there?
• How do these channels affect what optics we can design and make?

Answering these questions will
• let us understand “diffraction” limits beyond classical optics and for arbitrary 

structures
including nanostructures and metamaterials

• give us limits to size and thickness
even when using the best metasurface designs

“overlapping nonlocality”
• give us some quite fundamental limits



Questions

There is a good way of thinking about this
and coming to definite and quite useful answers

but it is not like many of the previous ways of thinking about optics 
and waves

Note in particular that the answers generally are not any of the “standard” 
sets of “modes”

plane waves, Laguerre- or Hermite-Gaussians, orbital angular 
momentum beams, Bessel beams …

and those approaches can lead us to paradoxes and mistakes
but the answers are well defined mathematically

being quite straightforward to calculate
and they have real physical meaning



We are used to modes for
resonators
propagating modes in waveguides

We like “modes” because they are 
economical

We can use a few mode amplitudes
not fields at every point

We can often “count” modes meaningfully 

A different way of thinking about modes and waves

S



Modes have very useful mathematical 
properties, e.g., 

orthogonality
completeness

We can give a definition of a mode

A different way of thinking about modes and waves

A mode is an eigenfunction of 
an eigen problem describing a 

physical system

S



When we look generally at 
communications with waves
or scatterers, optical devices, or 

nanostructures 
we can think in terms of 
 a “source” or input space
 and a “receiving” or output space

We can ask first
what is the best choice of source 

function that 
leads to the strongest wave in the 

receiving space

A different way of thinking about modes and waves

"Waves, modes, communications, 
and optics: a tutorial," Adv. Opt. 

Photon. 11, 679-825 (2019) 

Source 
volume

Receiving 
volume

Device, object 
or scatterer

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf


We see immediately a difference compared 
to previous “beams”

Our answer will involve two functions
one in the source space

and one in the receiving space
If we want to use the word “mode”

these are “modes” in two spaces
not one space

The answer is not the “beam” between the 
spaces

though we can calculate that afterwards 
if we want

A different way of thinking about modes and waves

"Waves, modes, communications, 
and optics: a tutorial," Adv. Opt. 

Photon. 11, 679-825 (2019) 

Source 
volume

Receiving 
volume

Device, object 
or scatterer

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf


Constructing examples with point sources and receivers

We can see how this works first for a finite number of point sources and 
receivers

e.g., “loudspeakers” at positions rS1, rS2, rS3, etc., in the source volume
and “microphones” at positions rR1, rR2, rR3, etc., in the receiving 

volume
There will be some “coupling operator” or Green’s function GSR  that tells 

us the wave from any point source

rS1

rS2

rS3…

rR1 rR2
rR3 …

Source volume Receiving volume

SRG

Coupling 
operator “Waves, modes, 

communications and 
optics,” Adv. Opt. Photon. 

11, 679 (2019)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


Constructing examples with point sources and receivers

For a simple scalar wave, like a monochromatic sound wave in air
the Green’s function could be written as

This is simply saying that a “unit” point source will generate a 
spherically expanding wave like this

rS1

rS2

rS3…

rR1 rR2
rR3 …

Source volume Receiving volume

SRG

Coupling 
operator “Waves, modes, 

communications and 
optics,” Adv. Opt. Photon. 

11, 679 (2019)
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3 sources and receivers

For these source and receiving points
using the Green’s function

gives a matrix of connections 
(for unit wavelength λ)

from each source point 
to each receiving point

Source 
points
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points
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G “Waves, modes, communications and 
optics,” Adv. Opt. Photon. 11, 679 (2019)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


3 sources and receivers

Suppose the source amplitudes at the points 
rS1, rS2, rS3 were, respectively, aS1, aS2, aS3

We could write those as the column vector

where we have introduced the “Dirac” “bra-
ket” notation, here with the “ket”        
as a simple way of writing a column 
vector that we are labelling as ψ

Source 
points

Receiving 
points

rS1

rS2

rS3

rR1

rR2

rR3

5λ

2λ

y

z

“Waves, modes, communications and 
optics,” Adv. Opt. Photon. 11, 679 (2019)
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https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


3 sources and receivers

Then the resulting vector of amplitudes

at the receiving points rR1, rR2, rR3 
would be given by the matrix-vector 
product

Source 
points

Receiving 
points

rS1

rS2

rS3

rR1

rR2

rR3
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2λ

y

z

SRφ ψ= G

“Waves, modes, communications and 
optics,” Adv. Opt. Photon. 11, 679 (2019)
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https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


3 sources and receivers

If we think that a good measure of the 
arriving power at each point rR1, rR2, rR3 
is given, respectively, by

then the total received power would be 

Using the Dirac “bra-ket” notation

where the “bra”     is the Hermitian adjoint 
(complex conjugate of the transpose) of
then 
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points

Receiving 
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“Waves, modes, communications and 
optics,” Adv. Opt. Photon. 11, 679 (2019)
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3 sources and receivers

But
and, by the normal rules of matrix algebra

where the superscript “dagger” means we are 
taking the Hermitian adjoint (conjugate 
transpose) of the matrix

Hence the received power is 

We want to find the (normalized) source
to give the largest received power
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“Waves, modes, communications and 
optics,” Adv. Opt. Photon. 11, 679 (2019)
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https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


3 sources and receivers

Now, the matrix 
is square, positive, and Hermitian, so has
• positive real eigenvalues, written as 
• orthogonal eigenvectors

and the “best” choice of source function
is then simply the first eigenfunction

corresponding to the largest eigenvalue

Solving the eigen problem

finds a set of orthogonal source functions
that, when ordered by their eigenvalues, from 
largest to smallest, give
the set of “best” choices for source functions

in order from best downwards 
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points
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“Waves, modes, communications and 
optics,” Adv. Opt. Photon. 11, 679 (2019)
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3 sources and receivers

From these orthogonal source functions
the corresponding resulting wave is

All these         are easily shown to be 
orthogonal also
and are also the solutions to the 
complementary eigenproblem 

Note these two problems have the same 
eigenvalues
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3 sources and receivers

This process is the singular value 
decomposition of the matrix

The result

is saying that we have a set of orthogonal 
source functions
that couple one by one 

to a set of orthogonal resulting waves
The (amplitude) coupling strength sj is the 
singular value  

Source 
points
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points

rS1

rS2

rS3
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rR2

rR3
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“Waves, modes, communications and 
optics,” Adv. Opt. Photon. 11, 679 (2019)
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We have established the communication 
mode pairs of functions

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


3 sources and receivers

Returning to our example problem with 
three source and receiver points
with

we can now formally find these various 
functions 

Note we can add up the modulus squared of 
all the matrix elements, giving

We will return to this number later
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Communications modes for 3 sources and receivers

With this matrix, the orthogonal eigenvectors of              are 

and the corresponding eigenvectors of              are

which in this symmetric problem are the complex conjugates 
of the source vectors 

though that is not generally the case
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Communications modes for 3 sources and receivers

These solutions are essentially unique
There is only one set of such orthogonal channels

The modes are these (complex) drive and receive vectors
not the “beam” in between the sources and receivers
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Using a communications mode
A given source vector gives 

the relative amplitudes and phases 
to drive the three “loudspeakers” 

to drive a communications mode channel
And a given receiving vector gives 

the relative amplitudes and phases 
for adding up the signals from the “microphones” 

to receive a given communications mode channel
Note that, though we use all three sources and all three 

receiver points for each communication mode or channel
so all source functions and all receiver functions are 

fully overlapping in their respective spaces
they can all be used simultaneously without cross-talk
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Apparatus to use the 3 channels in acoustics or r.f.

The source network generates the vectors of source amplitudes for each channel
The receiving network separates the channels out again
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Waveguide

Phase shifter
/ 2φ θ+

/ 2φ θ−

2x2 interferometer 
and phase shifter 

block

≡

Example Mach-Zehnder 2x2 
interferometer and phase shifter

Apparatus to use the three channels in optics

ES1

ES3

ES2

S31S22

S11

S21
S13

S12

rS1

rS3

rS2

ESIn1

ESIn3

ESIn2

Source meshInput 
channels rR1

rR3

rR2

EROut1

EROut3

EROut2

R31R22

R11

R21
R13

R12

ER1

ER3

ER2

Receiving mesh Output 
channels

DM, Optica 7, 794 (2020)
DM, Adv. Opt. Photon. 11, 679 (2019) 
DM, Photon. Res. 1, 1 (2013)
DM, J. Lightwave Tech. 31, 3987 (2013) 

The source network generates the vectors of source amplitudes for each channel
The receiving network separates the channels out again



Singular value decomposition (SVD)

The mathematical process of singular value decomposition
is more commonly thought of just as a factorization of a matrix

For any linear operator D 
at least as long as it is bounded, i.e., finite output for finite input

we can perform the singular value decomposition 
                        or equivalently 

U and V are unitary operators (    is automatically also unitary)
Ddiag is a diagonal operator with elements sm 

which are called the singular values
          are the columns of U (and        are the rows of     )
          are the columns of V

†
diagD = VD U m m m

m
s φ ψ∑D =

mφ
mψ mψ †U

†U



A sum rule

Note that, for the matrix elements gij of D
evaluated on any orthonormal basis sets 

the sum of the      is the same as the sum of the
and we can usefully write this as the sum rule S 

This sum rule is important below for many reasons
It can be evaluated without solving the problem

and it gives a limit on the number and strength of 
connections

2 2

q ij
q i j

S s g= =∑ ∑∑

2

ijg
2

qs



Singular values and the sum rule

The modulus squared of the singular values are the “power” 
coupling strengths

For our 3 sources and receivers are

so the channels are not all equally strongly coupled
Note that

where S is also the sum of the squares of the matrix elements
We already know the sum of the squares of these coupling 

strengths before finding the channels

2
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Source amplitude Source phase
0 π 2π0

Receiver  
positions

Source 
positions

Communication modes with 9 source and receiver points

Mode 1

Note the source 
phases are 
“curved” to give 
some focusing

This curvature is 
“found” by the 
SVD math

2
1 28.54% of Ss 



π

  

  

0 2π0

Communication modes with 9 source and receiver points

Mode 2

Note the source 
phases are 
“curved” to give 
some focusing

This curvature is 
“found” by the 
SVD math

2
2 28.07% of Ss 



  

  

0 π-π0

Communication modes with 9 source and receiver points

Mode 3

Note we can begin 
to see this wave 
“missing” the 
receivers
consistent with 
its slightly lower 
coupling 
strength

2
3 26.28% of Ss 



Communication modes with 9 source and receiver points

Increasing the number of sources and receivers to 9
gives 9 orthogonal channels

but not 9 good communications channels
We have 3 good channels, 2 weaker though usable ones

and 4 so weak as to be essentially useless
The mode coupling strengths are obeying the sum rule

We have “run out” of sum rule by ~ mode 6 or 7
Increasing the number (“dimensionality”) or sources 

and/or receivers
does not necessarily correspondingly increase the 

number of usable channels

This sum rule is one reason why 
we never have infinite numbers of usable channels in 

communicating with waves

Mode 
number, j % of S Cum. % of 

S 
1 28.54 28.54
2 28.07 56.61
3 26.28 82.89
4 14.34 97.23
5 2.62 99.84
6 0.16 ~100
7 0.0038 ~100
8 0.000037 ~100
9 0.000000089 ~100



Key points about the SVD approach

This approach is easily extended to full vector fields
the underlying mathematics is the same

We can always think about these problems just using a sufficiently dense 
set of points in the source and receiving volumes

Though it takes some mathematics to prove it
requiring functional analysis

such approaches do converge to the results for continuous functions
Note that SVD can be performed for any matrix

So, communication modes
orthogonal channels

can be found for any optical system from sources to receivers
including ones involving complicated scattering

and for any shapes (surfaces, volumes) for sources and receivers



One immediate consequence is that
because we can perform the SVD of any linear operator D

For any linear optical system, we have what we can call 
the mode-converter basis sets of functions

a set of orthogonal source functions
that lead, one by one  

to a set of corresponding orthogonal received waves
We can generalize to consider the source and receiver spaces as 

Hilbert spaces, HS and HR, of functions

Mode-converter basis sets

Source or input 
volume or space

Receiving or output 
volume or spaceSψ Rφ

HS HR

VS VR

Device, object 
or scatterer

D

"All linear optical devices are 
mode converters," Opt. Express 

20, 23985 (2012)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf


In turn, that means that
 

there is a set of orthogonal channels through 
any linear scatterer

which are given by these mode-converter input and 
output function pairs

Mode-converter basis sets

Source or input 
volume or space

Receiving or output 
volume or spaceSψ Rφ

HS HR

VS VR

Device, object 
or scatterer

D



Decomposing optical systems

We can always perform the singular value 
decomposition of an optical component or system

So any linear optical system can be described as a 
mode-converter

These sets of modes turn out to have basic physical 
significance

“Waves, modes, communications and optics,” 
Adv. Opt. Photon. 11, 679-825 (2019)

"All linear optical devices are mode 
converters," Opt. Express 20, 23985 (2012)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf


Waves, modes, communications and optics
For any linear optical system

singular value decomposition gives
an optimal, orthogonal set of “input” functions that map, one-by-one, to an optimal 

orthogonal set of “output” functions
These allow

 A rigorous “communications mode” counting of communications channels
including the conclusion that there is always a finite number of usable channels

including specific new limits for various optical systems
 A general form of diffraction theory, valid for all sizes and shapes of objects
 The most economical “mode-converter basis” description of any linear optics 
 New versions of Kirchhoff’s radiation laws, valid for all objects

including nanophotonics and non-reciprocal systems …
 A new, “mode by mode” version of Einstein’s A & B coefficient argument
 A new quantization of the radiation field in any volume 
 An understanding of why optics needs thickness, and how much it needs
 The real reason why we can only get so many orthogonal waves in or out of any volume

“Waves, modes, communications and optics,” 
Adv. Opt. Photon. 11, 679-825 (2019)

DM, L. Zhu, and S. Fan, 
“Universal modal 

radiation laws for all 
thermal emitters,” 

PNAS 114, 4336 (2017)
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Radiation laws from modal optics

This universal “modal” way of looking at optics
also allows basic wave results

the correct (and modal) Kirchhoff radiation laws 
for thermal emission

E.g., the absorptivity of an input mode-converter 
basis function 

equals the emissivity into the corresponding 
output mode-converter basis function

even for non-reciprocal objects
Shows that these mode-converter basis functions

have basic physical meaning and significance  

“Universal modal radiation laws for all thermal emitters,” PNAS 114, 4336 (2017)
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A “though experiment” machine that leads 
to modal radiation laws for arbitrary objects, 
including non-reciprocal ones. 
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Structuring light waves in 3D volumes 
with high precision using 

communication mode optics

Vinicius S. de Angelis, Ahmed H. Dorrah, 
Leonardo A. Ambrosio,

David A. B. Miller, and Federico Capasso

stanford.io/4oZy7bf 



Generating volume fields using communication modes

Note that quite generally
we can calculate the best “source” output, 

e.g., 
interferometer mesh layer settings
spatial light modulator settings
metasurface layer

to generate any volume light field
The “best” way to do this

is to start by calculating the “communication 
modes”
between the source volume or surface
and the “receiving” volume where we want 

to generate the fields
and use those to calculate the necessary 

source for a given desired volume field

rectangular 
optical source 

area

cuboidal optical 
receiving volume

“Waves, modes, communications and optics,” 
Adv. Opt. Photon. 11, 679 (2019)

de Angelis et al., “Optimal structured light waves 
generation in 3D volumes using communication 

mode optics,” arXiv:2411.10865. 
Optica (to be published)
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Generating volume fields using communication modes

This can be done by first approximating both 
source and receiving spaces by a dense set 
of point sources and receiver points
calculating the connection amplitudes 

between each such source and receiver 
point pair 
using the (free-space) Green’s function

to construct a matrix version of the 
Green’s function rectangular 

optical source 
area

cuboidal optical 
receiving volume

“Waves, modes, communications and optics,” 
Adv. Opt. Photon. 11, 679 (2019)

de Angelis et al., “Optimal structured light waves 
generation in 3D volumes using communication 

mode optics,” arXiv:2411.10865. 
Optica (to be published)
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Generating volume fields using communication modes

Then perform the singular value 
decomposition (SVD) of the matrix to give
the best (and only) set of orthogonal source 

functions 

that connect, one by one, to the best (and 
only) set of corresponding orthogonal 
received wave functions

These are the “communication modes” 
each being a pair of functions, one in each 

space
with a known coupling amplitude sj 
between each pair
which is the “singular value” that comes 

out of the SVD calculation
Note we only do this SVD calculation once

rectangular 
optical source 

area

cuboidal optical 
receiving volume

“Waves, modes, communications and optics,” 
Adv. Opt. Photon. 11, 679 (2019)
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Generating a volume field
For example, we can choose dense sets of 

points in 
a planar rectangular optical source “volume”

which might be a spatial light modulator or 
a metasurface

a cuboidal optical receiving volume
where we want to construct a field

We can use the free-space Green’s function to 
construct the corresponding matrix GSR
and perform the SVD of it 

to get the source and receiving
communication mode vectors 
and coupling strengths (singular values)

rectangular 
optical source 

area

cuboidal optical 
receiving volume
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Adv. Opt. Photon. 11, 679 (2019)
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Mathematics for generating arbitrary waves with communication modes

Suppose we want a specific wave         in the receiving space
We expand it in the “receiving” communication modes as 

 where                        is the “inner product” or “overlap integral”

Since

this is the SVD “pairing” between source and received waves

to generate any specific component               for this expansion 

we need an amplitude           of the source function

So, the required source function          to generate         is 

This lets us generate any desired wave in the receiving space 
even if the coupling strengths sj are not the same for every communication mode

Roφ
Ro j Rjj

aφ φ= ∑
j Rj Roa φ φ=

q Rqa φ

SR Sj j Rjsψ φ=G

Sqψ/q qa s

Soψ Roφ
1j

So Sj Rj Ro Sj
j jj j

a
s s

ψ ψ φ φ ψ= ≡∑ ∑

“Waves, modes, 
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optics,” Adv. Opt. Photon. 
11, 679 (2019)
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Creating a 3-D optical field

Using this approach, we can 
generate an arbitrary desired 3D 
field
calculating the necessary 
amplitudes for the pixel “point 
sources” 
on a spatial light modulator
to generate the field of interest in 
the 3D volume

de Angelis et al., “Optimal structured light waves 
generation in 3D volumes using communication 

mode optics,” arXiv:2411.10865. 
Optica (to be published)

https://arxiv.org/abs/2411.10865
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Creating a 3-D optical field

Using this approach, we can 
generate an arbitrary desired 3D 
field
calculating the necessary 
amplitudes for the pixel “point 
sources” 
on a spatial light modulator
to generate the field of interest in 
the 3D volume

de Angelis et al., “Optimal structured light waves 
generation in 3D volumes using communication 

mode optics,” arXiv:2411.10865. 
Optica (to be published)

https://arxiv.org/abs/2411.10865
https://arxiv.org/abs/2411.10865
https://arxiv.org/abs/2411.10865
https://doi.org/10.1364/OPTICA.559264


Number of usable modes
We can also understand just what light fields we can 

create
because we can only create those that use strongly 

enough coupled communication modes
Beyond that, other fields are impossible

We can estimate how many modes we can have
based on simple heuristics
supported by the deeper understanding

that waves beyond a given complexity
have to tunnel to escape a source

Hence the rapid fall-off in coupling strengths 
(singular values) beyond some number of 
communication modes
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D. A. B. Miller, Z. Kuang, and O. D. Miller, “Tunneling 

escape of waves,” Nat. Phot., Dec. 3, 2024 
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Waves, modes, and minimum 
thicknesses for optics

DM, "Why optics 
needs thickness," 

Science 379, 41 (2023)

stanford.io/4oZy7bf 
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David Miller, "Why optics needs 
thickness," Science 379, 41 (2023)

Why optics needs thickness

For metasurfaces and metastructures
and for compact optics generally

we need to understand whether they need 
thickness
Can we make a given optical device in just 
one “layer”, for example?

Generally, no. 
But why?

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/


Why optics needs thickness

Think of an optical system with
an input surface

such as a lens surface or metasurface 
an output surface

such as an image sensor plane
with a distance d between them

Note we are not yet specifying what is 
between these two surfaces
and we will not need to do so

output 
surface

input 
surface

input 
light

d

"Why optics needs thickness," 
Science 379, 41 (2023)
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The key idea – channels through a transverse aperture

Now imagine we divide each surface in two parts
left and right

by passing an imaginary mathematical dividing 
surface S through them

This defines a “transverse aperture”
Because of what we want the system to do

some number C of channels must pass 
from right to left (or left to right) 

through this aperture 
We call C the “overlapping nonlocality”
The transverse aperture must be large enough

for these channels to propagate through it
which requires minimum area and/or thickness 

input 
surface

output 
surface

input 
light

d

left right

dividing 
surface, S

transverse 
aperture

"Why optics needs thickness," 
Science 379, 41 (2023)
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Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

input 
surface

output 
surface

output pixels

input region for 
one output pixel

Imager example



Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

overlapping nonlocality
the input regions for different 
output points overlap with one 
another

input 
surface

output 
surface

output pixels

input region for 
one output pixel

Imager example



Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

overlapping nonlocality
the input regions for different 
output points overlap with one 
another

overlapping nonlocality C
loosely, the number of such 
overlapping “channels”

For an imager, C ends up being half 
the number of pixels

input 
surface

output 
surface

output pixels

input region for 
one output pixel

Imager example



Nonlocality in optics

nonlocality 
the output at one point depends on 
the input at many points

overlapping nonlocality
the input regions for different 
output points overlap with one 
another

overlapping nonlocality C
loosely, the number of such 
overlapping “channels”

For this example, C is 4

Space-invariant example
e.g., image differentiator

input 
surface

output 
surface output pixels

4 input regions 
cross this 

dividing line
input region for 
one output pixel

C = 4



Nonlocality in optics

A system of beamsplitters 
collects possibly all the light 
from 6 different input regions
so, with a “nonlocality” of 6

to only one output “pixel”
at the extreme left
so, with no overlap in the 
nonlocality 
i.e., C = 1 “channels” 

light shining in on input “pixels”

desired light out 
in output “pixel”

possible 
transmitted light

100% 
reflecting 
mirror

single horizontal 
“channel” accumulating 

the desired linear 
superposition of input 
amplitudes to form the 

desired light out

different chosen phase 
delays for the desired 
linear superposition



Nonlocality in optics

Two rows of beamsplitter blocks
collect two orthogonal 6-
element light beams
into two separate outputs
with an overlapping 
nonlocality C = 2

light shining in on input “pixels”

out 1
possible transmitted light

channel 
1

out 2 channel 
2

2 channels 
cross this line



How big a transverse aperture for a given C?

For a 1D system with free-space wavelength 
λo and maximum refractive index nmax

we presume we need a thickness

for each channel
where we allow for some practical factor 

α < 1
which comes from some practical 

restriction on the range of 
usable angles
or usable k-space

inside the device 

/ 2o maxd nλ α∆ ≥
d

input 
lightinput surface
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For some value of Cx in a one-dimensional device
with                            of thickness per channel

then

so

For our one-dimensional imager with

For                   ,                 (one “line” of a 12 MP 
smartphone camera),                and no “rays” past 
45° angle,

Note: this is the limit for a 2D imager using 
conventional lenses because of dimensional 
interleaving restrictions  

 

Thickness of a one-dimensional imager

d

input 
lightinput surface

output surface

dividing 
surface, S

x
y

z

transverse 
aperture

/ 2x o maxd C nλ α≥

/ 2o maxd nλ α∆ ≥

θkz

kx

kNx pixels

xd C d≥ ∆

/ 2x xC N=

/ 4x o maxd N nλ α≥

700 nmoλ = 4000xN =
1.5maxn =

1.6 mmd ≥ See V. Blahnik, O. Schindelbeck, 
Advanced Optical Technologies 10, 
145 (2021) for general discussion of 
modern smartphone cameras



Dimensional interleaving

Can we just “interleave” the channels
taking degrees of freedom that were in x

and interleave them into y?
In principle, yes – the “supercoupler” does this

lenslets

multimode 
input light

grating couplers
waveguides

“supercoupler”
converts 2D input modes

to output modes in a 1D line 
e.g., in waveguides

x

y



Dimensional interleaving

Can we just “interleave” the channels
taking degrees of freedom that were in x

and interleave them into y?
In practice, this “dimensional interleaving” is much harder

None of the following appear to support dimensional interleaving
 free-space propagation
 conventional imaging systems
 simple dielectric stack structures
 2-D photonic crystals 

In such cases, the thickness of these 2-D systems 
may end up as the 1-D limit

with Cx as overlapping nonlocality in the longer, x direction
2

x o

max

Cd
n
λ

α
≥
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Why optics needs thickness
For the imager example

we used a somewhat heuristic way of counting the 
necessary channels

The formal way to deduce the necessary thickness
is to write down the matrix that couples input “pixels” to 

output “pixels”
then perform the singular value decomposition of the 

coupling between 
the left input side to the right output side and
the right input side to the left output side 

retaining and counting only the channels that need 
significant coupling

Once we choose the desired function (matrix)
the necessary overlapping nonlocality follows

regardless of how we implement the device

"Why optics needs thickness," 
Science 379, 41 (2023)
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A pixelated differentiator

Consider a 5th order finite difference 
derivative kernel
formed from a 

-1, 4, -5, 0, 5, -4, 1
weighting of adjacent input points

In this case, we can set up a matrix D
which gives all the connection strengths 
between inputs and outputs
for the full “space-invariant” kernel
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for output point 7



A pixelated differentiator

We can construct the full matrix D of the 
full “space-invariant” kernel
arbitrarily choosing one vertical 
position for the dividing surface
between pixels 7 and 8
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A pixelated differentiator

Sub-matrix DRL gives all the connections 
from the right inputs to the left outputs

Sub-matrix DLR gives all the connections 
from the left inputs to the right outputs
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Singular-value decomposition approach

We can count directly as before
deducing C = 6

But with these matrices
we can take another formal approach - 
singular value decomposition (SVD) of 
the matrices DRL and DLR

which gives CRL and CLR as the numbers of 
singular values of these matrices

Though we don’t need this approach here
we can use this approach for other 
problems where counting is not so clear
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See "Waves, modes, communications, and optics: 
a tutorial," Adv. Opt. Photon. 11, 679 (2019) for 
the SVD approach to optics

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf


Example – metastructure for smoothed derivative

Wang et al. designed a “thick” 2D photonic 
crystal to perform a smoothed (“Gaussian”) 
derivative with kernel

The “divided” kernel has ~ 6 significant 
singular values
so we should need ~ 6 physical channels 
through the “transverse aperture”

The thickness of the actual designed structure 
is ~ 6 wavelengths thick
so more than thick enough at half a 
wavelength thickness per channel
obeying the proposed (1D) limit here

H. Wang, W. Jin, C. Guo, N. Zhao, S. P. 
Rodrigues, S. Fan, ACS Photonics 9, 1358–

1365 (2022)
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Why optics needs thickness

This explains the necessary thickness of, e.g., 
 smart phone cameras, which are within a 

factor of 3 of this limit
 “space plates” intended to make imagers 

thinner
 metasurface/metastructure devices as the 

“kernel” becomes more nonlocal
e.g., as in image differentiation

More generally
it clarifies just why optics needs thickness

and how much it needs
based formally on an SVD approach

Guo et al., Optica 7, 1133 (2020)

H. Wang et al., ACS 
Photonics 9, 1358 (2022)

"Why optics needs thickness," 
Science 379, 41 (2023)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/


Additional related topics not covered in this talk
 Conservation of “modal étendue”, the number of modes in loss-less 

optics
 Discussion of non-reciprocal systems
 Extended discussion of dimensional interleaving
 Limits on “supercoupler” dimensions and flat optical systems
 Comparison with other “space-plate” designs
 Effect of displacing the output compared to the input
 “Sampling theory” approach to devices described in k-space
 Other example kernels

 space-invariant – e.g., Daubechies wavelets, finite impulse response 
filters

 space-variant – e.g., Fourier transform optics, interconnection 
networks

 extension to complex kernels "Why optics needs thickness," 
Science 379, 41 (2023)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2023/01/05/why-optics-needs-thickness/


Conclusions

The communication mode / mode-converter basis set approach
lets us rigorously define the channels that describe optical 

systems
with many uses in fundamental optics and applications

including properly counting channels
understanding what fields we can actually generate
and what fields can get in and out of arbitrary volumes

Adding in the idea of overlapping nonlocality
lets us understand broad classes of optical systems

including basic requirements on thickness



Meshes of Mach-Zehnder 
interferometers as universal as self-

configuring optics

David Miller
Stanford University

stanford.io/4oZy7bf 



Mach-Zehnder interferometer meshes

Mach-Zehnders meshes as universal optical systems
completely programmable for linear operations
useful for low to moderate complexity problems
specific topologies of meshes support

self-configuration
with simple set-up algorithms

useful also for thought experiments
since they show how universal linear operations can be 

performed with optics
fundamentally, they illustrate that 

any linear operation at a given wavelength can be factorized 
into successive two-beam interferences



Mach-Zehnder interferometer meshes

Many potential applications
linear algebra operations like matrix multiplication and inversion
optical applications
 self-aligning beam couplers
 separating overlapping orthogonal beams
 modal spatial filtering
 measuring amplitude and phase of optical fields
 finding the best channels through an optical system
 analyzing partially coherent light
 programmable spectral filters 
…



Nulling a Mach-Zehnder output

Consider a waveguide Mach-Zehnder 
interferometer (MZI)
formed from two “50:50” beam 
splitters
and at least two phase shifters

one, φ, to control the relative 
phase of the two inputs

a second, θ, to control the relative 
phase on the interferometer 
“arms”

beam splitters

φ θ



Nulling a Mach-Zehnder output

In such an MZI with 50:50 
beamsplitters
for any relative input amplitudes and 
phases 
we can “null” out the power at the 
bottom output

by two successive single-
parameter power minimizations
first, using φ
second, using θ

φ θ



“Diagonal line” self-aligning coupler

Minimize the power in detector D1 
by adjusting the corresponding φ 

and then θ
putting all power in the upper output

φ θ

φ θ

φ θ

D1

D2

D3

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


“Diagonal line” self-aligning coupler

Minimize the power in detector D2 
by adjusting the corresponding φ 

and then θ
putting all power in the upper output

φ θ

φ θ

φ θ

D1

D2

D3

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


“Diagonal line” self-aligning coupler

Minimize the power in detector D3 
by adjusting the corresponding φ 

and then θ
putting all power in the upper output

φ θ

φ θ

φ θ

D1

D2

D3

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Self-aligning beam coupler

Grating couplers could couple a 
free-space beam to a set of 
waveguides
Then
we could automatically couple 
all the power to the one 
output guide

This could run continuously
tracking changes in the beam

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

Grating couplers

Photodetectors

Output waveguide
Top view

Perspective 
view

Optional lenslet array

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Self-aligning beam coupler

This has several different uses
 tracking an input source

both in angle and focusing
 correcting for aberrations
 analyzing amplitude and phase 

of the components of a beam
 …

"Self-aligning universal 
beam coupler," Opt. Express 

21, 6360 (2013)

Grating couplers

Photodetectors

Output waveguide
Top view

Perspective 
view

Optional lenslet array

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Separating beams with 
interferometer meshes

stanford.io/4oZy7bf 



Separating multiple orthogonal beams

Once we have aligned beam 1 to output 1 using detectors D11 – D13
an orthogonal input beam 2 would pass entirely into the detectors 

D11 – D13 
If we make these detectors mostly transparent

this second beam would pass into the second diagonal “row”
where we self-align it to output 2 using detectors D21 – D22

separating two overlapping orthogonal beams to separate outputs

1
2
3
4

11
12

13
14 23

22
21

1
2D11

D12
D13

D21
D22

Input beam(s) 
(sampled into 
waveguides)

Output 
beams

"Self-aligning 
universal beam 
coupler," Opt. 

Express 21, 6360 
(2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Separating multiple orthogonal beams

D22

M11

M12

M13

M14

D11

D12

D13

M22 D21
M23 M32

M31

M21

D31

1

2
3

4

1

2
3

4

Adding more rows and self-alignments
separates a number of orthogonal beams 

equal to the number of beam “segments”, here, 4

"Self-aligning 
universal beam 
coupler," Opt. 

Express 21, 6360 
(2013)

Input beam(s) 
(sampled into 
waveguides)

Output 
beams

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Separating multiple orthogonal beams

D22

M11

M12

M13

M14

D11

D12

D13

M22 D21
M23 M32

M31

M21

D31

1

2
3

4

1

2
3

4

If we put identifying “tones” on each orthogonal input “beam”
and have the corresponding diagonal row of detectors look for that tone

then the mesh can continually adapt to the orthogonal inputs
even when they are all present at the same time

and even if they change

Input beam(s) 
(sampled into 
waveguides)

Output 
beams

"Self-aligning 
universal beam 
coupler," Opt. 

Express 21, 6360 
(2013)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf


Self-configuring beam separator

A. Annoni et al., 
“Unscrambling light –
automatically undoing 
strong mixing between 
modes,” Light Science & 
Applications 6, e17110 
(2017) 

See, e.g., review W. Bogaerts et al., “Programmable photonic 
circuits,” Nature 586, 207 (2020)

Light from four input fibers
deliberately mixed in a mode mixer

are automatically separated out again by a mesh of interferometers
by sequential power maximizations

without calculations

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J272.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J282.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J282.pdf


Optical and mathematical linear 
operations with meshes

stanford.io/4oZy7bf 



Universal matrix multiplier chip

Universal matrix multiplying chip
“4x4” unitary Mach-Zehnder mesh with 
 a “generator” to create any 

complex input vector
 an “analyzer” to measure the 

complex output vector
This can be programmed to implement 
any “unitary” (loss-less) transformation 
from the inputs to the outputs



Matrix unit

Vector generator Vector analyzer

Mask layout and block diagram



Universal matrix multiplier chip

Full complex matrix multiplication
with vector generation and vector analysis

Photonic back-propagation neural net training

Digital matrix multiplication for cryptography

S. Pai, Z. Sun, T. W. Hughes, T. Park, B. Bartlett, I. A. D. 
Williamson, M. Minkov, M. Milanizadeh, N. Abebe, F. 
Morichetti, A Melloni, S. Fan, O. Solgaard, D. A. B. 
Miller, "Experimentally realized in situ 
backpropagation for deep learning in photonic neural 
networks," Science 380, 398-404 (2023)

S. Pai, T. Park, M. Ball, B. Penkovsky, M. Dubrovsky, N. 
Abebe, M. Milanizadeh, F. Morichetti, A. Melloni, S. 
Fan, O. Solgaard, and D. A. B. Miller, "Experimental 
evaluation of digitally verifiable photonic computing 
for blockchain and cryptocurrency," Optica 10, 552-
560 (2023) 

https://www.science.org/doi/10.1126/science.ade8450
https://www.science.org/doi/10.1126/science.ade8450
https://www.science.org/doi/10.1126/science.ade8450
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2023/04/J291.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2023/04/J291.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2023/04/J291.pdf


“Flipping round” the SVD

Now, we know that we can construct any unitary linear 
operator in optics

using a mesh of interferometers
And we now know we can perform the SVD of any linear 

optical system
which decomposes it mathematically into a product of 
three operators

a unitary, a diagonal and a unitary 
Can we take one more step

and emulate any linear operator with interferometer 
meshes?



General multiple mode converter

So, the optical “units” in the mesh implement the singular value 
decomposition

So, for an optical system of a given dimensionality
we can emulate any linear optical system

Note we are implementing an arbitrary linear optical component
by constructing it using its mode converter basis sets

†
diagD = VD U

†U

V
diagD

"Self-configuring universal linear 
optical component," Photon. Res. 

1, 1-15 (2013). 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf


General multiple mode converter

The input mode converter basis functions are the ones that 
are converted to light in single waveguides in the middle

The output mode converter basis functions are the ones 
generated by light in a single waveguide in the middle

The coupling strengths from input to output mode-converter modes
are the singular values implemented by the modulators in the middle

†U

V
diagD

"Self-configuring universal linear 
optical component," Photon. Res. 

1, 1-15 (2013). 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J260.pdf


Establishing optimum orthogonal channels

In this architecture, using meshes on both sides
we proposed we could find optimal orthogonal channels through a scatterer

between waveguides on the left and waveguides on the right 
by iterating back and forward between the two sides

“Establishing optimal 
wave communication 

channels automatically,” 
J. Lightwave Technol. 

31, 3987 (2013) 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf


Using optics to perform linear algebra

By power maximizing on rows of the mesh at both 
sides
this circuit can automatically find the best 

orthogonal channels between the two sides 
physically performing the singular-value 

decomposition of the optical system
This is a true optical computer!

“Establishing optimal wave communication 
channels automatically,” J. Lightwave Technol. 

31, 3987 (2013) 
   

 

   

  
 

S. SeyedinNavadeh et al., "Determining the 
optimal communication channels of arbitrary 

optical systems using integrated photonic 
processors," Nat. Photon. 18, 149-155 (2024)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J262.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2024/02/J294.pdf


Measuring and generating arbitrary beams

Self-configuring this “binary tree” layer to route all 
power to the output 
automatically measures the relative amplitudes and 

phases of the input light
with the values deduced from the resulting mesh 

settings. 
Run backwards, it can generate any beam emerging 

from the “inputs”
generation of arbitrary beams
reference-free measurement of arbitrary beams “Analyzing and generating multimode 

optical fields using self-configuring 
networks,” Optica 7, 794 (2020)

See also J. Bütow et al. "Spatially resolving 
amplitude and phase of light with a 

reconfigurable photonic integrated circuit," 
Optica 9, 939 (2022) 

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J281.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J281.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J281.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J281.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J281.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2022/08/J286.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2022/08/J286.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2022/08/J286.pdf


Optically separating exoplanets

Finding exoplanets around distant stars is 
optically very challenging
the star may be 1010 times brighter than the 
planet
and the planet may lie in the weak wings of 
the star’s diffraction pattern in the telescope

Interferometer meshes may allow 
optimized modal filtering

to suppress the star “modes” 
to improve the rejection of the star light 

Preliminary experiments with meshes are already 
showing ~ 90dB rejection

Dan Sirbu et al., "AstroPIC: near-infrared 
photonic integrated circuit coronagraph 

architecture for the Habitable Worlds 
Observatory," Proc. SPIE 13092, 130921T (2024)

Use a programmable photonic mesh 
to provide optimal modal filtering to 
reject star light and pass possible 
exoplanet light

https://dabm.stanford.edu/wp-content/uploads/2024/08/J295.pdf
https://dabm.stanford.edu/wp-content/uploads/2024/08/J295.pdf
https://dabm.stanford.edu/wp-content/uploads/2024/08/J295.pdf
https://dabm.stanford.edu/wp-content/uploads/2024/08/J295.pdf
https://dabm.stanford.edu/wp-content/uploads/2024/08/J295.pdf
https://dabm.stanford.edu/wp-content/uploads/2024/08/J295.pdf


Separating partially coherent light

With partially coherent input light
by power maximizing on the successive 
self-configuring layers
this circuit can measure the coherency 
matrix of that light
simultaneously separating it into its
mutually incoherent and mutually 
orthogonal components 

No other known apparatus can 
apparently perform this separation

Roques-Carmes et al., "Measuring, 
processing, and generating partially 
coherent light …" LSA 13, 260 (2024) 

https://dabm.stanford.edu/wp-content/uploads/2024/09/J296.pdf
https://dabm.stanford.edu/wp-content/uploads/2024/09/J296.pdf
https://dabm.stanford.edu/wp-content/uploads/2024/09/J296.pdf


Programmable and self-configuring filters

This proposed circuit can function like an arrayed 
waveguide grating filter 
but has a spectral response that is fully 

programmable
so it can implement any linear combination of 

such filter functions
and allows multiple different simultaneous 

filter functions
It can also 

self-configure to specific wavelengths 
reject N-1 arbitrary wavelengths
measure and separate temporally partially 

coherent light
the Karhunen-Loève decomposition

D. A. B. Miller, C. Roques-Carmes, C. G. Valdez, A. 
R. Kroo, M. Vlk, Shanhui Fan, and O. Solgaard, 
"Universal programmable and self-configuring 

optical filter," Optica 12, 1417-1426 (2025) 

https://dabm.stanford.edu/wp-content/uploads/2025/08/J305.pdf
https://dabm.stanford.edu/wp-content/uploads/2025/08/J305.pdf
https://dabm.stanford.edu/wp-content/uploads/2025/08/J305.pdf
https://dabm.stanford.edu/wp-content/uploads/2025/08/J305.pdf


Conclusions
Interferometer meshes allow many different and fully programmable 

optical and mathematical functions
with self-configuration to adapt to the problem of interest
and to stabilize what is otherwise a very complex interferometric 

circuit
Applications include

mathematical operations
reference-free measurement of arbitrary optical fields
generation of arbitrary beams
automatically finding best channels
modal filtering to separate and suppress arbitrary beams
separation and measurement of partially coherent light
extensions to similar concepts in the frequency domain

Conceptual realizations from this work include
understanding that any linear optical operation can be reduced to 

two-beam interferences
thought experiments utilizing arbitrary linear optical transformations

stanford.io/4oZy7bf 



Tunneling escape of waves

David Miller, Stanford University
Zeyu Kuang, Owen Miller, Yale University

stanford.io/4oZy7bf 



Why the abrupt fall-off past some number of channels

Why do we always see
regardless of the shape of the source and receiving 

volumes or surfaces
some number of “well coupled” channels

followed by an abrupt, quasi-exponential fall-
off in couplings past this number

and just what gives this number?
Is there some underlying piece of physics we are 

missing?
We might argue it is “just” diffraction limits

but that still does not explain the rapid fall-off 



Communication modes for a large paraxial example

Now we consider a large line of sources and a line of receiver points 
with an approximately “paraxial” set of dimensions

and we establish the communication modes between them 
The picture shows the cross-section of the intensity in the plane

here for the most strongly coupled mode 
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11, 679 (2019)

https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/


Mode 1

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 3

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 5

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 7

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 9

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 11

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 13

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 15

0

2

4

6

8

1 5 10 15 20
Mode number, j

|s j
|2  a

s %
 o

f s
um

 ru
le

 S



Mode 15 1

10-2

10-4

10-6

10-8

1 10 15 20 25

Re
la

tiv
e 

m
ag

ni
tu

de
 

of
 si

ng
ul

ar
 v

al
ue

 
|s j

/s
1|



Mode 17 1

10-2

10-4

10-6

10-8

1 10 15 20 25

Re
la

tiv
e 

m
ag

ni
tu

de
 

of
 si

ng
ul

ar
 v

al
ue

 
|s j

/s
1|



Mode 19 1

10-2

10-4

10-6

10-8

1 10 15 20 25

Re
la

tiv
e 

m
ag

ni
tu

de
 

of
 si

ng
ul

ar
 v

al
ue

 
|s j

/s
1|



Paraxial heuristic number and paraxial degeneracy

Once we pass the number we expect from conventional “diffraction limits”
coupling strengths for further communication modes

fall off drastically and somewhat exponentially
 We might think this is because the waves “miss” the receiving space

but that is not the general explanation
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Paraxial 
heuristic 
number

Paraxial heuristic 
number

NH ~ WSWR/λL
for source and 

receiver widths 
WS, WR

separation L 
wavelength λ
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3D examples – concentric spherical shells

Concentric spherical shell source and receiver spaces
are not easily analyzed by conventional “diffraction limit” theories

and do not show “paraxial degeneracy”
and the waves from the source space cannot “miss” the receiving space

but we still get some characteristic number of well-coupled 
communication modes

and a quasi-exponential fall-off of coupling beyond that
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bounding 
spherical 
surface

Waves from arbitrary volumes

How can we count the maximum number of well 
coupled waves (at a given frequency)
from some finite volume?

Our approach
Surround the volume with a mathematical 
“bounding” spherical surface
Count the number of well-coupled waves 
possible from this spherical surface
which then becomes the upper bound for 
waves from the source volume

source 
volume or 

object

outgoing 
radiation from 

spherical 
surface
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"Tunneling escape of waves," Nat. 
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Waves from arbitrary volumes

We show that, for spherical waves
with one key mathematical trick

there is a very simple and physical result
Beyond a certain simple threshold of “complexity” 
of spherical waves
they must “tunnel” to escape

Because the fall-off from tunneling is generally so 
rapid
this threshold effectively tells us the maximum 
number of well-coupled waves
and explains the quasi-exponential fall-off

source 
volume or 

object

bounding 
spherical 
surface

outgoing 
radiation from 

spherical 
surface
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Waves in spherical coordinates

In spherical coordinates r, θ, and φ
the solution to the wave equation separates to

where zn(kr) is one of the spherical Bessel 
functions of order n, and
Ynm(θ,φ) is a spherical harmonic

Here m and n are integers with
  n = 0,1,2,… and 
So, if we know the largest n for waves to 
propagate without tunneling
we can easily add up the total number of waves 
up to and including that n 
2n +1 for each n

φ

θ

x

y

z

r
(r, θ, φ)

r̂
φ̂

θ̂

( ) ( ) ( ),nm n nmU z kr Y θ φ=r

n m n− ≤ ≤



Spherical harmonics

Spherical harmonics are functions of angle only, and can be plotted on a 
spherical surface

They have n nodal circles altogether, with |m| through the poles (in their real 
form)

n=1  m=0 n=1  m=1 n=3  m=2 n=4  m=2

n=8  m=4 n=6  m=0 n=6  m=6 n=20  m=10



Escape radius

Specifically, for a given “order” n of 
spherical wave
there is an “escape radius”

So, if the radius ro of the spherical 
surface of interest 
is smaller than the escape radius 
for some order n of spherical wave
a wave with this n must tunnel 
until it reaches the escape radius
after which it can propagate

escape 
radius

tunneling 
region

propagating 
region

wave on spherical 
surface
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Spherical Bessel functions and equation

Spherical Bessel functions obey

Classic radial standing wave solutions are
jn which grows quasi-exponentially for small radii

and is quasi-oscillatory for larger radii 
yn which is singular at the origin

decaying quasi-exponentially for small radii
becoming quasi-oscillatory at large radii

Physically, ρ here is the dimensionless radius
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Taking out the 1/radius dependence

Since the spherical Bessel functions have an 
underlying 1/radius dependence at large radius

as appropriate for what are ultimately 
spherically expanding waves

it could be useful to remove that dependence
multiplying by radius

which gives functions corresponding to power 
per unit solid angle 
rather than power per unit area

So, we recast in terms of such functions
known as Riccati-Bessel functions
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Riccati-Bessel equation

Given that the spherical Bessel functions satisfy

then we can easily check that all the Riccati-Bessel 
functions satisfy

We can rearrange that to
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Riccati-Bessel “Schrödinger” equation

But wait!!!!!! 

is in the form of a Schrödinger equation 

                                             

with effective radial potential

and the same “eigenenergy” En=1 for all n
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Tunneling escape and escape radius

With the equation

if the “potential energy” exceeds the “total energy”, i.e., if

                                    or, equivalently 

the wave will be tunneling rather than propagating

So, for each n, there is an “escape radius”

or, equivalently, in dimensioned form
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Both plane and spherical waves start with 
the same tunneling barrier height
and hence the same initial decay
but the falling barrier height for the 
spherical wave
means it eventually escapes
to being a propagating wave

Note all such spherical waves 
eventually escape to some degree

though the evanescent plane wave
never does
This is an artifact of the “infinite” 
extent of the plane wave

escape 
radius

tunneling 
region

propagating 
region

evanescent 
decay 

(tunneling)

portion of plane 
wave on infinite 

plane surface

wave on 
spherical surface

tunneling 
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propagating 
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escape 
radius

distance from plane 
(wavelengths)

distance from sphere 
surface (wavelengths)

tunneling 
barrier height

tunneling 
barrier height

wave

wavex

y
z

Evanescent and spherical escaping waves



Snapshot in time of a spherical wave

Real part of outward (Riccati- Bessel) spherical wave
Starting spherical surface radius 2.9 wavelengths
Wave with n = 20, m = 10, escape radius 3.26 wavelengths

Note the angular shape is constant as the wave expands



Outward wave propagation

As time progresses
the wave beyond the escape radius
propagates outwards

We plot the outward Riccati-Bessel wave
as a function of time

technically the real part of

normalized to unit amplitude at the 
sphere edge

for a sphere of radius 2.9 wavelengths
with n = 22
which has an escape radius of 
3.58 wavelengths

( ) ( )2 expn r i tξ π ω−

ro = 2.9    n = 22    rescn = 3.58
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Spherical heuristic number

The threshold for tunneling is easy 
to characterize
and gives a simple answer for the 
number of waves that do not need 
to tunnel
This is well approximated by the 
spherical heuristic number

where AS is the sphere area
so one “propagating” wave for 
every           of surface area 
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Relative far-field magnitude squared

As the size of the spherical surface increases
the cut-off becomes increasingly relatively abrupt

tending towards the “absolutely abrupt” cut-off of evanescent waves
Note the spherical heuristic number NSH is a good approximation to the 

total exact number Np  of “propagating” waves even down to ~ 1 
wavelength of radius 
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Defining the diffraction limit

We can now construct a precise definition of 
the “diffraction limit”

For a wave interacting with a volume 
the wave passes the diffraction limit 

if any spherical component of the wave must 
tunnel to enter or leave the bounding 
spherical surface enclosing the volume 



No n=0 electromagnetic outgoing waves
Electromagnetic waves behave mostly similarly to scalar (e.g., acoustic) waves

but, unlike for acoustic waves, there is no electromagnetic wave that is 
uniform in angle

Mathematically, there is no n = 0 wave in electromagnetism 
If the first outgoing electromagnetic waves (so, for n = 1)

are not to require tunneling to escape
the bounding spherical volume must be at least

in radius or, equivalently, in diameter

(consistent with the well-known Chu limit on antenna Q)

Note: The escape radius for n = 0 acoustic waves is, however, zero
so, there is always one acoustic wave that can escape without tunneling

no matter how small the emitter or microphone

( )1 / 2 0.225esc o or λ π λ= 

2 / 0.45o od λ π λ= 



Perfect cloaking - An optical “white hole”?

In this “white hole”, incoming light
appears to be mostly “sucked” into the 
“white hole” in the middle
The phase fronts all “fall” rapidly into 
the “white hole”

and then the light is regenerated
The phase fronts rapidly re-emerge 
from the “white hole”

How do we make this optical “white 
hole”?
Note: it may be simpler than you think



Perfect cloaking - An optical “white hole”?

So, what does it take to build this cloak?
Absolutely nothing

at least for this wave
If the wave is too complicated

i.e., if it is trying to violate the “diffraction limit”
it can’t even effectively get into the volume
and it “reflects off free space”

This is the “inward wave” version of the tunneling 
escape
with the wave trying to tunnel to get in

Interestingly, the pulse
looks as if it propagates right through!

See also Z Jacob, L V Alekseyev, and E 
Narimanov, Opt. Express 14, 8247 (2006)



Perfect cloaking?

It appears to move right through 
the volume at a constant speed

Watch the blue dot, which propagates at 
the usual “phase velocity” of the wave



Conclusions
There is a unified way of thinking about waves

based on waves from a spherical surface
from the propagating and evanescent fields of 

large optics 
to the multipole expansions of antennas and 

nanophotonics 
This approach gives a clear intuition

based on the onset of spherical wave tunneling 
that

 explains how many waves can easily get in 
or out of a volume
and why the fall-off is so abrupt past this 

number
 gives a rigorous and precise diffraction limit 

definition
 can also derive previous heuristic results

D. A. B. Miller, Z. Kuang, O. D. Miller, 
"Tunneling escape of waves," Nat. 

Photon. 19, 284–290 (2025)
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