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Questions
N

Three basic questions for optics and waves for information
What are the “best” channels for communicating with waves?
e.g., out of one volume or surface to another
These should be independent of one another
so “orthogonal” in some mathematical and physical sense
“communication modes”
How many of those channels are there?
How do these channels affect what optics we can design and make?
Answering these questions will

let us understand “diffraction” limits beyond classical optics and for arbitrary
structures

including nanostructures and metamaterials

give us limits to size and thickness

even when using the best metasurface designs
“overlapping nonlocality”

give us some quite fundamental limits



Questions

L
There is a good way of thinking about this
and coming to definite and quite useful answers

but it is not like many of the previous ways of thinking about optics
and waves

Note in particular that the answers generally are not any of the “standard”
sets of “modes”

plane waves, Laguerre- or Hermite-Gaussians, orbital angular
momentum beams, Bessel beams ...

and those approaches can lead us to paradoxes and mistakes
but the answers are well defined mathematically
being quite straightforward to calculate
and they have real physical meaning



A different way of thinking about modes and waves
]
We are used to modes for
resonators
propagating modes in waveguides

We like “modes” because they are
economical

We can use a few mode amplitudes
not fields at every point
We can often “count” modes meaningfully
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A different way of thinking about modes and waves
—

Modes have very useful mathematical
properties, e.qg.,

orthogonality
completeness
We can give a definition of a mode

RN
A

A mode is an eigenfunction of
an eigen problem describing a
physical system ng




A different way of thinking about modes and waves

When we look generally at
communications with waves

or scatterers, optical devices, or
nanostructures

we can think in terms of
= a "source” or input space

= and a "receiving” or output space
We can ask first
what is the best choice of source
function that

leads to the strongest wave in the
receiving space
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"Waves, modes, communications,

and optics: a tutorial," Adv. Opt.
Photon. 11, 679-825 (2019)



https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J276.pdf

A different way of thinking about modes and waves

We see immediately a difference compared

. " " Source Receiving
to previous “beams volume volume
Our answer will involve two functions s
one in the source space (o= Ly
and one in the receiving space
If we want to use the word “mode” Device, object
these are “modes” in two spaces TN LN
not one space => S =l /)
The answer is not the "“beam” between the
spaces

"Waves, modes, communications,

though we can calculate that afterwards and optics: a tutorial," Adv. Opt.
if we want Photon. 11, 679-825 (2019)
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Constructing examples with point sources and receivers
5
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We can see how this works first for a finite number of point sources and
receivers
e.g., "loudspeakers” at positions rg,, ry,, I, etc., in the source volume
and “microphones” at positions rg;, rg,, rp; etc., in the receiving
volume
There will be some “coupling operator” or Green’s function G, that tells
us the wave from any point source


https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/

Constructing examples with point sources and receivers

T
Source volume Receiving volume
=TS \ 1 ’,/—-~\

JETERN Coupling TN Waves. modec
Ao \ operator PR o ) communications and
Y I I R2" ics "
i I — — d K optics,” Adv. Opt. Photon.
'\‘ rg;e / GSR \Fr3® Kt 11, 679 (2019)
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For a simple scalar wave, like a monochromatic sound wave in air
the Green's function could be written as
1 exp(ik|rR—rS|)
4r |rR —rS|

This is simply saying that a “unit” point source will generate a
spherically expanding wave like this

G, (rpsrg)=—


https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
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https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/

3 sources and receivers

N
For these source and receiving points

. . Source Receiving
using the Green'’s function points points
explik|r, —r g o IRI
6. (rr) =P
4r |rR —rS|
gives a matrix of connections I oTr2
(for unit wavelength 1) 20 I
from each source point I o Tr3
to each receiving point " < o >
1 L1 ~0.7+0.6i —0.64+0.45i] ‘
GSR = — —0.7+0.6i 1 —0.7+0.6i “Waves, modes, communications and
62.83 0.6440.45] —0.740.61 ) | optics” Adv. Opt. Photon. 11, 679 (2019)



https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/

3 sources and receivers

I
Suppose the source amplitudes at the points

: Source Receiving
We could write those as the column vector rg, T
dg,
‘l//>= ds, 52 oTR2
| ds3 2\ I
"non l’S3. .I'R3

where we have introduced the “Dirac” “bra- )

ket notation, here Wlt.h. the "ket” |y) T_) < o g
as a simple way of writing a column z

vector that we are labelling as

"Waves, modes, communications and
optics,” Adv. Opt. Photon. 11, 679 (2019)
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3 sources and receivers

I
Then the resulting vector of amplitudes

Source Receiving
Ari points points
‘¢>: g, Isie o IRI
| 9r3 |
at the receiving points rp,, rp,, I'p; Fso oTr2
would be given by the matrix-vector 2 I
product Fss o Tr3
[#) =G |v) YT—) < 5
g S5\

"Waves, modes, communications and
optics,” Adv. Opt. Photon. 11, 679 (2019)
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3 sources and receivers

N
If we think that a good measure of the

arriving power at each point ry, ry,, T'p; >ource Receiving
L. . 2 > p points points
is given, respectively, by |a,,|".|az.| |az; r "
then the total received power would be
a
2 2 2 . . . K LR oTR2
P:‘am‘ +‘aR2‘ +‘aR3‘ E[am dpy aR3:| dpo
u 2\
3 rS3o .rR3

Using the Dirac "bra-ket” notation

<¢‘E|:a;1 g, a;J yL> ) S5\ ”

where the “bra“(¢| is the Hermitian adjoint ‘
(complex conjugate of the transpose) of|¢)

"Waves, modes, communications and
optics,” Adv. Opt. Photon. 11, 679 (2019)

then 7= (g¢) (=(sl#)) '


https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/

3 sources and receivers
e

But d|¢tz =thR|‘//> | rules of matrix alaeb Source Receiving
and, by the normal rules of matrix algebra ooints points

<¢‘ - <W‘G§R Isle oIRI
where the superscript “dagger” means we are
taking the Hermitian adjoint (conjugate
trans f th i F o 'Rz
pose) of the matrix I
2\

Hence the received power is

P={g|¢)=(¢]|$) = (v |CuGCulv)
We want to find the (normalized) source y| < >
. ) 5\
to give the largest received power z

"Waves, modes, communications and
optics,” Adv. Opt. Photon. 11, 679 (2019)
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3 sources and receivers

T
N.OW' the matrnf .GJ;RGSR . Source Receiving
IS square, positive, and Hermitian, so has , ooints ooints
positive real eigenvalues, written as |Sj| Fo T
orthogonal eigenvectors
and the "best” choice of source function oo Tt
is then simply the first eigenfunction
corresponding to the largest eigenvalue Zh I

Solving the eigen problem GGglwy)=s [ |wy)  » < 5
: . L) 5\
finds a set of orthogonal source functions |Ws,> z

that, when ordered by their eigenvalues, from
largest to smallest, give

"Waves, modes, communications and
optics,” Adv. Opt. Photon. 11, 679 (2019)

the set of “best” choices for source functions
in order from best downwards


https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/

3 sources and receivers

N
From these orthogonal source functions

Source Receiving
the corresponding resulting wave is ooints ooints
G ‘l//S]> ‘¢Rj> e i
All these |¢,,) are easily shown to be
orthogonal also Fse «Tr2
and are also the solutions to the 2\ I
complementary eigenproblem Fsse oTr3

N
\

GGl ¢Rj> = ‘Sj‘z ‘¢Rj> yL> S5\

Note these two problems have the same -
. 2
eigenvalues s,

"Waves, modes, communications and
optics,” Adv. Opt. Photon. 11, 679 (2019)
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3 sources and receivers

I
This process is the singular value Source Receiving
decomposition of the matrix G, points points

The result Fgiq oTri
GSR ‘WS]> =Sj‘¢Rj>

Is saying that we have a set of orthogonal Fgo T
source functions . I
that couple one by one Foa e
to a set of orthogonal resulting waves YT_) < >
The (amplitude) coupling strength s; is the ~ Sh

singular value

"Waves, modes, communications and
optics,” Adv. Opt. Photon. 11, 679 (2019)

We have established the communication
mode pairs of functions



https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/

3 sources and receivers

Returning to our example problem with Source Receiving
three source and receiver points boints points
with ~ ) rgi, JIrI

| 1 —0.7+0.6i —-0.64+0.45;
GSR = % —0.7+0.6i | | | —0.7+0.6i ro, T
| —0.64+0.45i —0.7+0.6i I I
we can now formally find these various rgs s
functions YT_) < >
Note we can add up the modulus squared of i Sh

all the matrix elements, giving

S =7.67/(62.83)
We will return to this number later



Communications modes for 3 sources and receivers

S S S ST ESESE S
With this matrix, the orthogonal eigenvectors of G.. G, are

041 | [—0.71] [ 0.58
ws)=|-0.81+0.1i we)=| 0 lws,)=10.57-0.07i
041 | | 0.71 | 058

and tf_\e corresponding eigenvectors of G, G', are

041 | [ —0.71] C 0.58
)= -081-0.1i | [g)=| O | fes) =] 0.57+0.07i
041 071 | 0.58

which in this symmetric problem are the complex conjugates
of the source vectors

though that is not generally the case



Communications modes for 3 sources and receivers
I

041 ] [—0.71] 0.58
ws,) =] —0.81+0.1i v, )=| 0 vgs)=|0.57-0.07
041 | 071 058
041 | [—0.71] C 0.58
|¢Rl>E —-0.81-0.1i |¢Rz>E 0 |¢R3>E 0.57+0.07i
| 041 | | 0.71 | 0.58

These solutions are essentially unique
There is only one set of such orthogonal channels

The modes are these (complex) drive and receive vectors
not the “beam” in between the sources and receivers




Using a communications mode
N

A given source vector gives T 041
the relative amplitudes and phases i :
to drive the three “loudspeakers” |WS1> - O.ZILO'IZ
to drive a communications mode channel - ' -
And a given receiving vector gives
the relative amplitudes and phases [ 041
for adding up the signals from the “microphones” |¢R1> ~| —0.81-0.1{
to receive a given communications mode channel 041

Note that, though we use all three sources and all three
receiver points for each communication mode or channel

so all source functions and all receiver functions are
fully overlapping in their respective spaces

they can all be used simultaneously without cross-talk



Apparatus to use the 3 channels in acoustics or r.f.
E—

o Ut

Vsm\lr VSInZY Vsm* Source Receiving
points points

Phase
shifter
Resistor of
value R = 1/a

. Bitstream
(in time)

= Operational
amplifier

The source network generates the vectors of source amplitudes for each channel

The receiving network separates the channels out again



Apparatus to use the three channels in optics
E—

Example Mach-Zehnder 2x2 2x2 interferometer
interferometer and phase shifter and phase shifter
block

DM, Optica 7, 794 (2020)
= DM, Adv. Opt. Photon. 11, 679 (2019)
DM, Photon. Res. 1, 1 (2013)

DM, J. Lightwave Tech. 31, 3987 (2013)

Waveguide

Phase shifter

. Output

Receiving mesh h |

ra Eg Egoun 2NN
N
e Ep Eroun —n
Tr3 EROut3n_ru_L

The source network generates the vectors of source amplitudes for each channel
The receiving network separates the channels out again




Singular value decomposition (SVD)
N
The mathematical process of singular value decomposition
iIs more commonly thought of just as a factorization of a matrix
For any linear operator D
at least as long as it is bounded, i.e., finite output for finite input
we can perform the singular value decomposition

D=VD,U" orequivalenty D=Y>s |4 W, |

diag

U and V are unitary operators ( U'is automatically also unitary)
D . is @ diagonal operator with elements s,
which are called the singular values

|w,.) are the columns of U (and {,,|are the rows of U’

¢,) are the columns of V



A sum rule
N

Note that, for the matrix elements g, of D
evaluated on any orthonormal basis sets
2. 2
the sum of the |g,| is the same as the sum of the |s,|

and we can usefully write this as the sum rule S
2 2
5= X[ =5 5e,
q l J
This sum rule is important below for many reasons

It can be evaluated without solving the problem

and it gives a limit on the number and strength of
connections



Singular values and the sum rule

N
The modulus squared of the singular values are the “power”
coupling strengths
For our 3 sources and receivers are
R L ey =
62.83* ' 62.83° '

|2 _ 137
62.83

so the channels are not all equally strongly coupled

Note that
|2 _ 34l 2.89 1.37 7.67

= + + =
62.83> 62.83> 62.83> 62.837

where S is also the sum of the squares of the matrix elements

We already know the sum of the squares of these coupling
strengths before finding the channels

2 2
|S1| +|Sz| +|Ss




Communication modes with 9 source and receiver points

]
Source amplitude Source phase  Source Receiver Mode 1

0 0 m 2 positions positions

|5, =28.54% of S

Note the source
phases are
“curved” to give
some focusing

This curvature is
“found” by the
SVD math




Communication modes with 9 source and receiver points

I T
Mode 2

0 0 m 2=
|5, = 28.07% of S

Note the source
phases are
“curved” to give
some focusing

This curvature is
“found” by the
SVD math




Communication modes with 9 source and receiver points
N

Mode 3
0 -t 0 =@
’ ’ : |s,[" = 26.28% of S
[ ] ®
° ° . Note we can begin
o d . to see this wave
“missing” the
° ! ° receivers
o o . consistent with
its slightly lower
¢ ¢ * coupling
o o . strength
® [ ] °




Communication modes with 9 source and receiver points
R

Increasing the number of sources and receivers to 9
gives 9 orthogonal channels

but not 9 good communications channels
We have 3 good channels, 2 weaker though usable ones L 2854 28.54
and 4 so weak as to be essentially useless L 807 56.61
The mode coupling strengths are obeying the sum rule D 2628 82.89
We have “run out” of sum rule by ~ mode 6 or 7 L4 EEREED 97.23
L e 99.84
Increasing the number (“dimensionality”) or sources O o6 ~100
and/or receivers 0.0038 ~100
does not necessarily correspondingly increase the 0 0000037 ~100
number of usable channels "1 0000000089  ~100

This sum rule is one reason why

we never have infinite numbers of usable channels in
communicating with waves



Key points about the SVD approach
___$
This approach is easily extended to full vector fields
the underlying mathematics is the same

We can always think about these problems just using a sufficiently dense
set of points in the source and receiving volumes

Though it takes some mathematics to prove it
requiring functional analysis
such approaches do converge to the results for continuous functions
Note that SVD can be performed for any matrix
So, communication modes
orthogonal channels
can be found for any optical system from sources to receivers
including ones involving complicated scattering
and for any shapes (surfaces, volumes) for sources and receivers



Mode-converter basis sets

V v,
Source or input S | > TN k |¢ > Receiving or output
volume or space Vs = 1 D | — K volume or space
H S H,
Device, object

or scatterer
One immediate consequence is that

because we can perform the SVD of any linear operator D
For any linear optical system, we have what we can call
the mode-converter basis sets of functions

"All linear optical devices are
: mode converters," Opt. Express
a set of orthogonal source functions 20, 23985 (2012)
that lead, one by one |

to a set of corresponding orthogonal received waves
We can generalize to consider the source and receiver spaces as
Hilbert spaces, H, and H,, of functions


https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf

Mode-converter basis sets

: Vs -~ Vk .
Source or input | > TN |¢ > Receiving or output
1

volume or space Vs — ] D R volume or space

I 4

\ 4

HS Mea ! HR
Device, object

or scatterer

In turn, that means that

there is a set of orthogonal channels through
any linear scatterer

which are given by these mode-converter input and
output function pairs



Decomposing optical systems
N 1

We can always perform the singular value
decomposition of an optical component or system
So any linear optical system can be described as a
mode-converter

"All linear optical devices are mode
converters,” Opt. Express 20, 23985 (2012)

These sets of modes turn out to have basic physical
significance

"Waves, modes, communications and optics,”’
Adv. Opt. Photon. 11, 679-825 (2019)



https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J253.pdf

Waves, modes, communications and optics
N

For any linear optical system “Waves, modes, communications and optics,”
singular value decomposition gives Adv. Opt. Photon. 11, 679-825 (2019)

an optimal, orthogonal set of “input” functions that map, one-by-one, to an optimal
orthogonal set of “output” functions

These allow
o A rigorous “communications mode” counting of communications channels
including the conclusion that there is always a finite number of usable channels
including specific new limits for various optical systems
o A general form of diffraction theory, valid for all sizes and shapes of objects

0 The most economical “mode-converter basis” description of any linear optics

0 New versions of Kirchhoff's radiation laws, valid for all objects DM. L. Zhu, and S. Fan,
including nanophotonics and non-reciprocal systems ... “Universal modal

o A new, "mode by mode” version of Einstein's A & B coefficient argument ratﬁ:rtlr:ar: Lar;viiter’?II

0 A new quantization of the radiation field in any volume PRSI, =0 (2 U10)

0 An understanding of why optics needs thickness, and how much it needs

0 The real reason why we can only get so many orthogonal waves in or out of any volume


https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J271.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J271.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J271.pdf

Radiation laws from modal optics

This universal “modal” way of looking at optics
also allows basic wave results

the correct (and modal) Kirchhoff radiation laws
for thermal emission

E.g. the absorptivity of an input mode-converter
basis function

equals the emissivity into the corresponding
output mode-converter basis function
even for non-reciprocal objects
Shows that these mode-converter basis functions
have basic physical meaning and significance

A “though experiment” machine that leads
to modal radiation laws for arbitrary objects,
including non-reciprocal ones.

“Single mode”
Black body B,

Object D I :

Free space
) -~ s

Circulator
C'N
“Single
mode” Black
body By

Circulator
G
“Single
mode” Black

body B,
"Universal modal radiation laws for all thermal emitters,” PNAS 114, 4336 (2017) I o
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Structuring light waves in 3D volumes
with high precision using
communication mode optics

stanford.io/40Zy7bf |

q
Vinicius S. de Angelis, Ahmed H. Dorrah, a == N
Leonardo A. Ambrosio,
IEI.

IEI* - 1]
I

David A. B. Miller, and Federico Capasso



Generating volume fields using communication modes

] Ve
Note that quite generally <, s> G 0 ||Pr>
o.. XS

we can calculate the best “source” output, A
e.g., O X
interferometer mesh layer settings
spatial light modulator settings .
metasurface layer > .
to generate any volume light field o -
The "best” way to do this Ber X Par X Pzr cuboidal optical
is to start by calculating the “communication rectangular receiving volume
modes” optical source

area
between the source volume or surface

and the ”receiving" volume where we want “Waves, modes, communications and optics,”
. Adv. Opt. Photon. 11, 679 (2019)
to generate the fields
de Angelis et al., “Optimal structured light waves
and use those to calculate the necessary generation in 3D volumes using communication

source for a given desired volume field mode optics,” arXiv:2411.10865.
Opttica (to be published)



https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://arxiv.org/abs/2411.10865
https://arxiv.org/abs/2411.10865
https://arxiv.org/abs/2411.10865
https://doi.org/10.1364/OPTICA.559264

Generating volume fields using communication modes

I Ys 1
. . . . Dy >
This can be done by first approximating both I¥s > E> P
source and receiving spaces by a dense set dy ,
. . . of
of point sources and receiver points Selet X,
calculating the connection amplitudes d
between each such source and receiver S
point pair Oy 4 '
using the (free-space) Green’s function dy e &
to construct a matrix version of the S .
Green's function . Prr X Pur * Pzr - cuboidal optical
rectangular receiving volume
optical source
area

"Waves, modes, communications and optics,”
Adv. Opt. Photon. 11, 679 (2019)

de Angelis et al., “Optimal structured light waves
generation in 3D volumes using communication
mode optics,” arXiv:2411.10865.
Opttica (to be published)



https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/2020/11/10/how-many-channels-for-communicating-with-waves/
https://arxiv.org/abs/2411.10865
https://arxiv.org/abs/2411.10865
https://arxiv.org/abs/2411.10865
https://doi.org/10.1364/OPTICA.559264

Generating volume fields using communication modes

Then perform the singular value
decomposition (SVD) of the matrix to give

the best (and only) set of orthogonal source

functions ‘l//j>

that connect, one by one, to the best (and
only) set of corresponding orthogonal
received wave functions ‘¢>
J

These are the “communication modes”

each being a pair of functions, one in each
space
with a known coupling amplitude s;
between each pair

which is the “singular value” that comes
out of the SVD calculation

Note we only do this SVD calculation once

Ys f

Zr

. Px.r X Pxr ¥ Pzr cuboidal optical
rectangular receiving volume
optical source

area

"Waves, modes, communications and optics,”
Adv. Opt. Photon. 11, 679 (2019)
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Generating a volume field

I T — Ys [
For example, we can choose dense sets of } Pr >
points in d .
a planar rectangular optical source “volume” J e Xr
which might be a spatial light modulator or Az v
a metasurface -
a cuboidal optical receiving volume S R0
where we want to construct a field Ay .r } -
We can use the free—space.Green’s function to Ber X Pur X Par .cut.)oidal optical
construct the corresponding matrix Ggg rectangular receiving volume
and perform the SVD of it optical source
to get the source and receiving area
communication mode vectors “Waves, modes, communications and optics,”

Adv. Opt. Photon. 11, 679 (2019)

and coupling strengths (singular values)
de Angelis et al., “Optimal structured light waves
generation in 3D volumes using communication
mode optics,” arXiv:2411.10865.
Opttica (to be published)
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Mathematics for generating arbitrary waves with communication modes
I

Suppose we want a specific wave ‘¢RO> in the receiving space
We expand it in the “receiving” communication modes as ‘¢Ra ‘¢R]>

where a; = <¢Rj ‘¢RO> Is the “inner product” or “overlap integral

. "Waves, modes,
Since GSR‘l//&>—Sj‘¢Rj> -

communications and
L R . optics,” Adv. Opt. Photon.
this is the SVD “pairing” between source and received waves 11, 679 (2019)

to generate any specific component q, ‘¢Rq> for this expansion
we need an amplitude a_ /s of the source function ‘l//Sq>

So, the required source function ‘%,0) to generate ‘¢RO> IS

Vi) =2 wg) = (s )

Vs)
. ] jo ] . j . .
This lets us generate any desired wave in the receiving space
even if the coupling strengths s; are not the same for every communication mode
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Creating a 3-D optical field

I T ——
Using this approach, we can
generate an arbitrary desired 3D StM : Beam expander (532 nm)

field | E

calculating the necessary
amplitudes for the pixel “point Iris
fi = 400 mm o r

source Su // ,. er translational stage
f
on a spatial light modulator ‘

£, = 300 mm

to generate the field of interest in
the 3D volume

“ first diffraction %

order

de Angelis et al., “Optimal structured light waves
generation in 3D volumes using communication
mode optics,” arXiv:2411.10865.
Opttica (to be published)

CW Laser

CCD cameraon a
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Creating a 3-D optical field

]

Using this approach, we can
generate an arbitrary desired 3D
field
calculating the necessary

amplitudes for the pixel “point
sources”
on a spatial light modulator
to generate the field of interest in
the 3D volume
de Angelis et al,, "Optimal structured light waves
generation in 3D volumes using communication

mode optics,” arXiv:2411.10865.
Optica (to be published)
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Creating a 3-D optical field

I T —
Using this approach, we can
generate an arbitrary desired 3D
field
calculating the necessary
amplitudes for the pixel “point
sources”

on a spatial light modulator

to generate the field of interest in
the 3D volume

de Angelis et al., “Optimal structured light waves
generation in 3D volumes using communication
mode optics,” arXiv:2411.10865.
Optica (to be published)
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Number of usable modes

We can also understand just what light fields we can
create

because we can only create those that use strongly
enough coupled communication modes

Beyond that, other fields are impossible
We can estimate how many modes we can have
based on simple heuristics
supported by the deeper understanding
that waves beyond a given complexity
have to tunnel to escape a source

Hence the rapid fall-off in coupling strengths
(singular values) beyond some number of
communication modes

D. A. B. Miller, Z. Kuang, and O. D. Miller, “Tunneling
escape of waves,” Nat. Phot., Dec. 3, 2024

source
surface

Y.=110A
or 166A

N

/ receiving

surface
L=1101

&
X,=1001
/;1107» —

Z.=100%

12

4}

161

A8t

logqo(power coupling strength)

52|' T — T T - — T T

de Angelis et al., “Optimal structured
light waves generation in 3D
volumes using communication mode
126 optics,” arXiv:2411.10865.
Optica (to be published)
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Waves, modes, and minimum
thicknesses for optics

stanford.io/40Zy7bf |

DM, "Why optics
needs thickness,"
Science 379, 41 (2023)
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Why optics needs thickness

I
For metasurfaces and metastructures

and for compact optics generally Jneut N ot
we need to understand whether they need =
thickness -7
Can we make a given optical device in just - - - ’/t:)”esrfrsee
one “layer”, for example? output
Generally, no. AT
Butwhy? left  right |

David Miller, "Why optics needs
thickness," Science 379, 41 (2023)
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Why optics needs thickness
I

Think of an optical system with input input
an input surface Surface\ ight
such as a lens surface or metasurface N
an output surface / /
such as an image sensor plane .
with a distance d between them 1 output

i . d surfacﬁ/
Note we are not yet specifying what is !

between these two surfaces
and we will not need to do so

"Why optics needs thickness,"
Science 379, 41 (2023)
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The key idea — channels through a transverse aperture
N

Now imagine we divide each surface in two parts input input
left and right surface light
by passing an imaginary mathematical dividing \
surface S through them N
This defines a “transverse aperture” - -
Because of what we want the system to do e - transverse
A \ - aperture

some number C of channels must pass

: : tput J
from right to left (or left to right) J :uurlecje ' > -
through this aperture >7‘<‘\‘ silr\:‘:jclggs

We call C the “"overlapping nonlocality” @ 777777 left  right

The transverse aperture must be large enough
for these channels to propagate through it
which requires minimum area and/or thickness

"Why optics needs thickness,"
Science 379, 41 (2023)
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Nonlocality in optics

-]
— Imager example

nonlocality
the output at one point depends on input region for
the input at many points one output pixel
input ~
surface

output
surface

output pixels



Nonlocality in optics
N T —
nonlocality
the output at one point depends on
the input at many points
overlapping nonlocality
the input regions for different
output points overlap with one
another

Imager example

input region for
one output pixel

N

Input
surface

output
surface

output pixels



Nonlocality in optics
I
nonlocality

the output at one point depends on
the input at many points

overlapping nonlocality
the input regions for different
output points overlap with one
another
overlapping nonlocality C
loosely, the number of such
overlapping “channels”
For an imager, C ends up being half
the number of pixels

Imager example

input region for
one output pixel

N

Input
surface

output
surface

output pixels



Nonlocality in optics
I
nonlocality

the output at one point depends on
the input at many points

overlapping nonlocality

the input regions for different
output points overlap with one
another

overlapping nonlocality C

loosely, the number of such
overlapping “channels”

For this example, Cis 4

Space-invariant example
e.g., image differentiator

4 input regions

input region for cross this
one output pixel /dividing line
: L

Input |

surface

OUtpUt S s Y s Y s 1| s [ s ] s
surface output pixels




Nonlocality in optics
B

A system of beamsplitters different chosen phase
. . delays for the desired
collects possibly all the light linear superposition ight shining in on input "pixels”
from 6 different input regions
so, with a “nonlocality” of 6 100% Ao
t | t t "y el,, reflecting M:
O only one outpu IX mirror : - : =
y p p ' |:_Z:-_--_J_/-_-:-;I:/-_--_-B_-%¥-_—-_: ___:
at the extreme left possible | .
. - vanémitea ighc |, shlehorzentl
S0, Wlth no Overlap In the desired light out the desired linear
non|oca | |ty in output "pixel” superposition of input

amplitudes to form the

l.e., C=1 "channels” desired light out



Nonlocality in optics

I O —
Two rows of beamsplitter blocks 2 channels

cross this line

collect two OrthOgOnal o- ! light shining in on input “pixels”
element light beams | l
:
i
I
I

Into two separate outputs - /W
: . M A £

with an overlapping el
nonlocality C=2 Vi V- : - channel
; A

channel

out2 out1
possible transmitted light 2



How big a transverse aperture for a given C?

I
For a 1D system with free-space wavelength

A, and maximum refractive index n,, . . input X
_ input surface light ¥
we presume we need a thickness N\ z
Ad=A /2an,, T ' : dividing
transverse ”/ surface, S
for each channel 4| aperture T
, ! output surface
where we allow for some practical factor v E—
a <1

which comes from some practical
restriction on the range of

usable angles
or usable k-space
Inside the device



Thickness of a one-dimensional imager

For some value of C, in a one-dimensional device _
with Ad >4 /2an, _ of thickness per channel input surface % Input {’x
z

light Y
thend>CcAd ~. ° E
/ 1] . .y
SO d>CA /2an | dividing
x”% max J transverse ||/ Surface, S
For our one-dimensional imager with C. =N _/2 aperture g output surface
d>NA,/4an REEEEE m— :
x”% max Nx plxels kzk
For 4, =700 nm, N =4000 (one “line” of a 12 MP
smartphone camera), n,, =1.5 and no “rays” past
45° angle, d >1.6 mm See V. Blahnik, O. Schindelbeck,
) . . . . Advanced Optical Technologies 10,
Note: this s the limit for a 2D imager using 145 (2021) for general discussion of

conventional lenses because of dimensional modern smartphone cameras
(nterleaving restrictions



Dimensional interleaving

I
Can we just “interleave” the channels

taking degrees of freedom that were in x
and interleave them into y?
In principle, yes — the “supercoupler” does this

multimode
input Iight@

lenslets

“supercoupler”
converts 2D input modes
to output modes in a 1D line
e.g., in waveguides

. grating couplers
waveguides



Dimensional interleaving

I
Can we just “interleave” the channels

taking degrees of freedom that were in x
and interleave them into y?
In practice, this “dimensional interleaving” is much harder
None of the following appear to support dimensional interleaving
= free-space propagation
= conventional imaging systems
= simple dielectric stack structures
= 2-D photonic crystals
In such cases, the thickness of these 2-D systems
may end up as the 1-D limit

with C, as overlapping nonlocality in the longer, x direction C.A

dZ X" 0
2an

max




Why optics needs thickness
I

For the imager example

we used a somewhat heuristic way of counting the
necessary channels

The formal way to deduce the necessary thickness

is to write down the matrix that couples input “pixels” to
output “pixels”

then perform the singular value decomposition of the
coupling between

the left input side to the right output side and
the right input side to the left output side
retaining and counting only the channels that need
significant coupling
Once we choose the desired function (matrix)
the necessary overlapping nonlocality follows
regardless of how we implement the device

input input
surface light

N\

P transverse

\ aperture

output
surface > ;‘. dividing
surface, S

left right

"Why optics needs thickness,"
Science 379, 41 (2023)
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A pixelated differentiator

Consider a 5t order finite difference
derivative kernel

formed from a

sampling points ' dividing
-1,4,-5,0,5, -4, 1 on input surface | surface
weighting of adjacent input points 1.2 3 4 5 6 7,8 9 10111213 14

In this case, we can set up a matrix D

which gives all the connection strengths
between inputs and outputs

for the full “space-invariant” kernel sampling points
on output surface

1 1T 1T 1T 1 1T 1T 1T 1 1T 1
1 2 3 4 5 6 7,8 9 10 11 12 13 14

connections and
coupling strengths
for output point 7




A pixelated differentiator

We can construct the full matrix D of the
full “space-invariant” kernel

arbitrarily choosing one vertical
position for the dividing surface

between pixels 7 and 8

sampling points : dividing

on input surface | surface

1 2 3 4 5 6 78 9 10 11 12 13 14
L1 1 1 1 1 LI N T IR T I

-1 1
connections and
) ) coupling strengths
sampling points on for output point 7
output surface

1 T 1 T 1 L L L L L L
1 2 3 4 5 6 708 9 10 11 12 13 14

matrix D

N

OIN O L1 A W N
|

\e]

rows corresponding to output sampling points

columns corresponding to input sampling points

-0

0 -1 4 50

1 2 3 4 5 6 78 9 10 11 12 13 14
I
R 1 ]
I matrix
-0 5 41 0 0
I Dg.
=50 5 41 0 0 -
-4 50 5 41 010 -
--14 50 5 41'0 0o -
-0 -1 4 50 5 41 0 0f--
-0 0 -1 4 50 59041 0f0
0 0 -1 4 5005 —41]0 o
0 0 [-1 4 5sfo 5 41 0 0
0|0 -1 4p-50 5 41 0 0
1o 0o -1f4 50 5 41 0
-0 0, ,-1 4 50 5 41
i 010 -1 4 50 5 -4 -
matrix 10 0 -1 4 50 5
De I
L
|
|




A pixelated differentiator

I
Sub-matrix D, gives all the connections
from the right inputs to the left outputs
Sub-matrix D, , gives all the connections

matrix D

N

columns corresponding to input sampling points

from the left inputs to the right outputs 1
2
3
4
5
6

sampling points : dividing 7
on input surface | surface 8
17 2 3 4 5 6 7'8 9 10 11 12 13 14 9
I N N T T N A I N RN N M N | 10
-1 1 11
) 12
connections and 13

) ) coupling strengths
sampling points on for output point 7 14
output surface

1 T T 1
1 2 3 4 5

I
6 71

1 1 T 1 T 1
8 9 10 11 12 13 14

rows corresponding to output sampling points

-0

0 -1 4 50

1 2 3 4 5 6 7+8 9 10 11 12 13 14
I
R I ]
I matrix
-0 5 41 0 0 -
I Dg.
=50 5 41 0 0 -
-4 50 5 41 010 -
--14 50 5 41'0 0o -
-0 -1 4 50 5 41 0 0f--
-0 0 -1 4 50 51441 o0fo0
0 0 -1 4 5005 —41]0 o
0 0 [-1 4 5sfo 5 41 0 0
00 -1 4§J-50 5 41 0 0
o 0o -4 50 5 41 0
-0 0, ,-1 4 50 5 41
i 010 -1 4 50 5 —4 -
matrix 10 0 -1 4 50 s
De I
L
|
|



Singular-value decomposition approach

I
We can count directly as before

deducing C=6
But with these matrices
we can take another formal approach -

singular value decomposition (SVD) of
the matrices Dg; and D,
which gives C,, and C,, as the numbers of
singular values of these matrices
Though we don't need this approach here

we can use this approach for other
problems where counting is not so clear

See "Waves, modes, communications, and optics:
a tutorial," Adv. Opt. Photon. 11, 679 (2019) for
the SVD approach to optics

matrix D

N

oI U1 AW N -

-0 5 41 0 0
- =5 0 5
-4 -5 0 5
- -1 4
-0 -1 4
-0 0

columns corresponding to input sampling points
1 2 3 4 5 6 7;8 9 10 11 12 13 14

matrix

D
41 0 Rt

0
-4 1 0
1

|
-
|
-
10 - /
50 5 -41'0 0o -
1

-5 0 5 4
-1 4 -5 0

I
5441 oo
-1 4 50!

-1 4 5,0 5

matrix

I

[

. -5 0 5
Die |
I
[

rows corresponding to output sampling points
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Example — metastructure for smoothed derivative

I . Ein(x,7)
Wang et al. designed a “thick” 2D photonic
crystal to perform a smoothed (“Gaussian”)

derivative with kernel )
exp

D(u;x) = (X;u) - ,BzAz

The "divided” kernel has ~ 6 significant
singular values

so we should need ~ 6 physical channels .
through the “transverse aperture” g Pa ‘, €
The thickness of the actual designed structure Ein(x,y)®t(x,y)
Is ~ 6 wavelengths thick
so more than thick enough at half a H. Wang, W. Jin, C. Guo, N. Zhao, S. P,

Rodrigues, S. Fan, ACS Photonics 9, 1358—

wavelength thickness per channel 1365 (2022)

obeying the proposed (1D) limit here



Why optics needs thickness
I

This explains the necessary thickness of, e.g.,
- smart phone cameras, which are within a
factor of 3 of this limit
- “space plates” intended to make imagers
thinner

= metasurface/metastructure devices as the
"kernel” becomes more nonlocal

e.g., as in image differentiation
More generally
it clarifies just why optics needs thickness
and how much it needs
based formally on an SVD approach

"Why optics needs thickness,"
Science 379, 41 (2023)

(a)

(b)

‘ El'n (xv :V)

Ein (xn }’)®t(xr y)

H. Wang et al.,, ACS
Photonics 9, 1358 (2022)
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Additional related topics not covered in this talk

o Conservation of “modal étendue”, the number of modes in loss-less
optics

o Discussion of non-reciprocal systems
o Extended discussion of dimensional interleaving
o Limits on “supercoupler” dimensions and flat optical systems
o Comparison with other “space-plate” designs
o Effect of displacing the output compared to the input
o “Sampling theory” approach to devices described in k-space
o Other example kernels
- space-invariant — e.g., Daubechies wavelets, finite impulse response
filters
= space-variant — e.g., Fourier transform optics, interconnection
networks
- extension to complex kernels el

Science 379, 41 (2023)
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Conclusions

N
The communication mode / mode-converter basis set approach

lets us rigorously define the channels that describe optical
systems

with many uses in fundamental optics and applications
including properly counting channels
understanding what fields we can actually generate
and what fields can get in and out of arbitrary volumes
Adding in the idea of overlapping nonlocality
lets us understand broad classes of optical systems
including basic requirements on thickness



Meshes of Mach-Zehnder
Interferometers as universal as self-
configuring optics

stanford.io/40Zy7bf |

David Miller
Stanford University




Mach-Zehnder interferometer meshes
N

Mach-Zehnders meshes as universal optical systems

completely programmable for linear operations

useful for low to moderate complexity problems

specific topologies of meshes support

self-configuration
with simple set-up algorithms
useful also for thought experiments

since they show how universal linear operations can be
performed with optics

fundamentally, they illustrate that
any linear operation at a given wavelength can be factorized
into successive two-beam interferences



Mach-Zehnder interferometer meshes

N
Many potential applications

linear algebra operations like matrix multiplication and inversion
optical applications

self-aligning beam couplers

separating overlapping orthogonal beams

modal spatial filtering

measuring amplitude and phase of optical fields

finding the best channels through an optical system

analyzing partially coherent light

programmable spectral filters



Nulling a Mach-Zehnder output
I

Consider a waveguide Mach-Zehnder
interferometer (MZI)
formed from two “50:50" beam
splitters

and at least two phase shifters

one, ¢, to control the relative
phase of the two inputs
a second, g to control the relative

phase on the interferometer
‘arms”

— -

beam splitters



Nulling a Mach-Zehnder output
B
In such an MZI with 50:50

beamsplitters

for any relative input amplitudes and
phases

we can “null” out the power at the
bottom output

by two successive single-
parameter power minimizations

first, using ¢
second, using 6



“Diagonal line” self-aligning coupler

W_ﬂ
D3

A N A A

A

D1

beam coupler," Opt. Express
21,6360 (2013)

"Self-aligning universal ‘

Minimize the power in detector D1
by adjusting the corresponding ¢
and then 6
putting all power in the upper output
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“Diagonal line” self-aligning coupler
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beam coupler," Opt. Express
21,6360 (2013)

"Self-aligning universal ‘

Minimize the power in detector D2
by adjusting the corresponding ¢
and then 6
putting all power in the upper output
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“Diagonal line” self-aligning coupler
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beam coupler," Opt. Express
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Minimize the power in detector D3
by adjusting the corresponding ¢
and then 6
putting all power in the upper output
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Self-aligning beam coupler

Grating couplers could couple a
free-space beam to a set of
waveguides

Then

we could automatically couple
all the power to the one Photodetectors
output guide
This could run continuously
tracking changes in the beam

Top view

Grating couplers Output waveguide

Perspective
view

"Self-aligning universal
beam coupler," Opt. Express
21,6360 (2013)
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Self-aligning beam coupler

.
This has several different uses

Q

Q

Top view

Grating couplers Output waveguide

tracking an input source
both in angle and focusing
correcting for aberrations

analyzing amplitude and phase
of the components of a beam Photodetectors

Perspective
view

"Self-aligning universal

beam coupler," Opt. Express
21, 6360 (2013)
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Separating beams with
interferometer meshes

stanford.io/40zy7bf |




Separating multiple orthogonal beams

]
& 1 Output "Self-aligning

universal beam

Input beam(s) 1
(sampled into 2 " — m — 2 beams
waveguides) 3 coupler," Opt.
J 414 N m N’ Express 21, 6360
(2013)

Once we have aligned beam 1 to output 1 using detectors D11 - D13
an orthogonal input beam 2 would pass entirely into the detectors

D11 -D13
If we make these detectors mostly transparent

this second beam would pass into the second diagonal “row”
where we self-align it to output 2 using detectors D21 — D22

separating two overlapping orthogonal beams to separate outputs
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Separating multiple orthogonal beams

Input beam(s) 1 \_1\,23_/ 1 OQutput "Self-aligning
(sampled into 5 MI12 M21 ) beams universal beam
i coupler,”" Opt.
waveguides) . MI3 M22 M31 3 Ex—p—’_press o 6pB o
4 M14 M23 M32 4 (2013)
S = VA A% S ==

Adding more rows and self-alignments
separates a number of orthogonal beams
equal to the number of beam “segments”, here, 4


https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf
https://web.stanford.edu/group/dabmgroup/cgi-bin/dabm/wp-content/uploads/2020/11/J259.pdf

Separating multiple orthogonal beams

Input beam(s) 1 \_1\,2\1_/ 1 OQutput "Self-aligning
(sampled into 5 MI12 M21 ) beams universal beam
i coupler,”" Opt.
waveguides) . M13 M22 M31 3 Ex—p—’_press o 6pS o
4 M14 M23 M32 4 (2013)
S = VA A% S ==

If we put identifying “tones” on each orthogonal input “beam”
and have the corresponding diagonal row of detectors look for that tone

then the mesh can continually adapt to the orthogonal inputs
even when they are all present at the same time
and even if they change
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Self-configuring beam separator
—

Light from four input fibers
deliberately mixed in a mode mixer
are automatically separated out again by a mesh of interferometers
by sequential power maximizations
without calculations

A. Annoni et al.,

Ch. A —> IN1 . OuUT1 “Unscrambling light =

Ch.B — IN2 ~ OUT2 automatically undoing

Ch.C — IN3 © OuUT3 strong mixing between

Ch.D — IN4 1 ouTa modes,” Light Science &
Applications 6, e17110
(2017)

See, e.g., review W. Bogaerts et al., "Programmable photonic
circuits,” Nature 586, 207 (2020)
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Optical and mathematical linear
operations with meshes
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Universal matrix multiplier chip
5 ___________________________N

Universal matrix multiplying chip y

“4x4" unitary Mach-Zehnder mesh with

QO a “generator” to create any
complex input vector

O an “analyzer” to measure the
complex output vector

This can be programmed to implement

any “unitary” (loss-less) transformation
from the inputs to the outputs




Mask layout and block diagram
N

Matrix unit

T NIT S NIT

— === o= [====1 === ===} ===

Lot e e Lo Lt fl et e =1 e N N Vi

Vector generator Vector analyzer



Universal matrix multiplier chip

Full complex matrix multiplication
with vector generation and vector analysis
Photonic back-propagation neural net training

S. Pai, Z. Sun, T. W. Hughes, T. Park, B. Bartlett, I. A. D.
Williamson, M. Minkov, M. Milanizadeh, N. Abebe, F.
Morichetti, A Melloni, S. Fan, O. Solgaard, D. A. B.
Miller, "Experimentally realized in situ
backpropagation for deep learning in photonic neural
networks," Science 380, 398-404 (2023)

Digital matrix multiplication for cryptography

S. Pai, T. Park, M. Ball, B. Penkovsky, M. Dubrovsky, N.
Abebe, M. Milanizadeh, F. Morichetti, A. Melloni, S.
Fan, O. Solgaard, and D. A. B. Miller, "Experimental
evaluation of digitally verifiable photonic computing
for blockchain and cryptocurrency,” Optica 10, 552-
560 (2023)

rg) ;
< A
.

Matrix unit

Analyzer
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“Flipping round” the SVD

I
Now, we know that we can construct any unitary linear
operator in optics

using a mesh of interferometers

And we now know we can perform the SVD of any linear
optical system

which decomposes it mathematically into a product of
three operators

a unitary, a diagonal and a unitary
Can we take one more step

and emulate any linear operator with interferometer
meshes?



General multiple mode converter
N

|
. D, , — \
Input waveguides diag Self-aligning output coupler
Modulators - =/ =/
Wil
w2
WI3 M13 M22 NENPaNA s w‘smx _ = = —
S =\
S e Mi1 WOl
Self-aligning input coupler - h Output waveguides

Ut
So, the optical "units” in the mesh implement the singular value
decomposition D=VD U
. . . . . "Self-configuring universal linear

SO, fOr an Optlcal SyStem Of d glven dlmenSIOHallty optical component," Photon. Res.

we can emulate any linear optical system LALSEREALE)
Note we are implementing an arbitrary linear optical component

by constructing it using its mode converter basis sets

diag
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General multiple mode converter
N

|
. D, , — \
Input waveguides diag Self-aligning output coupler
Modulators - =/ =/
Wil
w2
WI3 M13 M22 NENPaNA s w‘smx _ = = —
S =\
S e Mi1 WOl
Self-aligning input coupler - h Output waveguides

\ L'JT )
The input mode converter basis functions are the ones that
are converted to light in single waveguides in the middle

The output mode converter basis functions are the ones -Self-configuring universal linear
. . . ) ) ) optical component,” Photon. Res.
generated by light in a single waveguide in the middle | 1,1-15 (2013).

The coupling strengths from input to output mode-converter modes
are the singular values implemented by the modulators in the middle
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Establishing optimum orthogonal channels
]
In this architecture, using meshes on both sides
we proposed we could find optimal orthogonal channels through a scatterer
between waveguides on the left and waveguides on the right
by iterating back and forward between the two sides

"Establishing optimal
wave communication
channels automatically,”
J. Lightwave Technol.
31, 3987 (2013)
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Using optics to perform linear algebra
I

By power maximizing on rows of the mesh at both .
sides
this circuit can automatically find the best
orthogonal channels between the two sides "Establishing optimal wave communication
physically performing the singular-value et aumrg?tigaglg’"(Jz'(;;g_,gtwave Technol
decomposition of the optical system — : -
This is a true optical computer! Flectronics @“‘“R Electronics

Belam
Splitter

___________________________

Free-Space Setup

S. SeyedinNavadeh et al., "Determining the
optimal communication channels of arbitrary
optical systems using integrated photonic
processors," Nat. Photon. 18, 149-155 (2024)
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Measuring and generating arbitrary beams
B . coopie | Binary tree self-configuring mesh

Self-configuring this “binary tree” layer to route all optical input |

Nulling d
power to the output > X '“g/EtECt‘”S
automatically measures the relative amplitudes and | > L]

phases of the input light l - \ O:;p-ut
with the values deduced from the resulting mesh |]]]]]]-I\:_)_
) : 1 1]
settings. "|.|!!!' S N
. . -

Run backwards, it can generate any beam emerging ' > | mach

from the "inputs” I Zehnder
P 1 > D blocks

generation of arbitrary beams

reference-free measurement of arbitrary beams "Analyzing and generating multimode
optical fields using self-configuring
networks,” Optica 7, 794 (2020)

See also J. Blitow et al. "Spatially resolving
amplitude and phase of light with a
reconfigurable photonic integrated circuit,"
Optica 9, 939 (2022)
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Optically separating exoplanets
_ _ Dan Sirbu et al.,, "AstroPIC: near-infrared

photonic integrated circuit coronagraph

Finding exoplanets around distant stars is architecture for the Habitable Worlds

0pt|Ca”y Very Challenging | Observatory," Proc. SPIE 13092, 130921T (2024) ‘

the star may be 1070 times brighter than the
planet

and the planet may lie in the weak wings of
the star’s diffraction pattern in the telescope

Interferometer meshes may allow
optimized modal filtering
to suppress the star “modes”
to improve the rejection of the star light

Use a programmable photonic mesh
. , , to provide optimal modal filtering to
Preliminary experiments with meshes are already reject star light and pass possible

showing ~ 90dB rejection exoplanet light
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Separating partially coherent light

With partially coherent input light
by power maximizing on the successive
self-configuring layers
this circuit can measure the coherency
matrix of that light
simultaneously separating it into its
mutually incoherent and mutually
orthogonal components

No other known apparatus can
apparently perform this separation

grating self-configuring
incoming couplers _ _Iaye_rs (SC_L)_ - output
light \ 1203 .iNg  Powers
O = i i i y2
example \ = e
mutually = ]
incoherent * | i :
point sources | = r s : Hnq
= : : : Tl H Hn
Zp U U U U

N input waveguides p

Roques-Carmes et al., "Measuring,
processing, and generating partially
coherent light ..." LSA 13, 260 (2024)
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Programmable and self-configuring filters
N

This proposed circuit can function like an arrayed

waveguide grating filter
9 9 9 ) D. A. B. Miller, C. Roques-Carmes, C. G. Valdez, A.
but has a spectral response that is fully R. Kroo, M. VIk, Shanhui Fan, and O. Solgaard,
prog rammable "Universal proqrammable and self-configuring
optical filter," Optica 12, 1417-1426 (2025)

so it can implement any linear combination of
such filter functions

and allows multiple different simultaneous

Power  |nput waveguide Self-configuring layers

”’
-

filter functions splitter array . . . . . : Signal
o AY20 i outputs
It can also o — — L |
: . Ve~ 2
self-configure to specific wavelengths mput 1T sl =
! M : : o

waveguide

reject N-1 arbitrary wavelengths

measure and separate temporally partially
coherent light

the Karhunen-Loeve decomposition
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Conclusions
—

Interferometer meshes allow many different and fully programmable
optical and mathematical functions

with self-configuration to adapt to the problem of interest
and to stabilize what is otherwise a very complex interferometric
circuit
Applications include
mathematical operations
reference-free measurement of arbitrary optical fields
generation of arbitrary beams
automatically finding best channels
modal filtering to separate and suppress arbitrary beams
separation and measurement of partially coherent light
extensions to similar concepts in the frequency domain
Conceptual realizations from this work include

understanding that any linear optical operation can be reduced to
two-beam interferences

thought experiments utilizing arbitrary linear optical transformations

i stanford.io/40Zy7bf I




Tunneling escape of waves

stanford.io/40Zy7bf |

David Miller, Stanford University
Zeyu Kuang, Owen Miller, Yale University




Why the abrupt fall-off past some number of channels
N
Why do we always see

regardless of the shape of the source and receiving
volumes or surfaces

some number of “well coupled” channels

followed by an abrupt, quasi-exponential fall-
off in couplings past this number

and just what gives this number?
Is there some underlying piece of physics we are
missing?
We might argue it is “just” diffraction limits
but that still does not explain the rapid fall-off



Communication modes for a large paraxial example
N

Now we consider a large line of sources and a line of receiver points
with an approximately “paraxial” set of dimensions

Line of 97 pairs Line of 97
of sources receiver points

“Waves, modes,
communications and
optics,” Adv. Opt. Photon.
11,679 (2019)

and we establish the communication modes between them
The picture shows the cross-section of the intensity in the plane
here for the most strongly coupled mode
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Paraxial heuristic number and paraxial degeneracy

I L
A 8 | ] r - - o 1 - TT-—-—--——l-
e I o 2 -,
> oL I g = 102} [ . -
g gﬁ I " "Waves, modes,
o 4k s S 104L . I . - communications and
° GE) s Paraxial : " optics,” Adv. Opt.
c:\n 2 2 10-6 heuristic| . | Photon. 11, 679 (2019)
c 2 © c .
o oG number | . . —
= gl ; ; ; S 108 b _ | | Paraxial heuristic
1 5 10 15 20 1 5 10 15 20 25 number
Mode number, j Mode number, j Ny~ W W/ AL
H R

Once we pass the number we expect from conventional “diffraction limits”
: L for source and
coupling strengths for further communication modes aaesfvEr wild e
fall off drastically and somewhat exponentially We Wy
We might think this is because the waves “miss” the receiving space

separation L
but that is not the general explanation

wavelength 4
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3D examples — concentric spherical shells

“Waves, modes,
communications and
optics,” Adv. Opt.
Photon. 11, 679 (2019)

Z. Kuang, D. A. B. Miller, and O. D.
Miller, “Bounds on the Coupling
Strengths of Communication
Channels and their Information
Capacities,” IEEE Trans. Antennas
and Propagation, 73, 3974 (2025)

n/ Ng, n/ Ng,

Concentric spherical shell source and receiver spaces
are not easily analyzed by conventional “diffraction limit” theories
and do not show “paraxial degeneracy”
and the waves from the source space cannot “miss” the receiving space

but we still get some characteristic number of well-coupled
communication modes

and a quasi-exponential fall-off of coupling beyond that
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Waves from arbitrary volumes

-
How can we count the maximum number of well

coupled waves (at a given frequenc outgoing
P . ( 9 . ) bounding radiation from
from some finite volume? spherical spherical
f surface
Our approach surface .
Surround the volume with a mathematical \

"bounding” spherical surface

Count the number of well-coupled waves
possible from this spherical surface source

which then becomes the upper bound for Vogigr;itor
waves from the source volume

D. A. B. Miller, Z. Kuang, O. D. Miller,
"Tunneling escape of waves," Nat.
Photon. 19, 284-290 (2025)



https://dabm.stanford.edu/wp-content/uploads/2025/03/J297.pdf

Waves from arbitrary volumes

I
We show that, for spherical waves

. ) ) outgoing
with on? key mathematlcal trick | bounding cadiation from
there is a very simple and physical result spherical spherical

surface ‘ surface

of spherical waves
they must “tunnel” to escape

Because the fall-off from tunneling is generally so
rapid source

N . . I ‘ 0= e
this threshold effectively tells us the maximum Voolf);z(ztor ‘
number of well-coupled waves

and explains the quasi-exponential fall-off

Beyond a certain simple threshold of “complexity” \ e

D. A. B. Miller, Z. Kuang, O. D. Miller,
"Tunneling escape of waves," Nat.
Photon. 19, 284-290 (2025)
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Waves in spherical coordinates

T
In spherical coordinates », 6, and ¢

the solution to the wave equation separates to
Unm (I‘) =Z (kr)Ynm (‘9’¢)

where z (kr) is one of the spherical Bessel
functions of order n, and

Y, (6,9) 1s a spherical harmonic

Here m and n are integers with
n=0,12...and -n<m<n

So, if we know the largest n for waves to
propagate without tunneling

we can easily add up the total number of waves
up to and including that »

2n +1 for each n



Spherical harmonics

n=1 m=0 n=1 m=1
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Spherical harmonics are functions of angle only, and can be plotted on a
spherical surface

e

f
|

They have n nodal circles altogether, with |[m| through the poles (in their real
form)



Escape radius

] wave on spherical
Specifically, for a given “order” n of propagating _ surface
: region LT T
spherical wave J i I /
there is an "escape radius” /7; \'\\(
tunneling //i&\/l'//l‘..\\\‘*\ \
region ! \
Jn(n+1) 2 1 gion "7 N ammunty) |
rescn_ k = n(n+ ) :-‘......,Q“_->E
27 L NS Sme,l
. . . “\ A\ - ——4— - A l"
So, if the radius r, of the spherical €sape N\ \NSmee®y /
: radius N LT T T T Y
surface of interest WS =S=2Y
is smaller than the escape radius ~oo Y

~
~~~~~~~

for some order n of spherical wave
a wave with this » must tunnel

o - . D. A. B. Miller, Z. Kuang, O. D. Miller,
until it reaches the escape radius .

"Tunneling escape of waves," Nat.
after which it can propagate Photon. 19, 284-290 (2025)



https://dabm.stanford.edu/wp-content/uploads/2025/03/J297.pdf

Spherical Bessel functions and equation
N

Spherical Bessel functions obey

- n=10
2 © 0.2
pzd;”—lo(z'o)+2pcz’z;—l([f)+(p2—n(n+1))zn(p)=0 :% S
< S0l
Classic radial standing wave solutions are 2 L M o
j. which grows quasi-exponentially for small radii n(—: Si 0.0 A VA 7
and is quasi-oscillatory for larger radii § - x,v \
y, which is singular at the origin s Oy T 20

decaying quasi-exponentially for small radii Dimensionless radius, p
becoming quasi-oscillatory at large radii
Physically, p here is the dimensionless radius

14
=kr=2r—
P P



Taking out the 1/radius dependence

Since the spherical Bessel functions have an
underlying 1/radius dependence at large radius

as appropriate for what are ultimately
spherically expanding waves

it could be useful to remove that dependence
multiplying by radius
which gives functions corresponding to power
per unit solid angle
rather than power per unit area
So, we recast in terms of such functions
known as Riccati-Bessel functions

Sn(p):pjn(p) Cn(,o)=—,0yn(,0) 0 | 20 20
(1)

g, (,0) = ph, (,0) =S, (p) —iC, (,0) Dimensionless radius, p

Riccati-Bessel functions Spherical Bessel functions
o
M
o
&



Riccati-Bessel equation
I
Given that the spherical Bessel functions satisfy
dz, (p)
dp dp

then we can easily check that all the Riccati-Bessel
functions satisfy

2d2 n 2
d—jz+(p —n(n+1))§:0

We can rearrange that to

+(p2—n(n+1))zn(p)=0

yo,

d? n(n+1
_dlj’zn_i_ (p2 )gn:é/n




Riccati-Bessel “Schrédinger” equation
N

d? n(n+1
_dlj;n—'_ (pz )gn:é/n

is in the form of a Schrédinger equation

d¢, -
()G, =EL,

with effective radial potential

/() -2

and the same “eigenenergy” E =1 for all n




Tunneling escape and escape radius
N 1

2
With the equation _4s, + n(nH)g“n =g,

dpz p2
if the “potential energy” exceeds the “total energy”, i.e., if
—”(”jl) >1 or, equivalently n(n+1)> p’
yo,

the wave will be tunneling rather than propagating

So, for each n, there is an “escape radius” | p,.., =n(n+1)

. o n(n+l) )
or, equivalently, in dimensioned form |7, = P 2" n(n+1)
T




Evanescent and spherical escaping waves

‘l evanescent
"=== decay . ’
li i - unneling
_ y l""“’ ~(funne "9 - barrier height
. . ' "" -\ 0.75 |
Both plane and spherical waves start with 45eenns IO B A
. . . a5ty =
the same tunneling barrier height W
. e ,""“‘ ~ 0.00
and hence the same initial decay portion of plane 444475” |
. . . wave on infinite 3% ## ~ B ' : ‘
but the falllng barrier helght for the plane surface “' 0distanlce frori\ pIane3
spherical wave (wavelengths)
. escape
means it eventually escapes wave on radius
) ) propagating ! spherical surface wunneling oropagating
to being a propagating wave region 'I[ region_ . region
i R £ N Loo (& .
Note all such spherical waves tum?“ng’&’é,,),“"\ \\\:}\ o ibatﬁl?eﬁggm
eventually escape to some degree region [ e m gty | oso b\
AL L LA
though the evanescent plane wave LTI - wave
escape \ ‘\: -~ : .: : - ;/" / 0.00 - \_//\\'
never does e S N\ae==2X [/ RN
N === Y 0 1 2 3
This is an artifact of the “infinite” AN distance from sphere

face ( lengths)
extent of the plane wave surface (wavelengths



Snapshot in time of a spherical wave
—

1.0

0.5

. i ;l%' # “\%}‘.
: /\ it fsgun™y
: \/ \/f Neesmats

=10 = | 1 I
0 1 2 3
Distance from sphere edge (wavelengths)

0.0

ij;rl"ll,'

05

Outward Riccati-Bessel function

Real part of outward (Riccati- Bessel) spherical wave
Starting spherical surface radius 2.9 wavelengths
Wave with n = 20, m = 10, escape radius 3.26 wavelengths
Note the angular shape is constant as the wave expands



Outward wave propagation

I e ——
As time progresses
the wave beyond the escape radius
propagates outwards
We plot the outward Riccati-Bessel wave
as a function of time
technically the real part of
&, (2zr)exp(—iot)
normalized to unit amplitude at the
sphere edge
for a sphere of radius 2.9 wavelengths
with n =22
which has an escape radius of
3.58 wavelengths

Outward Riccati-Bessel function
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Outward wave propagation

I e ——
As time progresses
the wave beyond the escape radius
propagates outwards
We plot the outward Riccati-Bessel wave
as a function of time
technically the real part of
&, (2zr)exp(—iot)
normalized to unit amplitude at the
sphere edge
for a sphere of radius 2.9 wavelengths
with n =22
which has an escape radius of
3.58 wavelengths
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Spherical heuristic number
I — “patch”

The threshold for tunneling is easy RS of area

to characterize v ./ o

and gives a simple answer for the
number of waves that do not need

to tunnel % | ,
This is well approximated by the . | %Yy,
spherical heuristic number | 7,
2r Y dw A NS
N (kYo 2| 2 A A ——
=47 [ 2 j (22/7) (Al1x)
where A is the sphere area D. A. B. Miller, Z. Kuang, O. D. Miller,

"Tunneling escape of waves," Nat.
Photon. 19, 284-290 (2025)

sO one “propagating” wave for
every A’ /= of surface area



https://dabm.stanford.edu/wp-content/uploads/2025/03/J297.pdf

Relative far-field magnitude squared
—

2

E 10° g 10° p
S g :D; 7, =25
£S5 = 107Lo2\ 10 L dotted lines —n,
&7 % : | | 3 dashed lines — N,
I o2 | o L1 dot-dashed lines - N,
$5 — | = (the exact counting
o © ﬁ

£ = i : result)
i 10—3 bl Loiaaa PR 111l oI 10—3
10° 10t 107 10° 10 102 103 10%

Spherical wave n Cumulative no. of spherical waves (n+1)?
As the size of the spherical surface increases
the cut-off becomes increasingly relatively abrupt
tending towards the “absolutely abrupt” cut-off of evanescent waves

Note the spherical heuristic number N, is a good approximation to the
total exact number N, of “propagating” waves even down to ~ 1
wavelength of radius



Defining the diffraction limit
e

We can now construct a precise definition of
the “diffraction limit”

For a wave interacting with a volume
the wave passes the diffraction limit

if any spherical component of the wave must
tunnel to enter or leave the bounding
spherical surface enclosing the volume




No n=0 electromagnetic outgoing waves

N
Electromagnetic waves behave mostly similarly to scalar (e.g., acoustic) waves

but, unlike for acoustic waves, there is no electromagnetic wave that is
uniform in angle

Mathematically, there is no n = 0 wave in electromagnetism

If the first outgoing electromagnetic waves (so, for n = 1)
are not to require tunneling to escape
the bounding spherical volume must be at least

ot =4, 1 (V2 7) = 0.2252,
in radius or, equivalently, in diameter

d=~24 | w=0454
(consistent with the well-known Chu limit on antenna Q)

Note: The escape radius for n = 0 acoustic waves is, however, zero
so, there is always one acoustic wave that can escape without tunneling
no matter how small the emitter or microphone



Perfect cloaking - An optical “white hole"?

O ——
In this “white hole”, incoming light

appears to be mostly “sucked” into the
“white hole” in the middle

The phase fronts all “fall” rapidly into
the “white hole”

and then the light is regenerated

The phase fronts rapidly re-emerge
from the “white hole”

How do we make this optical “white
hole"?

Note: it may be simpler than you think



Perfect cloaking - An optical “white hole"?

E ———
So, what does it take to build this cloak?
Absolutely nothing

at least for this wave
If the wave is too complicated
l.e., if it is trying to violate the “diffraction limit"
it can't even effectively get into the volume
and it "reflects off free space”

This is the “inward wave" version of the tunneling
escape

with the wave trying to tunnel to get in
Interestingly, the pulse
looks as if it propagates right through!

See also Z Jacob, L V Alekseyev, and E
Narimanov, Opt. Express 14, 8247 (2006)



Perfect cloaking?

Watch the blue dot, which propagates at
the usual "phase velocity” of the wave

It appears to move right through
the volume at a constant speed



Conclusions
—

There is a unified way of thinking about waves . .
based on waves from a spherical surface [?,'Tﬁ“n ﬁ'e ll\i/lr:!eer’séEzaor;gv'vg}e[;"'\f\;!in
from the propagating and evanescent fields of Photon. 19, 284-290 (2025)
large optics |
to the multipole expansions of antennas and
nanophotonics
This approach gives a clear intuition
based on the onset of spherical wave tunneling
that

O explains how many waves can easily get in
or out of a volume

and why the fall-off is so abrupt past this

I stanford.io/40Zy7bf I

number
QO gives a rigorous and precise diffraction limit
definition | Funding from AFOSR |
O can also derive previous heuristic results | QR [RAEEStR2)~00S2


https://dabm.stanford.edu/wp-content/uploads/2025/03/J297.pdf
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