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SUPPLEMENTARY NOTE 1: COMMUNICATION MODE THEORY

Singular value decomposition and maximization property
The source {|ΨS,j⟩} and receiving {|ΦR,j⟩} eigenfunctions are computed from the eigen-equations
associated with the operators G†

SRGSR and GSRG†
SR:

G†
SRGSR |ΨS,j⟩ = |sj|2 |ΨS,j⟩ , (S1a)

GSRG†
SR |ΦR,j⟩ = |sj|2 |ΦR,j⟩ , (S1b)

in which the eigenvalues |sj|2, the squared amplitude of the singular values sj of GSR, are the
same for both operators. Additionally, the eigenfunctions satisfy the following one-to-one relation
between their eigen-spaces [1]:

GSR |ΨS,j⟩ = sj |ΦR,j⟩ . (S2)

The relations established in Eq. (S1) are the core of the singular value decomposition (SVD)
modal optics and the communication modes [1]. Each source eigenfunction |ΨS,j⟩ in the source
space creates a resulting wave in the receiving space that has the form of the receiving eigenfunc-
tion |ΦR,j⟩ weighted by the complex amplitude sj.

Assuming that the source and the receiving spaces contain a finite number of source and
receiving points, NS and NR, rearranging Eq. (S2) by isolating the coupling operator GSR, we
obtain the expression for the SVD of GSR:

GSR =
Nm

∑
j=1

sj |ΦR,j⟩ ⟨ΨS,j| , (S3)

in which Nm is the smaller of NS and NR. From Nm < j ≤ Nlarge, in which Nlarge is the larger of
NS and NR, the singular values sj are identically zero [1]. In matrix form, Eq. (S3) can be written
as:

GSR = VDdiagU†, (S4)

where V is a NR × Nm matrix whose columns are the receiving eigenfunctions |ΦR,j⟩, with
1 ≤ j ≤ Nm; Ddiag is a diagonal Nm × Nm matrix whose diagonal elements are the singular values
sj; and U is a NS × Nm matrix whose columns are the source eigenfunctions |ΨS,j⟩. Additionally,
an important property that comes from Eq. (S4) is that the sum S of the coupling strengths |sj|2
is finite and it can be obtained directly from the elements gij [Eq. (2) in the main text] of GSR,
without solving its SVD, as:

S =
Nm

∑
q=1

|sj|2 =
NR

∑
i=1

NS

∑
j=1

|gij|2. (S5)

Eq. (S5) tells us that the number of communication modes and their coupling strengths are
bounded for a given distribution of source and receiving points. Additionally, the source and
receiving eigenfunctions computed from Eq. (S4) are also unique to a particular distribution of
source and receiver points. Therefore it is not possible to obtain more orthogonal communication
modes by performing linear combinations of these eigenfunctions. To increase the number of
communication modes, we must modify the distribution of source and receiving points, leading
to a new coupling operator matrix and thus to another SVD solution [1].



Now we derive the maximization properties of the communication mode pairs, {|ΨS,j⟩} and
{|ΦR,j⟩}, computed from the eigen-equations of Eq. (S1). Our derivation follows the argument
developed in Ref. [2] and it is based on finding which normalized source function Ψn(rS) (here
the index n means normalized) gives rise to a resulting wave ϕ(rR) in the receiving space with
the largest possible magnitude |g|2, here defined as:

|g|2 =
∫

VR

ϕ∗(rR)ϕ(rR)d
3rR, (S6)

in which VR stands for a finite volume containing the receiving space.
We start by recalling that the resulting wave ϕ(rR) associated with a source function Ψn(rS) is

given by:

ϕ(r) =
∫

VS

GRS(r, rS)Ψn(rS)d
3rS, (S7)

for a finite volume VS containing the source space. Notice that Eq. (S7) is the integral form of Eq.
(4) in the main text. Instead of a collection of source points, here we are assuming a continuous
source function. Provided that our source points are close enough to each other, satisfying the
criteria discussed in Section 2 of Supplement 1, our derivation, based on continuous source and
receiving functions, also applies for a collection of source and receiving points, analyzed in the
main text. In view of that, substituting Eq. (S7) into Eq. (S6) yields:

|g|2 =
∫

VS

Ψ∗
n(r’S)

∫
VS

K(r’S, rS)Ψn(rS)d
3r’Sd3rS, (S8)

in which we defined the kernel K(r’S, rS) as:

K(r’S, rS) =
∫

VR

G∗
RS(rR, r’S)GRS(rR, rS)d

3rR, (S9)

which constitutes an Hermitian operator since K(r’S, rS) = K∗(rS, r’S). Additionally, this kernel
satisfies the following property:∫

VS

∫
VS

|K(r’S, rS)|2d3r’Sd3rS < ∞, (S10)

as both the source and receiving spaces are assumed to be defined over finite volumes, VS and
VR, and the kernel K(r’S, rS) is a continuous bounded function. Notice that we are assuming that
the source and receiving spaces are completely separated from each other, with no overlapping
between them, as illustrated from the distribution examples in Figs 1(b-d) in the main text.
Consequently, K(r’S, rS) does not present any singularities as the term |rR − rS| in the expression
of GRS [see Eq. (1) in the main text] always yields non-zero values. Therefore, with Eq. (S10)
holding true, it allows us to conclude that the kernel K(r’S, rS) constitutes a Hilbert-Schmidt
operator [1]. Since all Hilbert-Schmidt operators are compact, K(r’S, rS) is a compact Hermitian
operator and thus its eigenfunctions form a complete set in the source space and their eigenvalues
are real numbers. These results are formally proved by functional analysis. See Ref. [1] for deeper
discussion, and also Ref. [3] for an introduction to the necessary results from functional analysis.
The compactness also allows us to conclude that, with a sufficiently dense set of points in the
source and receiving spaces, the resulting point-wise source and receiver eigenfunctions from the
matrix problem converge to the solutions of the continuous problem.

Multiplying both sides of Eq. (S8) by Ψn(r’S) results in:

|g|2Ψn(r’S) =
∫

VS

K(r’S, rS)Ψn(rS)d
3rS, (S11)

where we have made use of our assumption that we are dealing with a normalized source
function, i.e.,

∫
VS

|Ψn(rS)|2d3rS = 1. It can be shown that the solutions of the integral equation
in Eq. (S11) for the largest possible values of |g|2 are given when we choose Ψn(rS) as the
normalized eigenfunctions of the kernel K(r’S, rS) [4]. In fact, these eigenfunctions correspond to
the normalized versions of our source eigenfunctions {|Ψn,S,j⟩} and the largest successive values
of |g|2 correspond to our eigenvalues |sj|2.

Therefore, by ordering our source eigenfunctions {|ΨS,j⟩} by decreasing size of their corre-
sponding eigenvalues |sj|2 we notice that: the source function |ΨS,1⟩ leads to the largest possible
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magnitude of wave vector in the receiving space and this wave vector has the form of the receiving
function |ΦR,1⟩. Similarly, |ΨS,2⟩ leads to the second largest possible magnitude of wave vector in
the receiving space having the form of |ΦR,2⟩. We can proceed in a similar fashion for all the other
source eigenfunctions. Thus, we can conclude that our communication mode pairs, {|ΨS,j⟩} and
{|ΦR,j⟩}, are indeed the optimal modes that connect the source and receiving spaces in terms of
magnitude of inner product. See Ref. [1] for an extended discussion of the properties of these
operators and sets of eigenfunctions, and the SVD generally.

Required source function for a given target light distribution
Let |ΦT⟩ be our target profile in the receiving space HR. In this space, |ΦT⟩ can be written as a

linear superposition of the receiving eigenfunctions |ΦR,j⟩ as follows:

|ΦT⟩ = ∑
j

aj |ΦR,j⟩ , (S12)

in which the coefficients aj are computed from the inner product between the target profile and
the receiving eigenfunctions aj = ⟨ΦR,j|ΦT⟩. Using the relation of Eq. (S2), we can determine the
component of the source function that creates each component aj |ΦR,j⟩ of the target profile:

GRS(aj |ΨS,j⟩) = sj(aj |ΦR,j⟩) → GRS

( aj

sj
|ΨS,j⟩

)
= aj |ΦR,j⟩ . (S13)

Therefore, summing up all these weighted source eigenfunctions (aj/sj) |ΨS,j⟩, we obtain the
required source function |ΨT⟩ in the source space HS that creates the target profile |ΦT⟩ in the
receiving space [1]:

|ΨT⟩ = ∑
j

aj

sj
|ΨS,j⟩ = ∑

j

1
sj
⟨ΦR,j|ΦT⟩ |ΨS,j⟩ , (S14)

which corresponds to Eq. (3) in the Methods.
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SUPPLEMENTARY NOTE 2: MAXIMUM ALLOWED VALUE FOR THE DISTANCES BE-
TWEEN THE SOURCE POINTS

The source points must be close enough to each other such that the collection of these points
behaves similarly to a continuous source, i.e., a set of uniform source patches covering the entire
source plane. In particular, we need to make sure that the resulting wave amplitude created
by a point source (xs,ys) at a given receiving point (xr,yr,zr) is approximately the same as the
one created by a uniform source that surrounds that point source. To satisfy this condition, we
consider two paths connecting a given receiving point, one from a corner of the patch and another
one from the middle of the patch (where the source point is located), as illustrated in Fig. S1(a).
The waves that leave these two points at the source aperture result in destructive interference
at the receiving point if the difference between the two path lengths is half the wavelength.
Therefore, it is reasonable to assume that if the difference between these paths is less than half a
wavelength, there is no significant difference whether we consider a point source or a uniform
source patch. From this condition, we derive an upper limit for the allowed values of the spacing
distances between the source points dx and dy.
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Fig. S1. Estimating an upper limit value to the spacing distances between the source points. (a)
Schematic showing the array of source points spaced from each other by dx and dy. The collection of the
source points (red dots) must behave essentially as a set of uniform source patches (blue squares) covering
the entire source plane. For a given receiving point and source patch, we compute the difference between
two path lengths: one connecting the middle of the patch Lmiddle (in red) and another one connecting one
of the corners of the patch Lcorner (in black). Setting this difference to be less than half a wavelength, we
can assume that the resulting wave amplitude created by a point source (in the middle of the patch) at the
receiving point is approximately equal to the one created by the patch. (b) Maximum allowed values for
dx = dy for the source and receiving space of Fig. 1(b) - a single horizontal plane - as a function of the num-
ber of source points along the ys direction and for different values of the on-axis longitudinal separation
distance L between the spaces.
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Assuming that the spacing between the source points along the xs and ys directions are the
same, i.e., dx = dy, from Fig. S1(a), the difference between the two path lengths is:

|Lcorner − Lmiddle| =
√

2(dy/2) sin θ, (S15)

in which θ is the angle subtended between the path with length Lmiddle and the horizontal plane
where the receiving point is located, such that:

sin θ =
ys − yr√

(xs − xr)2 + (ys − yr)2 + (L + zr)2
. (S16)

The maximum difference |Lcorner − Lmiddle| in Eq. (S15) between the two paths, that occurs for
a maximum value for θ, θmax, is associated with a path connecting a source point at a corner of
the source aperture to a receiving point at the opposite corner of the plane zr = 0. For instance,
a path connecting the point (xs,ys) = (Xs/2,Ys/2) in the source plane to the point (xr,yr,zr) =
(−Xr/2,−Yr/2,0) in the receiving space, as depicted in Fig. S1(a). Therefore, setting the right side
of Eq. (S15) to be smaller than λ/2, leads to the following condition for the spacing distances dx
and dy:

dx = dy <
2√
2

λ/2
sin θmax

=
2λ√

2

√
(Xs + Xr)2/4 + (Ys + Yr)2/4 + L2

Ys + Yr
. (S17)

For the source and receiving spaces of Fig. 1(a) of the main text, parameterized according to
Table 1, in which we adopted dx = dy = λ, Eq. (S17) yields dx = dy < 1.20λ. If we increase the
number of source points along the ys direction to py = 311 (resulting in Ys = 310λ), the criterion
of Eq. (S17) yields dx = dy < 0.991λ, implying that the source points at the top and bottom ys
positions no longer behave as uniform source patches. To solve this issue, we must consider a
denser array of source points (dx = dy < λ) for those aperture regions. In Fig. S1(b) we show the
maximum allowed value of dy for different values of Ys and L. Notice that as we move to source
points located at higher ys positions (i.e., away from the aperture center ys = 0), progressively
lower values for the spacing distance dx and dy are demanded. Additionally, reducing the on-axis
longitudinal separation distance L between the spaces also imposes lower values for these spacing
distances.

For a set of receiving horizontal planes, such as the set of 10 uniformly spaced ones analyzed in
Fig. 4 in the main text, the criterion of Eq. (S17) is more restrictive for the spacing distances dx
and dy compared to a single horizontal since the transverse dimension of the receiving Yr is no
longer null. For the example shown in the main text and parameterized accordingly to Table 1, in
which we adopted dx = dy = 0.5λ, Eq. (S17) yields dx = dy < 0.789λ.
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SUPPLEMENTARY NOTE 3: COUPLING STRENGTHS AND INTENSITY PROFILES OF
COMMUNICATION MODES

Receiving points distributed in a horizontal plane
For this source-receiving-space configuration, the coupling strength curve is characterized by
a series of steps. As we clarify below, the number of strongly coupled steps corresponds to
the number Nz of effective longitudinal (zr direction) modes supported by the configuration.
Meanwhile, the number of modes within each step corresponds approximately to the number
of effective transverse modes. There are essentially two types of transverse modes in each step:
strongly coupled and partially coupled modes. There will also be weakly coupled transverse
modes associated with wave tunneling escape [5], though these are so weak that they essentially
do not show up in the main series of steps. The strongly coupled modes are those that couple
strongly throughout the longitudinal length Zr of the receiving space, and their coupling strengths
correspond to the nearly flat region of the step. In contrast, partially coupled modes are modes
that do not strongly couple all the way to the far end zr = Zr of the horizontal receiving plane,
although they are able to couple relatively well at least into some fraction of the receiving
space at the end closest to the source zr = 0. These partially coupled modes give rise to the
moderately steep fall-off in the coupling strength curve after the last strongly coupled mode
on a given step. The number of strong effective transverse modes Nx,str and the number of
effective longitudinal modes Nz can be computed as the maximum number of intensity fringes
we can form in the receiving horizontal plane along its entire transverse Xr and longitudinal Zr
dimensions, respectively, as illustrated in Figs S2(a-b). For Nx,str, we compute the number of
intensity fringes at the final longitudinal position (zs = L + Zr) of the receiving space created
by the two furthest source points along the source xs transverse direction, i.e. with a spacing
distance equal to the lateral extent Xs of the source plane. Since we can reasonably consider that
Xs is significantly smaller than the longitudinal distance L + Zr, we can use the one-dimensional
paraxial heuristic number, defined in Ref. [1], which evaluates the number of effective modes in
the case of transverse source and receiver lines. Thus, in our case, Nx,str is evaluated as:

Nx,str =
XrXs

(L + Zr)λ
. (S18)
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(a) (b)

𝐿 + 𝑍𝑟
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𝑁𝑧

𝑥𝑠

𝑧𝑠

𝑥𝑟

𝑧𝑟 = 𝑍𝑟

Fig. S2. Number of effective modes in a transverse source plane and a horizontal receiving plane
configuration. (a) Schematic to determine the number of effective strong transverse modes Nx,str as the
maximum number of intensity fringes we can form along the transverse width Xr of the receiving plane at
the end of its longitudinal length (zr = Zr). (b) Similarly, the number of effective longitudinal modes Nz
is determined as the maximum number of intensity fringes we can form along the receiving longitudinal
distance Zr .

To evaluate the number Nz of effective longitudinal modes, we assume an off-axis source point
at the vertical position ys = Ys/2 and one at the origin ys = 0 [points A and O in Fig. S2 (b)]
and compute the difference in path length between the waves from these points at the initial
zs = L and final zs = L + Zr longitudinal positions of the receiving plane [points PL and PR in
Fig. S2(b)]. At point PL, this difference is lL = rL − zL =

√
(Ys/2)2 + L2 − L while at point PR,

lR = rR − zR =
√
(Ys/2)2 + (L + Zr)2 − (L + Zr). Thus, as we proceed from point PL to PR we
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pass through a number Nz of complete interference fringes along the zr direction given by:

Nz =
lL − lR

λ
=

(√
(Ys/2)2 + L2 −

√
(Ys/2)2 + (L + Zr)2 + Zr

) 1
λ

, (S19)

for any particular fixed phases of the point sources at A and O. If we imagine that we moved the
off-axis source progressively from point O to point A, we could therefore progressively change the
number of fringes Nz, and along the way, we could imagine that we could create approximately
different fringe patterns, with different numbers of periods, that are orthogonal to one another.
From Eq. (S19) we can also compute the vertical source distance Ynz required to generate a
particular number nz of longitudinal fringes. Replacing Ys/2 by Ynz and Nz by nz in Eq. (S19)
leads to:

Ynz /λ = ±

√
nz[2(Zr/λ)− nz][4L(L + Zr)/λ2 + 2(Zr/λ)nz − n2

z ]

2[(Zr/λ)− nz]
. (S20)

In view of Eq. (S20), we can categorize the modes according to their behavior along the vertical
source dimension, setting Ynz as a characteristic parameter. For the modes within the first step
(nz = 1), Y1 corresponds to the extent in the ys direction (relative to the center) of the intensity
profiles of the source eigenfunctions. Meanwhile, for higher steps, 1 < nz ≤ Nz, Ynz corresponds
to the vertical positions ys = ±Ynz where the source eigenfunction profiles are centered. To
illustrate this, in Supplementary Video 1, we show the intensity profiles of all the first 250
well-coupled communication modes of the configuration parametrized as listed in Table 1. The
coupling strengths of this configuration are shown in Fig. S3 (a), in which the vertical dashed lines
highlight the last strong mode of each step and the inset sub-figure depicts the absolute values
of Ynz computed from Eq. (S20). The strong modes of the first step correspond to the interval
1 ≤ j ≤ 52, thus totaling a number of Nx,str = 52 effective transverse modes, as predicted by Eq.
(S18). Past these modes, we next find the partially coupled modes before we arrive at the strongly
coupled modes of the near-flat region of the next step. In Fig. S3(b), we show the normalized
intensity profiles of the last four strong modes (j = 49, ..., 52) and the first two partially coupled
modes (j = 53, 54) of the first step. As we move from one step to another, the source eigenfunction
profiles progressively occupy higher vertical positions ys = ±Ynz , as predicted by Eq. (S20). As a
result, their receiving eigenfunction profiles acquire an additional fringe along the zr direction,
thus providing progressively higher longitudinal spatial frequencies. This is illustrated in Fig.
S3(c) in which we show the intensity profile of the last strong communication mode of the steps
nz = {4, 8, 12, 14, 16, 18}. Notice that as the vertical positions ys = ±Ynz approach the edges
ys = ±Ys/2 of the source plane, more of the intensity profile of the source eigenfunction is
compressed near these upper and lower edges of the finite source aperture. Associated with this
compression, the receiving eigenfunction is no longer able to couple as strongly as the ones of
the first steps throughout the entire length of the receiving space, as depicted in Fig. S3(d). For
the purposes of discussion, we will still refer to these modes of the final steps as "strong" modes.
Essentially, for these final steps, since their nominal values |Ynz |, given by Eq. (S20), approach
the actual size of the source aperture (Ys/2), they are very close to passing the conventional
diffraction limit for forming beams at the far end of the receiving space.

After the series of steps of up to nz = 18, the singular values show a rapid fall-off decrease in
their magnitude, as noted at the end of the coupling strength curve in Fig. S3(a) and also in Fig.
S4 in which we show this coupling strength curve up to the first 1400 modes on a logarithmic
scale. This ultimate rapid fall-off is a universal behavior in the analysis of communication modes,
regardless of the shape of the receiving and source spaces [1]. Recently, this behavior has been
explained as a consequence of the tunneling escape of waves from any arbitrary finite source
volume [5]. By means of an analysis based on spherical waves, it has been shown that beyond
a number of well-coupled modes, waves associated with subsequent modes must tunnel to
escape the finite source volume. We expect that this transition from the propagating region to
the tunneling escape region occurs precisely when the coupling strengths fall off rapidly. For
our source-receiving configuration, the condition for the onset of tunneling escape of waves
is essentially |Ynz | > Ys/2, or equivalently, nz > Nz. Figure S4 makes the clear point that,
above some finite number of modes, the coupling strengths of subsequent modes drop rapidly,
practically limiting the number of usable modes. As it has been argued in Ref. [5], this kind of
fall-off is inevitable.

Equations (S18) and (S19) are useful to give us a sense of the total number of effective modes
from the product Nx,strNz before solving the SVD problem. This can only be a rough estimate
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Fig. S3. Communication modes and their coupling strengths associated with a transverse source plane
and a horizontal receiving plane. (a) Coupling strengths on a logarithmic scale and in order of decreasing
size of their magnitude of the first 1200 modes for this configuration parameterized as listed on Table 1.
The vertical dashed lines highlight the last strong mode of each step and the inset sub-figure depicts the
characteristic vertical position Ynz of the source eigenfunctions of each step. Normalized squared ampli-
tude of: (b) the last four strong modes and the first two partially coupled modes of the first step nz = 1, (c)
the last strong mode of the steps nz = {4, 8, 12, 14, 16, 18}. (d) Normalized on-axis intensity profile along
the receiving longitudinal distance for the last strong mode of the steps nz = {14, 16, 18}.

8



because it does not count the partially coupled modes, particularly in the earlier steps, and in
the later steps there may be not as many strongly coupled modes as in the first steps. This is
illustrated in Fig. S5(a) which compares the coupling strengths for different values of the vertical
dimension Ys of the source plane and we highlight the indexes of the last strong mode of the blue
curve (for Ys = 166λ). Furthermore, Fig. S5(a) clearly show that increasing the vertical dimension
Ys of the source substantially increases the number of useful modes.

                                          

                          

  
  

  
  

                            
|𝑠

𝑗
|2

𝑛𝑧 ≤ 18 𝑛𝑧 > 18

|𝑌𝑛𝑧 | ≤ 𝑌𝑆/2 |𝑌𝑛𝑧 | > 𝑌𝑆/2

Propagating 
region

Tunneling 
region

𝑌𝑠

𝐘𝐬 = 𝟐𝟐𝟏𝛌

Fig. S4. Rapid fall-off decrease of the coupling strengths after the regions of well coupled modes
(series of steps). Coupling strengths on a logarithmic scale of the source-receiving system configuration
parameterized as listed on Table 1. The rapid fall-off of the coupling strengths is a consequence of the
tunneling escape of waves from any arbitrary finite source volume. For the source-receiving-space con-
figuration of a transverse plane and a horizontal receiving plane, the condition for the onset of tunneling
escape of waves is when the vertical positions of the source eigenfunction profiles become larger than the
source aperture size |Ynz | > Ys/2.

The number of strong transverse modes Nx,str in each step can be controlled by changing the
longitudinal distance L. This is shown in Fig. S5(b) which depicts the coupling strengths for
different values of L. The upper vertical dashed lines highlight the last strong mode of the first
step while the bottom lines highlight the first strong mode of the second step. As we move far
from the paraxial limit, that is, by decreasing the longitudinal distance L, not only the number of
strong transverse modes Nx,str increases but also the number of partially coupled modes Nx,part.
In fact, for lower values of L we can even find partially strong modes from a previous step inside
the region of strong modes of the next step. This is the case for L = 110λ (black curve) in which
although the modes j = {74, 79, 90, 92} have coupling strengths smaller than that of the first
strong mode of the second step (j = 72), they are partially coupled modes of the first step (see
Supplementary Video 1). Finally, as we approach the paraxial limit, we expect the number of
partially coupled modes to follow:

Nx,part =
XrXs

Lλ
− XrXs

(L + Zr)λ
=

XrXs

Lλ
− Nx,str, (S21)

i.e., being evaluated as the difference between the number of intensity fringes at the near-
longitudinal position of the receiving plane (zr = 0) and that at the end longitudinal position
(zr = Zr). For L = 440λ = 4Xs (magenta curve), Eq.( S21) yields Nx,part = 4 which approaches
the actual number of 3 partially coupled modes seen in this curve before its second step.
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Fig. S5. Influence of the finite source aperture vertical dimension Ys and the longitudinal distance L on
the number of strong modes. Coupling strengths of the source-receiving system configuration parameter-
ized as listed on Table 1 for (a) different values of Ys (on a logarithmic scale) and (b) for different values of
L. In (a) the dashed vertical lines highlight the last strong mode of each step of the blue curve (Ys = 166λ).
In (b) these lines highlight the last strong mode of the first step and the first strong mode of the second
step. Increasing the source vertical dimension Ys increases the number of effective longitudinal modes Nz,
i.e., the number of steps in the coupling strength curve. Meanwhile, decreasing the longitudinal distances
between the spaces also promotes an increase of the number of strong transverse modes and partially cou-
pled modes in each step.

Receiving space composed of a set of horizontal planes
The communication modes associated with this receiving space are closely related to the modes
of a single horizontal plane. The substantial difference is that the additional degree of freedom
afforded by the transverse direction yr of the receiving space results in an increase in the number
of modes. These additional modes have similar intensity profiles within all horizontal planes
but with distinct amplitude profiles along the yr direction. In Fig. S6(a), we show the coupling
strengths |sj|2 of the first 3500 modes, ordered by decreasing size of their magnitude, associated
with the source and receiving configuration of Fig. 1(c) in the main text with the values of the
parameters listed in Table 1. The normalized squared amplitude of the source and receiving
eigenfunctions of the first 250 well-coupled modes are shown in Supplementary Video 2. We
notice that we can identify groups of communication modes whose receiving eigenfunctions are
characterized by the same intensity profile over all horizontal planes but modulated by distinct
amplitude profiles along the yr direction. To illustrate this phenomenon, in Fig. S6(b), we zoom-in
the region of the coupling strength curve containing the first 70 well-coupled modes. From this
figure, we identify groups of modes (highlighted by circles), each of which contains 16 modes.
The modes of the first group (j = 1, ..., 16) have the same ’V’ shaped intensity profile over the
horizontal planes but with this profile modulated by distinct amplitudes along the yr direction,
as seen from the sub-figures of Fig. S6(c). Each sub-figure shows the source (on the left) and
the receiving (on the right) eigenfunction intensity profiles of some of the modes within the first
group (j = {1, 3, 5, 7, 9, 16}). The other modes within this group are degenerate modes of these
ones. Notice incidentally that the ’V’ shaped intensity profiles of these modes are similar to the
first mode j = 1 associated with a single horizontal plane of receiving points shown in Fig. 2(c)
in the main text. In fact, this similarity also applies to the other groups of modes. To illustrate
this, the last two sub-figures of Fig. S6 show the source and receiving intensity profiles associated
with the first mode of the second and third groups (j = 17 and j = 33). Notice that the intensity
profiles of these modes over the horizontal planes are similar to the third j = 3 and fifth j = 5
modes for a single horizontal receiving plane, shown in Fig. 2(c) in the main text.

Cylinder surface as a receiving space
In contrast to the communication modes for a receiving horizontal plane in which the source
eigenfunctions are symmetric with respect to the ys = 0 axis, the source eigenfunctions associated
with a cylindrical receiving surface either present rotational symmetries when their intensity
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Fig. S6. Communication modes and their coupling strengths associated with a transverse source plane
and a set of uniformly spaced horizontal receiving planes. (a) Coupling strengths |sj|2 of the first 3500
communication modes, ordered by decreasing size of their magnitude, associated with the configuration
of Fig. 1(c), parameterized as listed on Table 1. (b) A zoom-in visualization of the coupling strengths of the
first 70 well-coupled modes. Each highlighted group of modes is characterized by having their receiving
eigenfunctions built from the same intensity profile over the xrzr plane but modulated by distinct am-
plitude profiles along the yr direction. (c) Normalized intensity profile of the source (on the left of each
sub-figure) and receiving (on the right of each sub-figure) eigenfunctions of the communication modes
j = {1, 3, 5, 7, 9, 16}, which belongs to the first highlighted group of modes. The other modes within this
first group are degenerate modes of these ones. The two last sub-figures show the source and eigenfunc-
tions of the first mode of the two subsequent groups (j = 17 and j = 33).
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profiles are rotated for some angles with respect to the optical axis, or we can find pairs of
eigenfunctions that are related to each other by a rotation angle. In Fig. S7(a) we show the
coupling strengths |sj|2 of the first 1000 modes, ordered by decreasing the size of their magnitude,
associated with the source and receiving configuration of Fig. 1(d) in the main text with the
values of the parameters listed in Table 1. The normalized intensity profiles of the first two
communication modes are shown in Fig. S7(b). Their source eigenfunctions, shown on the left
of each sub-figure, are related to each other by a rotation of 180◦. Incidentally, this symmetry
also applies to their receiving eigenfunctions whose intensity profiles are shown in the receiving
surface [in which ϕr = atan(yr/xr) is the azimuth coordinate of the receiving rings] and at the
mid transverse plane zr = Zr/2 of the receiving space (plots on the middle and on the right in
each sub-figure). Finally, similarly to the previous distributions, as we progressively move to
modes with less coupling strength, their receiving eigenfunctions acquire progressively higher
longitudinal spatial frequencies. This is depicted in Fig. S7(c) which shows the intensity profile
of communication modes from different regions of the coupling strength curve of Fig. S7(a) as
highlighted by the arrows. In particular, the intensity profile of their receiving eigenfunctions
consists of four straight spots extending along the entire receiving longitudinal distance and
angularly spaced 90◦ from each other. The difference between these profiles is that they gradually
acquire a large number of regions of maximum intensity along the longitudinal zr direction.
The intensity profiles of all the first 100 well-coupled communication modes are shown in
Supplementary Video 3.
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Fig. S7. Communication modes and their coupling strengths associated with a transverse source plane
and a curved receiving space in which the receiving points are arranged over the longitudinal surface of
a cylinder. (a) Coupling strengths in order of decreasing size of their magnitude of the first 1000 modes for
this source-receiving system configuration parameterized as listed in Table 1. (b-c) Normalized intensity
profiles of first two communication modes and of the modes highlighted by the arrows in (a). From left
to right in each sub-figure: source eigenfunction in the source plane, receiving eigenfunction over the
lateral cylindrical surface in terms of its azimuth angle and the longitudinal coordinate zr , and at the mid
transverse plane of the receiving space (zr = Zr/2). In all the sub-figures, Rr refers to the radius of the
cylindrical surface.
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SUPPLEMENTARY NOTE 4: CHARACTERISTIC MINIMUM LONGITUDINAL LENGTH
OF WAVE FIELD GENERATED BY A FINITE SOURCE TRANSVERSE PLANE

In this section, we derive the characteristic minimum length of wave field ∆z our transverse
source plane can create along the propagation direction at a particular receiving point P0 located at
(xr, yr, zr) = (xr,0, yr,0, zr,0). This point P0 is located at a longitudinal distance zs = z0 = L + zr,0
from the source plane origin, as illustrated in Fig. S8(a). Additionally, assume that ∆Y is the
extent of the source intensity profile from the position ys = yr,0, connecting a source point that is
aligned with the receiving plane (point O) to the furthest triggered source point located at point
A in the source plane. Our derivation is based on the assumption that the waves created by these
two source points interfere constructively at the point P0, resulting in a maximum intensity at
this point. At the same time, these waves interfere destructively at points PL and PR located on
either side of P0 as shown in Fig. S8(a). Therefore, an estimation of the minimum length of wave
field ∆z our source aperture is able to create at position z0 corresponds to the separation distance
between the points PL and PR:

∆z = (z0 − zL) + (zR − z0) = ∆zL + ∆zR. (S22)

𝑃𝑅

ΔY

𝐴

𝑂
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𝑧𝐿

𝑧0

𝑧𝑅

𝑧𝑆 = 0
(𝑧0 − 𝐿)/𝜆

Δ
z/

𝜆

(a) (b) 𝐿 = 110𝜆 ; 𝑌𝑆 = 221𝜆

ΔY ≈ 0.38 YS

8.8𝜆 12.6𝜆7.1𝜆

(c)

7𝜆

𝑧𝑟/𝜆

𝑥
𝑟

/𝜆

𝑦 𝑠
/𝜆

𝑥𝑠/𝜆 𝑧𝑟/𝜆

𝑥
𝑟

/𝜆

Ψ𝑇
2Φ𝑇

2 Resulting wave

Fig. S8. Estimating the characteristic minimum length of wave field our finite transverse source aper-
ture can create along the propagation direction. (a) Schematic in which a point P0, for which we estimate
characteristic minimum length of wave field, is located at a position zs = z0 from the source aperture and
at a receiving horizontal plane with yr = yr,0. We assume that the source field extends for a distance ∆Y
from the ys = yr,0 plane, from a point O to a point A. The minimum length of wave field ∆z = ∆zL + ∆zR is
assigned as the distance between points PL and PR located on either side of P0 and is computed by presum-
ing that the waves coming from points A and O interfere constructively at the point P0 while they interfere
destructively at the points PL and PR. (b) Values of ∆z as function of the receiving plane z position and for
distinct ∆Y values. We assume the source and receiving space configuration shown in Fig. 1(b) and param-
eterized as listed on Table 1, i.e., a single horizontal plane with yr,0 = 0. (c) A simulation example involving
the reconstruction of a target profile that consists of 7λ diameter circles placed at distinct longitudinal posi-
tions along the receiving plane. We are only able to resolve the circles located at zr = 10λ (the ones close to
the source plane), as ∆z < 7λ at this position and ∆z > 7λ at the other zr positions (zr = 50λ and zr = 90λ).

At the points PL and PR we must have a half a wavelength (λ/2) difference for the relative path
length between the waves from point O and from point A compared to that at point P0. Since the
distances from point A to all the three points P0, PL and PR are given by:

r0 =
√
(z0)2 + (∆Y)2, (S23a)
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rL =
√
(z0 − ∆zL)2 + (∆Y)2, (S23b)

rR =
√
(z0 + ∆zR)2 + (∆Y)2, (S23c)

and the distances from point O to these points are respectively z0, zL = z0 − ∆zL and zR =
z0 + ∆zR, computing the relative path lengths for each of the points PL and PR with respect to
that of point P0 leads to:

∆sL = (rL − zL)− (r0 − z0) = rL − r0 + ∆zL, (S24a)

∆sR = (r0 − z0)− (rR − zR) = r0 − rR + ∆zR. (S24b)

Thus, setting ∆sL = ∆sR = λ/2, we find a set of two equations, one for ∆zL and another one
for ∆zR: √

(z0 − ∆zL)2 + (∆Y)2 −
√
(z0)2 + (∆Y)2 + ∆zL = λ/2, (S25a)√

(z0)2 + (∆Y)2 −
√
(z0 + ∆zR)2 + (∆Y)2 + ∆zR = λ/2, (S25b)

which can be solved graphically or numerically for given values of z0 and ∆Y. By solving for
∆zL and ∆zR from Eqs S25 (a-b), we sum these contributions up to compute the characteristic
minimum length of wave field ∆z, as in Eq. (S22). Values of ∆z are shown in Fig. S8(b) as function
of z0 and for distinct values of ∆Y. Here we consider the source and receiving configuration
shown in Fig. 2(a) in the main text, i.e., a single horizontal receiving space located at yr,0 = 0, in
which the on-axis separation between the spaces is L = 110λ and the source plane has a total
dimension of Ys = 221λ along the ys axis. Notice that ∆z grows up quite rapidly with the distance
zr = z0 − L within the receiving plane. Additionally, the extent ∆Y of the source function is
responsible not only for decreasing ∆z but also its rate of change along the z direction. In Fig. S8(c)
we provide a simulation example to demonstrate the fundamental limits imposed by our finite
source aperture when we try to structure a spot with a longitudinal dimension smaller than ∆z.
Using the first M = 1200 modes associated with the source and receiving configuration of Fig. 2(a)
in the main text, we compute the required source function intensity |ΨT |2 and the resulting wave
intensity at the horizontal receiving plane for a target profile consisting of 7λ diameter circles
centered at the following longitudinal positions along the receiving plane: zr = 10λ, zr = 50λ
and zr = 90λ. While we are able to generate the circles located at zr = 10λ relatively well, the
resulting wave at the other circles’ locations is characterized by spots with larger longitudinal
dimensions, indicating that the values of the characteristic minimum length of wave field ∆z at
these locations are higher than the 7λ longitudinal dimension of the target circles. In fact, their
dimensions approximately satisfy the values of ∆z given by the solid black curve of Fig. S8(b),
computed for ∆Y = 0.38YS, a value that matches with the extent of the source function intensity
as depicted in Fig. S8(c).

For a receiving space that contains a set of parallel horizontal planes, a distinct maximum extent
∆Y can be assigned to each horizontal plane yr = yr,0 to compute the characteristic minimum
length of wave field ∆z at a certain longitudinal position zr within each plane. Specifically, inner
receiving planes can acquire higher values of ∆Y compared to outer ones, as the maximum value
we can assign to this parameter is ∆Y = YS/2− yr,0. For this reason, it is expected that structuring
small features at the outermost receiving planes is more challenging than at the inner ones. To
illustrate this phenomenon, consider the receiving plane in which we projected the last ellipsoid
slice (layer 8 in Fig. S15 located at yr,0 = 52.5λ). Assuming ∆Y = YS/2 − yr,0 = 75λ − 52.5λ =
22.5λ, i.e., the maximum value we can assign to this parameter for this plane, leads to ∆z = 24.26λ
at the center of that receiving plane (zr = Zr/2 = 25λ). Because of this high value of ∆z we are
not able to completely resolve the last ellipsoid slice whose circle diameter is 10λ.
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SUPPLEMENTARY FIGURE S9
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Fig. S9. Incorporating a plane wave phase front to project the entire target profile onto the range of
well coupled modes. Simulation example assuming the source and receiving space configuration of Fig.
1(a), parameterized as listed on Table 1 and the target profile ΦT of Fig. 2(b). We apply a phase front of
the form exp(iQzr), with 0 ≤ Q ≤ k = 2π/λ, to project the target profile onto the receiving space set.
Examples shown for (a) Q = k, (b) Q = 0.975k and (c) Q = 0.95k. For each sub-figure, from left to right: am-
plitude of the inner product coefficients between ΦT exp(iQzr) and the receiving eigenfunctions {|ΦR,j⟩}
(blue circles) and the coupling strengths |sj|2 of the communication modes (in red dashed line, in arbitrary
units); corresponding required source function intensity profile at the source plane and its resulting wave
in the receiving horizontal plane, computed using the first 1200 modes.
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SUPPLEMENTARY NOTE 5: PHASE COMPUTER GENERATED HOLOGRAM ENCODING
ALGORITHM

Encoding a two-dimensional complex field into a phase profile does not have a unique solution
and many approaches have been developed in the literature [6, 7]. In this paper, we adopted the
approach proposed in Ref. [8].

First we normalize the complex field of the resulting wave at the z = L transverse plane
ϕ(xs, ys, L) and write it in terms of an amplitude a(xs, ys) term, ranging from [−1, 1], and a phase
profile term b(xs, ys), ranging from [−π, π], as:

ϕn(xs, ys, L) = a(xs, ys) exp[ib(xs, ys)], (S26)

in which the sub-index n refers to the normalized complex field.
Next, we need to convert ϕn(xs, ys, L) into a phase transmittance mask of the form:

h(xs, ys) = exp[iΦ(a, b)], (S27)

in which we omit the explicit dependence on the spatial coordinates (xs, ys) of the functions a and
b, and Φ is a phase modulation function. Our goal now is to establish a function Φ that properly
encodes the complex field ϕn, incorporating amplitude variations as phase variations. To do this,
we expand h(xs, ys) into a Fourier series in the domain of the phase profile b as follows:

h(xs, ys) =
∞

∑
q=−∞

ca
q exp(iqb), (S28)

where the coefficients ca
q, which depend on the amplitude profile a, are given by:

ca
q =

1
2π

∫ π

−π
exp[iΦ(a, b)] exp(−iqb)db. (S29)

Notice from Eqs S28 and S29 that the complex field ϕn(xs, ys, L) is fully recovered from the
first order term (q = 1) if we satisfy the following condition, usually referred as the encoding
condition:

ca
1 = Aa, (S30)

for a given positive constant A. Based upon this condition, sufficient and necessary conditions
for the function Φ(a, b) can be obtained, resulting in:∫ π

−π
sin[Φ(a, b)− b]db = 0, (S31a)

∫ π

−π
cos[Φ(a, b)− b]db = 2πAa, (S31b)

which implies that the phase modulation function Φ(a, b) must present an odd symmetry in the
variable b. In this paper, we adopted the following Φ function:

Φ(a, b) = f (a) sin(b), (S32)

that corresponds to the phase mask of type 3 proposed in Ref. [8]. The factor f (a) in Eq. (S32) is
obtained numerically from the encoding condition of Eq. (S30). Specifically, the corresponding
Fourier coefficients for this phase modulation function, computed from Eq. (S29), are given by
ca

q = Jq[ f (a)], leading to the following encoding condition:

J1[ f (a)] = Aa. (S33)

We implemented a lookup table to numerically perform the Bessel function inversion in Eq.
(S33). Choosing A = max[J1(.)] = 0.5819 leads to a function f (a) that acquires values over the
interval 0 ≤ f (a) ≤ 1.84. As a consequence, the phase domain of our phase mask h(xs, ys) is
defined over the interval [−0.586π, 0.586π], resulting in a total phase range of 1.17π. For this
phase range, our employed SLM can operate with a quantization of 800 gray levels.

Finally, we add a blazed grading with carrier spatial frequencies Gx and Gy to Eq. (S32). Thus,
the phase mask that we encode onto the SLM is described by:

Φ(a, b) = f (a) sin[b + 2π(Gxx + Gyy)]. (S34)
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The low modulation depth of 1.17π afforded by this encoding algorithm reduces the relative
intensity of the high-order diffraction field contributions in the spatial frequency domain of the
encoded phase mask. Fig. S10(a) shows the phase mask profile Φ, computed from Eq. S34, when
we encode the normalized complex field of the resulting wave ϕ(xs, ys, L) of the example shown
in Fig. 3(e) in the main text. The diffraction orders at the Fourier plane (iris plane), computed
from the FFT of the phase mask are shown in Fig. S10(b) on a logarithmic scale. Selecting the
+1st diffraction order, as depicted in Fig. S10(c) and applying the inverse Fourier transform, we
obtain the complex field ϕ(xs, ys, L) reconstructed by the SLM after the 4 f system. Notice that
the order of magnitude of the zero diffraction order is three times larger than that of the first
diffraction order. This ultimately leads to a low diffraction efficiency.

(a) (b)

(c) (d) After the 4f system

Fourier planeSLM phase mask

log10(𝐼)

log10(𝐼)

Selecting 1st diffraction order

Fig. S10. SLM phase mask and reconstruction of its encoded complex field ϕ after the 4 f system. (a)
Phase mask profile in radians computed using Eq. S34. (b) Its Fourier transform intensity profile on a
logarithmic scale at the iris plane. (c) Selection of the +1st diffraction order and (d) Intensity profile of the
reconstructed complex field, computed as the inverse Fourier transform of the +1st diffraction order.
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SUPPLEMENTARY FIGURE S11
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Fig. S11. Evaluating the mean squared error (MSE) between the encoded wave solution and that recov-
ered after the 4 f system. (a) Wave solution is the required source function plane at the plane zs = 0 and (b)
Wave solution is computed from the source function at a distance zs = L from the source plane. From left
to right in these figures: amplitude profiles of the encoded wave solution, of the recovered wave after the
4 f system and the MSE error map between the amplitudes of these waves. (c) MSE evaluated for different
longitudinal distances at which the wave solution is computed from the source plane. (d) Intensity profile
of the recovered wave in the receiving space when the wave solution is computed at zs = 0 and at zs = L.
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SUPPLEMENTARY NOTE 6: ASPECT RATIO OF THE RECONSTRUCTED LIGHT WAVES

The wave solutions, computed as the resulting wave at the plane zs = L, i.e., ϕ(xs, ys, L) from
Eq. (4) in the main text, were scaled up to match the utilized SLM display area. This leads to
a magnification on the SLM of MSLM = YSLM/Ys, in which YSLM = 9007.519λ is the vertical
dimension of the SLM effective display area. Additionally, our 4 f system [see Fig. 3(f) in the main
text] alters the SLM out-going beam by a de-magnification of M4 f = f2/ f1 = 3/4. Therefore,
the resulting wave is magnified by a factor of MSLM M4 f along its transverse dimensions. Its
longitudinal dimension, on the other hand, is magnified by a factor of (MSLM M4 f )

2. For further
details, see Ref. [9]. Therefore, the waves solutions computed from the source and receiving
space configuration of Fig. 2(a) in the main text and parametrized as listed in Table 1 (Ys = 221λ),
the transverse dimensions are scaled by ×MSLM M4 f = (40.758)(3/4) = ×30.569 while the
longitudinal dimension is stretched by a factor of ×(MSLM M4 f )

2 = ×934.433. As a result, the
aspect ratio of their reconstructed light waves is 1 : 30.57. Similarly, for the configuration of Fig.
2(b) parametrized as listed in Table 1 (Ys = 150λ), MSLM M4 f = (60.050)(3/4) = ×45.038, and
thus the spacing between the horizontal planes and their transverse dimension are scaled by a
factor of ×45.038 while their longitudinal dimension by ×2028.421.

The aspect ratio of our reconstructed light waves can be modified by altering the de-magnification
ratio of the 4 f system in our optical setup [see Fig. 3(f) in the main text]. To achieve an aspect ratio
of 1:1, we need to satisfy the condition M4 f MSLM = 1, which implies f1/ f2 = MSLM. For the
source and receiving space configuration of Fig. 2(a) in the main text, this could be implemented
with f1 = 400 mm and f2 = 10 mm, resulting in a reconstructed light wave with the same
dimensions as the simulated one, i.e., Xr × Zr = 100λ × 100λ. Notice that, however, since this
light wave only extends longitudinally for a distance of 53.2 µm, a more sophisticated optical
setup must be employed to properly measure a series of transverse planes of this light wave
(i.e., to optically reconstruct it). This new system must include an objective lens and a motorized
translational stage with a minimum repeatedly incremental motion as low as 0.5µm. Thus, to
facilitate the reproducibility of our results through a simple optical setup albeit on the expense of
distorting the aspect ratio of the light waves, we chose f1 = 400 mm and f2 = 300 mm for the 4 f
system. This choice was also made to facilitate the comparison of our method with the light sheet
wavefront shaping technique (see Section 10 of Supplement 1) whose light waves extend over a
longitudinal distance of centimeters due to the use of Bessel beams with small cone angles [10].
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SUPPLEMENTARY NOTE 7: SCALABILITY

Computation time and memory storage of the communication modes and their coupling
strengths is analyzed in Fig. S12(a) for different scaling factor values α applied to the source and
receiving space configuration of Fig. 2(a) in the main text, parametrized as listed in Table 1. The
arrays of source and receiving points and the separation distance L are multiplied by α while the
spacing distances in both spaces remain unchanged (λ) to satisfy the criterion on the maximum
allowed value for these distances (as described in Section 2 of Supplement 1). The computation
time was evaluated as the total time to compute the first M = 1.42Nx,strNz communication modes
in which Nx,str and Nz are evaluated from Eqs (S18) and (S19) in Section 3 of Supplement 1 1. We
used a dedicated Server with processor Intel(R) Xeon(R) CPU ES-2690 0 @ 2.90 GHz. While for
α = 0.5 the computation time is about 2 minutes, this time grows to almost 105 minutes for α = 1.
From that, scaling by only α = 1.1, the computation time is 2.19 times larger, almost 230 minutes;
and scaling by α = 1.2, it is almost 329 minutes (3.1 times larger). In terms of memory storage,
for α = 1 the communication modes and their coupling strengths require a total of about 516
MBytes. This number is significantly increased for α = 1.2, reaching about 1.1 GBytes (almost
two times larger). Both computation time and memory storage grow quite rapidly not only due
to the increase in the size of the coupling matrix gij (NR × NS), which grows exponentially with α,
but also due to the increase in the number of well-coupled modes. This is illustrated in Fig. S12(b)
which depicts the coupling strengths in order of decreasing size of their magnitude for different
values of α. On the right, the number of steps Nz and the number of strong effective modes of
each step Nx,str present a roughly linear relationship with α. Finally, to match the utilized SLM
display area, a scaling factor of α = 40.5 must be applied, which implies a number of about
6.76×1014 elements for the coupling matrix gij. Additionally, the coupling strength curve will
present Nz = 756 steps and each step will contain Nx,str = 2141 effective strong modes. Thus, the
SVD computation must be performed for the first M = 1618596 well-coupled modes. Given the
large magnitude of these numbers, an extremely huge computation time and memory storage
must be dedicated to this case, which becomes highly unfeasible. Fitting the data of Fig. S12(a) by
a polynomial function of third degree, a memory storage of 132.5 TBytes is estimated for α = 40.5.

For the source and receiving space distribution of Fig. 2(b) in the main text and parametrized
as listed in Table 1, i.e., the one containing a set of 10 receiving horizontal planes, the SVD com-
putation time for the first M = 4000 well-coupled modes is about 712 minutes and the memory
storage is about 3.09 GBytes. For the distribution of Fig. 2(c) in the main text parametrized as
listed in Table 1, this time is about 166 minutes for the first M = 1000 well-coupled modes with a
memory storage of about 657 MBytes. Scaling up these distributions to match the SLM effective
display area will become even more critical in terms of computation time and memory storage.

1This expression for M can be split up in two terms: M = Nx,str Nz + 0.42Nx,str Nz . The first term is the total number of
strong effective modes as analyzed in Section 3 of Supplement 1. The factor 0.42 Nx,str gives us the number of partially
coupled modes of the first step as can be verified for the configuration of Fig. 2(a) in the main text parametrized as listed in
Table 1 in Fig. S3(a). Thus, the second term estimates the total number of partially coupled modes. Notice that this expression
for M is an overestimation, as the number of strong and partially coupled modes within each step tends to slightly decrease
as we move towards higher steps, as detailed in Section 3 of Supplement 1.
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Fig. S12. SVD computation time and memory storage (a) Computation time (in black) and memory
storage (in red) of the communication modes associated with the source and receiving space configuration
of Fig. 2(a) in the main text and parametrized as listed in Table 1 is analyzed for a scaling factor α applied
to the arrays of source and receiving points and to the separation distance L. (b) On the left: coupling
strengths in order of decreasing size of their magnitude for different values of α. On the right: number of
steps Nz (in red) and number of strong effective modes of each step Nx,str (in blue) for different values of α.

21



SUPPLEMENTARY NOTE 8: RECONSTRUCTION QUALITY OF THE MEASURED HOLO-
GRAMS

Figs S13 (a-d) show the MSE error maps, i.e., (Imeas − Itarg)2, of the measured holograms of Fig.
4(a-d) in the main text. In Figs S13 (e-f), we show the intensity profile along the transverse of the
first hologram and along the longitudinal direction of the last one (checkerboard). The metrics for
the 3D hologram of Fig. 5 in the main text for each reconstructed digit is presented in Fig. S14.
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Fig. S13. Comparing the measured 2D holograms of Figs 4(a-d) in the main text with their target pro-
files. (a-d) MSE error map between the normalized measured intensity profiles and the target profiles. (e)
Intensity profile of the hologram of Fig. 4(a) along the transverse direction and (f) of the fourth hologram
along the longitudinal direction.
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Fig. S14. Accuracy and reconstruction quality metrics of the measured 3D hologram of Fig. 5 in the
main text. (a) MSE error map in all the eight horizontal planes. (b) MSE, (c) Michelson contrast, (d) uni-
formity of the illuminated regions and (e) Signal-to-background ratio (SBR) of all the eight reconstructed
digits.
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SUPPLEMENTARY NOTE 9: PROJECTING AN ELLIPSOID

Here we consider another target 3D light distribution to be projected onto the eight inner hori-
zontal receiving planes of the distribution shown in Fig. 1(c). Specifically, we project eight layers
of an ellipsoid, centered in the middle of the receiving volume (xr,yr,zr) = (0,0,Zr/2) and whose
semiaxes have lengths a = 0.4Xr = 20λ, b = 0.4Yr = 54λ and c = 0.4Zr = 20λ. The intensity
of the target receiving profile |ΦT |2 and of the required source function |ΨT |2 are shown in Fig.
S15(a). The optical reconstruction and its transverse planes at zr = Zr/2 and at zr = Zr/4 are
shown in Fig. S15(b) while in Fig. S15(c) we present measured and simulated results of the four
bottom layers. Notice that we have a good reconstruction for all the layers except the last one
(layer 8) in which the resulting wave is not able to structure a circle nor to achieve the same
intensity as the other layers. The reason for this is because the target circle we assigned to this
layer has a diameter smaller than the characteristic minimum spot ∆z our source transverse plane
is capable of resolving (see Section 4 of Supplement 1). To fully resolve the circle of this layer,
we need to consider a source plane with a larger dimension along the ys axis (large Ys value and
potentially with smaller spacing distances dx and dy for the additional source points), allowing
us to incorporate a phase front exp(iQzr) with a smaller value of Q, resulting in a source function
with a higher extent ∆Y along the ys axis, thus leading to a smaller value for ∆z.
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Fig. S15. Projecting eight layers of an ellipsoid. (a) An ellipsoid with dimensions 20λ × 54λ × 20λ is
projected over the eight inner horizontal receiving planes of the source-receiving space system of Fig. 1(c),
parameterized as listed on Table 1. The resulting wave is computed using the first 3500 modes. (a) Target
receiving intensity profile |ΦT |2 and its corresponding required source function intensity profile |ΨT |2.
(b) Optical reconstruction of the resulting wave using a phase-only SLM within a volume containing the
receiving horizontal planes and at transverse planes located at the mid and quarter longitudinal distances,
zr = Zr/2 and zr = Zr/4 (Zr : longitudinal length of the planes). (c) Measured and simulated results for the
four bottom ellipsoid layers. The wave solution is scaled up to match the SLM effective display area and
thus the 1:1 aspect ratio of the simulated wave is not preserved in the measured results. Measured spacing
distance between the horizontal planes is dy,r = 0.359 mm while their dimensions are Zr × Xr = 54 mm ×
1.20 mm.
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SUPPLEMENTARY NOTE 10: CROSS-TALK AND COMPARISON WITH LIGHT SHEET
METHOD

To evaluate the level of cross-talk at each horizontal plane i that compose the receiving space of
the example in Fig. 5 in the main text, we use the following figure of merit:

ϵi =

∫∫
Si
||ϕn(rSi )|2| − |ϕn,ref(rSi )|2|dSi∫∫

Si

(
|ϕn(rSi )|2|+ |ϕn,ref(rSi )|2

)
dSi

, (S35)

in which ϕn refers to the normalized resulting wave computed from Eq. (4) in the main text,
Si is the surface of the horizontal plane i, rSi is a vector position that describes Si and ϕn,ref is
the normalized resulting wave when only the target intensity profile in the horizontal plane i is
projected, i.e., in all other planes the target intensity profile is set to zero. Thus, ϵi = 0 means that
ϕn(rSi ) is perfectly identical to ϕn,ref(rSi ) in amplitude and therefore the projection of the target
intensity profile in the plane i is done without cross-talk. In Fig. S16(a), we show the intensity of
both ϕn,ref(rSi ) and ϕn(rSi ) for all the eight horizontal planes of the example of Fig. 5 in the main
text. The level of cross-talk, evaluated from Eq. (S35), in each plane is also shown. Notice that ϵ
assumes a value lower than 0.1 in all eight planes, indicating, in fact, the low level of crosstalk
between the reconstructed intensity profiles.

Projecting the same target intensity profiles using the light sheet wavefront shaping method in
our SLM optical setup is analyzed in Fig. S16(b). Here the light sheets are designed using the
same optimized parameters adopted in Ref. [10] in the 3D designs. Specifically, each light thread
is designed to extend for a longitudinal distance of L = 540 mm and has a spot size radius of r0 =
30 µm. This results in a total of 95 Bessel modes to modulate its intensity along the longitudinal
direction. Additionally, each light sheet is composed of P = 30 light threads. Finally, the design
spacing distance between the light sheets is 0.359 mm/M4 f = 0.4786 mm, in which M4 f = 3/4
is the aspect ratio of the 4 f system in our SLM optical setup. The resulting wave is computed
by adding all the superpositions of Bessel modes as detailed in Ref. [10]. The intensity of the
reference and normalized resulting waves in all eight horizontal planes and the cross-talk at each
plane are shown in Fig. S16(b). In contrast to our method, notice that here the projection in all the
planes is highly affected by cross-talk, greatly distorting the intensity profiles of the digits.
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Fig. S16. Comparing SVD modal optics and holographic light sheet approaches For the example shown
in Fig. 5 in the main text, we compare the reconstructed intensity profiles in all the eight horizontal planes
using (a) wavefront shaping method based on communication modes and (b) the Light Sheet wavefront
shaping method. The columns labeled ’Reference’ present the intensity of the resulting wave when only
the target intensity profile assigned to that particular plane is projected. We evaluate the level of cross-
talk ϵ in each plane by comparing the intensity of the resulting wave in that plane with its reference wave
according to Eq. (S35). A value of ϵ = 0 means that the resulting wave is perfectly identical to its reference
wave in amplitude and thus the projection is done without cross-talk.
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SUPPLEMENTARY FIGURE S17
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Fig. S17. Reducing the spacing distance between the receiving horizontal planes. We consider the dis-
tribution of Fig. 1(c) in the main text parameterized accordingly to Table 1 except that the spacing between
the horizontal receiving planes is reduced to dy,r = 7.5λ. This spacing distance corresponds to 0.179 mm
when the corresponding wave solutions are encoded in our SLM optical setup. (a) Projection of the target
profile onto the basis of the receiving space (blue dots). The target profile is modulated with a phase front
exp(iQzr) with Q = 0.95k. The coupling strengths are depicted in red. Intensity of the required source
function and the resulting wave at the mid plane zr = Zr/2 in the receiving space computed using the
first (b) 3500 modes and (c) 4500 modes. The horizontal receiving planes are indicated by the dashed white
lines. Intensity profile in two of the horizontal planes when we incorporate: (d) the first 3500 modes and (e)
the first 4500 modes.
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SUPPLEMENTARY FIGURE S18
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Fig. S18. Reconstructed intensity profiles when weakly coupled modes are incorporated. For the distri-
bution of Fig. 1(c) in the main text parameterized accordingly to Table 1 except that the spacing between
the horizontal receiving planes is reduced to dy,r = 7.5λ. We incorporate the first 4500 modes leading to
the source function profile depicted in Fig. S17. (a) Simulated intensity profiles. (b) Reconstructed intensity
profiles when the resulting wave from the source function (at zs = L) is encoded on the SLM phase mask.
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SUPPLEMENTARY NOTE 11: PROJECTING LIGHT WAVES ON THE LONGITUDINAL
SURFACE OF A CYLINDER

In this example, the target profile consists of the target 2D image of Fig. 2(b) projected onto
the longitudinal cylindrical surface of the source-receiving system of Fig. 1(d), parameterized
accordingly to Table 1. We modulate this target profile ΦT with a phase front exp(iQzr) with
Q = 0.95k and compute its corresponding source function ΨT using the first 800 well-coupled
modes. Fig S19(a) shows the intensity of both the target and the required source function. The
simulated and reconstructed (measured) resulting waves are shown in Figs S19(b-c), from left to
right, within a volume containing the receiving space, on the longitudinal surface of the cylinder
as a function of the azimuth angle ϕr = atan(yr/xr) and the longitudinal distance zr, and at the
mid-transverse plane of the cylinder (zr = Zr/2). The measured dimensions are indicated in red
in Fig. S19(c).
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Fig. S19. Structured light field over the longitudinal surface of a cylinder using communication modes
The source and receiving configuration is the one shown in Fig. 1(d) in the main text, parameterized as
listed on Table 1. (a) Target intensity distribution |ΦT |2 consists of the grayscale amplitude profile of 2D
image of Fig. 2(b) projected onto the receiving cylindrical surface. Its required source function |ΨT |2 is
computed using the first 800 well-coupled modes. (b) From left to right: simulated resulting wave over
a volume containing the receiving space, over the lateral cylindrical surface (described in terms of its az-
imuth angle and the longitudinal coordinate zr) and at the mid transverse plane of the receiving space. (c)
Optical reconstruction of the resulting wave using a phase-only SLM. Measured dimensions: longitudinal
distance Zr = 121 mm and radius Rr = 0.898 mm.
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